Publication Type
Conference Proceeding Article
Version
publishedVersion
Publication Date
9-2012
Abstract
Kernel-based online learning often exhibits promising empirical performance for various applications according to previous studies. However, it often suffers a main shortcoming, that is, the unbounded number of support vectors, making it unsuitable for handling large-scale datasets. In this paper, we investigate the problem of budget kernel-based online learning that aims to constrain the number of support vectors by a predefined budget when learning the kernel-based prediction function in the online learning process. Unlike the existing studies, we present a new framework of budget kernel-based online learning based on a recently proposed online learning method called “Double Updating Online Learning” (DUOL), which has shown state-of-the-art performance as compared with the other traditional kernel-based online learning algorithms. We analyze the theoretical underpinning of the proposed Budget Double Updating Online Learning (BDUOL) framework, and then propose several BDUOL algorithms by designing different budget maintenance strategies. We evaluate the empirical performance of the proposed BDUOL algorithms by comparing them with several well-known budget kernel-based online learning algorithms, in which encouraging results validate the efficacy of the proposed technique.
Discipline
Computer Sciences | Databases and Information Systems
Research Areas
Data Science and Engineering
Publication
Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2012, Bristol, September 24-28: Proceedings
Volume
7523
First Page
810
Last Page
826
ISBN
9783642334597
Identifier
10.1007/978-3-642-33460-3_57
Publisher
Springer
City or Country
Berlin
Embargo Period
10-31-2015
Citation
ZHAO, Peilin and HOI, Steven C. H..
BDUOL: Double Updating Online Learning on a Fixed Budget. (2012). Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2012, Bristol, September 24-28: Proceedings. 7523, 810-826.
Available at: https://ink.library.smu.edu.sg/sis_research/2355
Copyright Owner and License
Authors
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1007/978-3-642-33460-3_57