Publication Type
Conference Proceeding Article
Version
publishedVersion
Publication Date
11-2014
Abstract
We investigate online active learning techniques for classification tasks in data stream mining applications. Unlike traditional learning approaches (either batch or online learning) that often require to request the class label of each incoming instance, online active learning queries only a subset of informative incoming instances to update the classification model, which aims to maximize classification performance using minimal human labeling effort during the entire online stream data mining task. In this paper, we present a new family of algorithms for online active learning called Passive-Aggressive Active (PAA) learning algorithms by adapting the popular Passive-Aggressive algorithms in an online active learning setting. Unlike the conventional Perceptron-based approach that employs only the misclassified instances for updating the model, the proposed PAA learning algorithms not only use the misclassified instances to update the classifier, but also exploit correctly classified examples with low prediction confidence. We theoretically analyse the mistake bounds of the proposed algorithms and conduct extensive experiments to examine their empirical performance, in which encouraging results show clear advantages of our algorithms over the baselines.
Keywords
Online Learning, Data Stream, Active Learning, Passive-Aggressive
Discipline
Databases and Information Systems | Numerical Analysis and Scientific Computing
Research Areas
Data Science and Engineering
Publication
JMLR: Workshop and Conference Proceedings: Asian Conference on Machine Learning (ACML 2014), Nha Trang City, Vietnam, 26-28 November 2014
Volume
39
First Page
266
Last Page
282
Publisher
JMLR
City or Country
Cambridge, MA
Citation
LU, Jing; ZHAO, Peilin; and HOI, Steven C. H..
Online Passive Aggressive Active Learning and its Applications. (2014). JMLR: Workshop and Conference Proceedings: Asian Conference on Machine Learning (ACML 2014), Nha Trang City, Vietnam, 26-28 November 2014. 39, 266-282.
Available at: https://ink.library.smu.edu.sg/sis_research/2640
Copyright Owner and License
Authors
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
http://jmlr.org/proceedings/papers/v39/lu14.pdf
Included in
Databases and Information Systems Commons, Numerical Analysis and Scientific Computing Commons
Comments
Best Runner-Up Paper Award, 26-28 November 2014