Publication Type
Journal Article
Version
acceptedVersion
Publication Date
7-2015
Abstract
Social identity linkage across different social media platforms is of critical importance to business intelligence by gaining from social data a deeper understanding and more accurate profiling of users. In this paper, we propose a solution framework, HYDRA, which consists of three key steps: (I) we model heterogeneous behavior by long-term topical distribution analysis and multi-resolution temporal behavior matching against high noise and information missing, and the behavior similarity are described by multi-dimensional similarity vector for each user pair; (II) we build structure consistency models to maximize the structure and behavior consistency on users' core social structure across different platforms, thus the task of identity linkage can be performed on groups of users, which is beyond the individual level linkage in previous study; and (III) we propose a normalized-margin-based linkage function formulation, and learn the linkage function by multi-objective optimization where both supervised pair-wise linkage function learning and structure consistency maximization are conducted towards a unified Pareto optimal solution. The model is able to deal with drastic information missing, and avoid the curse-of-dimensionality in handling high dimensional sparse representation. Extensive experiments on 10 million users across seven popular social networks platforms demonstrate that HYDRA correctly identifies real user linkage across different platforms from massive noisy user behavior data records, and outperforms existing state-of-the-art approaches by at least 20 percent under different settings, and four times better in most settings.
Keywords
Social identity linkage, structured Learning, heterogeneous behavior, multi-resolution temporal information matching
Discipline
Databases and Information Systems | Numerical Analysis and Scientific Computing | Social Media
Research Areas
Data Science and Engineering
Publication
IEEE Transactions on Knowledge and Data Engineering (TKDE)
Volume
27
Issue
7
First Page
2005
Last Page
2019
ISSN
1041-4347
Identifier
10.1109/TKDE.2015.2397434
Publisher
IEEE
Citation
LIU, Siyuan; WANG, Shuhui; and ZHU, Feida.
Structured learning from heterogeneous behavior for social identity linkage. (2015). IEEE Transactions on Knowledge and Data Engineering (TKDE). 27, (7), 2005-2019.
Available at: https://ink.library.smu.edu.sg/sis_research/2524
Copyright Owner and License
Authors
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1109/TKDE.2015.2397434
Included in
Databases and Information Systems Commons, Numerical Analysis and Scientific Computing Commons, Social Media Commons