Publication Type
Conference Proceeding Article
Version
acceptedVersion
Publication Date
4-2011
Abstract
Users face a dazzling array of choices on the Web when it comes to choosing which product to buy, which video to watch, etc. The trend of social information processing means users increasingly rely not only on their own preferences, but also on friends when making various adoption decisions. In this paper, we investigate the effects of social correlation on users’ adoption of items. Given a user-user social graph and an item-user adoption graph, we seek to answer the following questions: 1) whether the items adopted by a user correlate to items adopted by her friends, and 2) how to incorporate social correlation in order to improve prediction of unobserved item adoptions. We propose the Social Correlation model based on Latent Dirichlet Allocation (LDA) that decomposes the adoption graph into a set of latent factors reflecting user preferences, and a social correlation matrix reflecting the degree of correlation from one user to another. This matrix is learned (rather than pre-assigned), has probabilistic interpretation, and preserves the underlying social network structure. We further devise a Hybrid model that combines a user’s own latent factors with her friends’ for adoption prediction. Experiments on Epinions and LiveJournal data sets show that our proposed models outperform the approach based on latent factors only (LDA).
Discipline
Databases and Information Systems | E-Commerce | Numerical Analysis and Scientific Computing
Publication
2011 SIAM International Conference on Data Mining: 28-30 April, Mesa, AZ: Proceedings
First Page
367
Last Page
378
ISBN
9780898719925
Identifier
10.1137/1.9781611972818.32
Publisher
SIAM
City or Country
Philadephia, PA
Citation
CHUA, Freddy Chong-Tat; LAUW, Hady W.; and LIM, Ee Peng.
Predicting Item Adoption Using Social Correlation. (2011). 2011 SIAM International Conference on Data Mining: 28-30 April, Mesa, AZ: Proceedings. 367-378.
Available at: https://ink.library.smu.edu.sg/sis_research/1522
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1137/1.9781611972818.32
Included in
Databases and Information Systems Commons, E-Commerce Commons, Numerical Analysis and Scientific Computing Commons