Publication Type

Journal Article

Version

publishedVersion

Publication Date

3-2012

Abstract

In this paper, we present a new system framework called ROAD for spatial object search on road networks. ROAD is extensible to diverse object types and efficient for processing various location-dependent spatial queries (LDSQs), as it maintains objects separately from a given network and adopts an effective search space pruning technique. Based on our analysis on the two essential operations for LDSQ processing, namely, network traversal and object lookup, ROAD organizes a large road network as a hierarchy of interconnected regional subnetworks (called Rnets). Each Rnet is augmented with 1) shortcuts and 2) object abstracts to accelerate network traversals and provide quick object lookups, respectively. To manage those shortcuts and object abstracts, two cooperating indices, namely, Route Overlay and Association Directory are devised. In detail, we present 1) the Rnet hierarchy and several properties useful in constructing and maintaining the Rnet hierarchy, 2) the design and implementation of the ROAD framework, and 3) a suite of efficient search algorithms for single-source LDSQs and multisource LDSQs. We conduct a theoretical performance analysis and carry out a comprehensive empirical study to evaluate ROAD. The analysis and experiment results show the superiority of ROAD over the state-of-the-art approaches.

Keywords

Location-dependent spatial query, search algorithms, indexing techniques, spatial road network

Discipline

Databases and Information Systems | Numerical Analysis and Scientific Computing

Publication

IEEE Transactions on Knowledge and Data Engineering

Volume

24

Issue

3

First Page

547

Last Page

560

ISSN

1041-4347

Identifier

10.1109/TKDE.2010.243

Publisher

IEEE

Additional URL

http://dx.doi.org/10.1109/TKDE.2010.243

Share

COinS