Publication Type
Journal Article
Version
publishedVersion
Publication Date
3-2013
Abstract
In this paper, a novel approach is developed to achieve automatic image collection summarization. The effectiveness of the summary is reflected by its ability to reconstruct the original set or each individual image in the set. We have leveraged the dictionary learning for sparse representation model to construct the summary and to represent the image. Specifically we reformulate the summarization problem into a dictionary learning problem by selecting bases which can be sparsely combined to represent the original image and achieve a minimum global reconstruction error, such as MSE (Mean Square Error). The resulting “Sparse Least Square” problem is NP-hard, thus a simulated annealing algorithm is adopted to learn such dictionary, or image summary, by minimizing the proposed optimization function. A quantitative measurement is defined for assessing the quality of the image summary by investigating both its reconstruction ability and its representativeness of the original image set in large size. We have also compared the performance of our image summarization approach with that of six other baseline summarization tools on multiple image sets (ImageNet, NUS-WIDE-SCENE and Event image set). Our experimental results have shown that the proposed dictionarylearning approach can obtain more accurate results as compared with other six baseline summarization algorithms.
Keywords
Automatic image summarization, Sparse coding, Dictionary learning, Simulated annealing
Discipline
Databases and Information Systems | Numerical Analysis and Scientific Computing
Publication
Pattern Recognition
Volume
46
Issue
3
First Page
948
Last Page
961
ISSN
0031-3203
Identifier
10.1016/j.patcog.2012.07.011
Publisher
Elsevier
Citation
YANG, Chunlei; SHEN, Jialie; PENG, Jinye; and FAN, Jianping.
Image collection summarization via dictionary learning for sparse representation. (2013). Pattern Recognition. 46, (3), 948-961.
Available at: https://ink.library.smu.edu.sg/sis_research/1597
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
http://doi.org/10.1016/j.patcog.2012.07.011
Included in
Databases and Information Systems Commons, Numerical Analysis and Scientific Computing Commons