Publication Type
Journal Article
Version
acceptedVersion
Publication Date
1-2014
Abstract
This paper investigates a framework of search-based face annotation (SBFA) by mining weakly labeled facial images that are freely available on the World Wide Web (WWW). One challenging problem for search-based face annotation scheme is how to effectively perform annotation by exploiting the list of most similar facial images and their weak labels that are often noisy and incomplete. To tackle this problem, we propose an effective unsupervised label refinement (ULR) approach for refining the labels of web facial images using machine learning techniques. We formulate the learning problem as a convex optimization and develop effective optimization algorithms to solve the large-scale learning task efficiently. To further speed up the proposed scheme, we also propose a clustering-based approximation algorithm which can improve the scalability considerably. We have conducted an extensive set of empirical studies on a large-scale web facial image testbed, in which encouraging results showed that the proposed ULR algorithms can significantly boost the performance of the promising SBFA scheme.
Keywords
Face annotation, content-based image retrieval, machine learning, label refinement, web facial images, weak label
Discipline
Computer Sciences | Databases and Information Systems
Research Areas
Data Science and Engineering
Publication
IEEE Transactions on Knowledge and Data Engineering (TKDE)
Volume
26
Issue
1
First Page
166
Last Page
179
ISSN
1041-4347
Identifier
10.1109/TKDE.2012.240
Publisher
IEEE
Citation
WANG, Dayong; HOI, Steven C. H.; HE, Ying; and ZHU, Jianke.
Mining weakly labeled web facial images for search-based face annotation. (2014). IEEE Transactions on Knowledge and Data Engineering (TKDE). 26, (1), 166-179.
Available at: https://ink.library.smu.edu.sg/sis_research/2278
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1109/TKDE.2012.240