On Efficient Obstructed Reverse Nearest Neighbor Query Processing
Publication Type
Conference Proceeding Article
Publication Date
11-2011
Abstract
In this paper, we study a new form of reverse nearest neighbor (RNN) queries, i.e., obstructed reverse nearest neighbor (ORNN) search. It considers the impact of obstacles on the distance between objects, which is ignored by the existing work on RNN retrieval. Given a data set P, an obstacle set O, and a query point q in a 2D space, an ORNN query finds all the points/objects in P that have q as their nearest neighbor, according to the obstructed distance metric, i.e., the length of the shortest path between two points without crossing any obstacle. We formalize ORNN search, develop effective pruning heuristics (via introducing a novel boundary region concept), and propose efficient algorithms for ORNN query processing, assuming that both P and O are indexed by traditional data-partitioning indexes (e.g., R-trees). Extensive experiments demonstrate the effectiveness of our developed pruning heuristics and the performance of our proposed algorithms, using both real and synthetic datasets.
Discipline
Databases and Information Systems | Numerical Analysis and Scientific Computing
Publication
Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS'11): November 1-4, 2011, Chicago, Illinois
First Page
191
Last Page
200
ISBN
9781450310314
Identifier
10.1145/2093973.2094000
Publisher
ACM
City or Country
Chicago, IL
Citation
GAO, Yunjun; YANG, Jiacheng; CHEN, Gang; ZHENG, Baihua; and Shou, Lidan.
On Efficient Obstructed Reverse Nearest Neighbor Query Processing. (2011). Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS'11): November 1-4, 2011, Chicago, Illinois. 191-200.
Available at: https://ink.library.smu.edu.sg/sis_research/1457
Additional URL
http://dx.doi.org/10.1145/2093973.2094000