Publication Type

Journal Article

Version

Postprint

Publication Date

1-2014

Abstract

Click fraud - the deliberate clicking on advertisements with no real interest on the product or service offered - is one of the most daunting problems in online advertising. Building an elective fraud detection method is thus pivotal for online advertising businesses. We organized a Fraud Detection in Mobile Advertising (FDMA) 2012 Competition, opening the opportunity for participants to work on real-world fraud data from BuzzCity Pte. Ltd., a global mobile advertising company based in Singapore. In particular, the task is to identify fraudulent publishers who generate illegitimate clicks, and distinguish them from normal publishers. The competition was held from September 1 to September 30, 2012, attracting 127 teams from more than 15 countries. The mobile advertising data are unique and complex, involving heterogeneous information, noisy patterns with missing values, and highly imbalanced class distribution. The competition results provide a comprehensive study on the usability of data mining-based fraud detection approaches in practical setting. Our principal findings are that features derived from fine-grained time series analysis are crucial for accurate fraud detection, and that ensemble methods offer promising solutions to highly-imbalanced nonlinear classification tasks with mixed variable types and noisy/missing patterns.

Keywords

Data mining, ensemble learning, feature engineering, fraud detection, imbalanced classification

Discipline

Computer Sciences | Information Security | Software Engineering

Research Areas

Software Systems

Publication

Journal of Machine Learning Research

Volume

15

Issue

1

First Page

99

Last Page

140

ISSN

1533-7928

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Additional URL

http://www.jmlr.org/papers/volume15/oentaryo14a/oentaryo14a.pdf

Share

COinS