Publication Type
Conference Proceeding Article
Version
publishedVersion
Publication Date
5-2013
Abstract
Nowadays, software engineers use a variety of online media to search and become informed of new and interesting technologies, and to learn from and help one another. We refer to these kinds of online media which help software engineers improve their performance in software development, maintenance and test processes as software information sites. It is common to see tags in software information sites and many sites allow users to tag various objects with their own words. Users increasingly use tags to describe the most important features of their posted contents or projects. In this paper, we propose TagCombine, an automatic tag recommendation method which analyzes objects in software information sites. TagCombine has 3 different components: 1. multi-label ranking component which considers tag recommendation as a multi-label learning problem; 2. similarity based ranking component which recommends tags from similar objects; 3. tag-term based ranking component which considers the relationship between different terms and tags, and recommends tags after analyzing the terms in the objects. We evaluate TagCombine on 2 software information sites, StackOverflow and Freecode, which contain 47,668 and 39,231 text documents, respectively, and 437 and 243 tags, respectively. Experiment results show that for StackOverflow, our TagCombine achieves recall@5 and recall@10 scores of 0.5964 and 0.7239, respectively; For Freecode, it achieves recall@5 and recall@10 scores of 0.6391 and 0.7773, respectively. Moreover, averaging over StackOverflow and Freecode results, we improve TagRec proposed by Al-Kofahi et al. by 22.65% and 14.95%, and the tag recommendation method proposed by Zangerle et al. by 18.5% and 7.35% for recall@5 and recall@10 scores.
Keywords
Software Information Sites, Online Media, Tag Recommendation, TagCombine
Discipline
Software Engineering
Research Areas
Software Systems
Publication
Proceedings of the 10th Working Conference on Mining Software Repositories
First Page
287
Last Page
296
ISBN
9781479903450
Identifier
10.1109/MSR.2013.6624040
Publisher
IEEE
City or Country
San Francisco, CA
Citation
XIA, Xin; LO, David; WANG, Xinyu; and ZHOU, Bo.
Tag Recommendation in Software Information Sites. (2013). Proceedings of the 10th Working Conference on Mining Software Repositories. 287-296.
Available at: https://ink.library.smu.edu.sg/sis_research/2021
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
http://dx.doi.org/10.1109/MSR.2013.6624040