Publication Type
Conference Proceeding Article
Version
publishedVersion
Publication Date
8-2012
Abstract
Continuing advances in data storage and communication technologies have led to an explosive growth in digital music collections. To cope with their increasing scale, we need effective Music Information Retrieval (MIR) capabilities like tagging, concept search and clustering. Integral to MIR is a framework for modelling music documents and generating discriminative signatures for them. In this paper, we introduce a multimodal, layered learning framework called DMCM. Distinguished from the existing approaches that encode music as an ensemble of order-less feature vectors, our framework extracts from each music document a variety of acoustic features, and translates them into low-level encodings over the temporal dimension. From them, DMCM elucidates the concept dynamics in the music document, representing them with a novel music signature scheme called Stochastic Music Concept Histogram (SMCH) that captures the probability distribution over all the concepts. Experiment results with two large music collections confirm the advantages of the proposed framework over existing methods on various MIR tasks.
Keywords
Music Information Retrieval, Similarity Measure, Music Concepts
Discipline
Databases and Information Systems | Numerical Analysis and Scientific Computing
Publication
SIGIR '12: Proceedings of the International ACM SIGIR Conference on Research & Development in Information Retrieval: August 12-16, 2012: Portland, Oregon, USA
First Page
455
Last Page
464
ISBN
9781450314725
Identifier
10.1145/2348283.2348346
Publisher
ACM
City or Country
New York
Citation
SHEN, Jialie; PANG, Hwee Hwa; WANG, Meng; and YAN, Shuicheng.
Modeling Concept Dynamics for Large Scale Music Search. (2012). SIGIR '12: Proceedings of the International ACM SIGIR Conference on Research & Development in Information Retrieval: August 12-16, 2012: Portland, Oregon, USA. 455-464.
Available at: https://ink.library.smu.edu.sg/sis_research/1647
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
http://doi.org/10.1145/2348283.2348346
Included in
Databases and Information Systems Commons, Numerical Analysis and Scientific Computing Commons