Publication Type
Conference Proceeding Article
Version
acceptedVersion
Publication Date
2013
Abstract
Nowadays, content-based retrieval methods are still the development trend of the traditional retrieval systems. Image labels, as one of the most popular approaches for the semantic representation of images, can fully capture the representative information of images. To achieve the high performance of retrieval systems, the precise annotation for images becomes inevitable. However, as the massive number of images in the Internet, one cannot annotate all the images without a scalable and flexible (i.e., training-free) annotation method. In this paper, we particularly investigate the problem of accelerating sparse coding based scalable image annotation, whose off-the-shelf solvers are generally inefficient on large-scale dataset. By leveraging the prior that most reconstruction coefficients should be zero, we develop a general and efficient framework to derive an accurate solution to the large-scale sparse coding problem through solving a series of much smaller-scale subproblems. In this framework, an active variable set, which expands and shrinks iteratively, is maintained, with each snapshot of the active variable set corresponding to a subproblem. Meanwhile, the convergence of our proposed framework to global optimum is theoretically provable. To further accelerate the proposed framework, a sub-linear time complexity hashing strategy, e.g. Locality-Sensitive Hashing, is seamlessly integrated into our framework. Extensive empirical experiments on NUS-WIDE and IMAGENET datasets demonstrate that the orders-of-magnitude acceleration is achieved by the proposed framework for large-scale image annotation, along with zero/negligible accuracy loss for the cases without/with hashing speed-up, compared to the expensive off-the-shelf solvers.
Keywords
Hash-accelerated sparsity induced scalable optimization, Sparse coding, Large-scale image annotation
Discipline
Databases and Information Systems
Publication
MM '13 Proceedings of the 21st ACM international conference on Multimedia
First Page
947
Last Page
956
ISBN
9781450324045
Identifier
10.1145/2502081.2502127
Publisher
ACM
City or Country
Catalunya, Spain
Citation
HUANG, Junshi; LIU, Hairong; SHEN, Jialie; and YAN, Shuicheng.
Towards Efficient Sparse Coding for Scalable Image Annotation. (2013). MM '13 Proceedings of the 21st ACM international conference on Multimedia. 947-956.
Available at: https://ink.library.smu.edu.sg/sis_research/1832
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
http://dx.doi.org/10.1145/2502081.2502127