Publication Type
Conference Proceeding Article
Version
publishedVersion
Publication Date
8-2013
Abstract
In this work, we present a new framework for large scale online kernel classification, making kernel methods efficient and scalable for large-scale online learning tasks. Unlike the regular budget kernel online learning scheme that usually uses different strategies to bound the number of support vectors, our framework explores a functional approximation approach to approximating a kernel function/matrix in order to make the subsequent online learning task efficient and scalable. Specifically, we present two different online kernel machine learning algorithms: (i) the Fourier Online Gradient Descent (FOGD) algorithm that applies the random Fourier features for approximating kernel functions; and (ii) the Nyström Online Gradient Descent (NOGD) algorithm that applies the Nyström method to approximate large kernel matrices. We offer theoretical analysis of the proposed algorithms, and conduct experiments for large-scale online classification tasks with some data set of over 1 million instances. Our encouraging results validate the effectiveness and efficiency of the proposed algorithms, making them potentially more practical than the family of existing budget kernel online learning approaches.
Discipline
Computer Sciences | Databases and Information Systems | Numerical Analysis and Scientific Computing
Research Areas
Data Science and Engineering
Publication
Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence: August 3-9, 2013, Beijing
First Page
1750
Last Page
1756
ISBN
9781577356332
Publisher
AAAI Press
City or Country
Menlo Park, CA
Citation
WANG, Jialei; ZHAO, Peilin; HOI, Steven C. H.; ZHUANG, Jinfeng; and LIU, Zhi-Yong.
Large scale online kernel classification. (2013). Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence: August 3-9, 2013, Beijing. 1750-1756.
Available at: https://ink.library.smu.edu.sg/sis_research/2325
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://www.ijcai.org/Proceedings/13/Papers/259.pdf
Included in
Databases and Information Systems Commons, Numerical Analysis and Scientific Computing Commons