Publication Type
Conference Proceeding Article
Version
publishedVersion
Publication Date
6-2014
Abstract
We study the problem of large-scale social identity linkage across different social media platforms, which is of critical importance to business intelligence by gaining from social data a deeper understanding and more accurate profiling of users. This paper proposes HYDRA, a solution framework which consists of three key steps: (I) modeling heterogeneous behavior by long-term behavior distribution analysis and multi-resolution temporal information matching; (II) constructing structural consistency graph to measure the high-order structure consistency on users' core social structures across different platforms; and (III) learning the mapping function by multi-objective optimization composed of both the supervised learning on pair-wise ID linkage information and the cross-platform structure consistency maximization. Extensive experiments on 10 million users across seven popular social network platforms demonstrate that HYDRA correctly identifies real user linkage across different platforms, and outperforms existing state-of-the-art algorithms by at least 20% under different settings, and 4 times better in most settings.
Discipline
Computer Sciences | Databases and Information Systems
Publication
SIGMOD '14: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data: June 22-27, 2014, Snowbird, UT
First Page
51
Last Page
62
ISBN
9781450323765
Identifier
10.1145/2588555.2588559
Publisher
ACM
City or Country
New York
Citation
Liu, Siyuan; Wang, Shuhui; ZHU, Feida; Zhang, Jinbo; and Krishnan, Ramayya.
HYDRA: Large-scale Social Identity Linkage via Heterogeneous Behavior Modeling. (2014). SIGMOD '14: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data: June 22-27, 2014, Snowbird, UT. 51-62.
Available at: https://ink.library.smu.edu.sg/sis_research/2650
Copyright Owner and License
LARC
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
http://dx.doi.org/10.1145/2588555.2588559