Publication Type
Journal Article
Version
acceptedVersion
Publication Date
9-2012
Abstract
In-network processing, involving operations such as filtering, compression and fusion, is a technique widely used in wireless sensor and ad hoc networks for reducing the communication overhead. In many tactical stream-oriented applications, especially in military scenarios, both link bandwidth and node energy are critically constrained resources. For such applications, in-network processing itself imposes non-negligible computing cost. In this work, we have developed a unified, utility-based closed-loop control framework that permits distributed convergence to both a) the optimal level of compression performed by a forwarding node on streams, and b) the best set of nodes where the operators of the stream processing graph should be deployed. We also show how the generalized model can be adapted to more realistic cases, where the in-network operator may be varied only in discrete steps, and where a fusion operation cannot be fractionally distributed across multiple nodes. Finally, we provide a real-time implementation of the protocol on an 802.11b network with a video application and show that the performance of the network is improved significantly in terms of the packet loss, node lifetime and quality of video received.
Keywords
Applications, Communication/Networking and Information Technology, Wireless communication
Discipline
Software Engineering
Research Areas
Software and Cyber-Physical Systems
Publication
IEEE Transactions on Mobile Computing
Volume
11
Issue
9
First Page
1484
Last Page
1498
ISSN
1536-1233
Identifier
10.1109/TMC.2011.169
Publisher
IEEE
Citation
ESWARAN, Sharanya; EDWARDS, James; MISRA, Archan; and LA PORTA, Thomas.
Adaptive In-Network Processing for Bandwidth and Energy Constrained Mission-Oriented Multi-hop Wireless Networks. (2012). IEEE Transactions on Mobile Computing. 11, (9), 1484-1498.
Available at: https://ink.library.smu.edu.sg/sis_research/1382
Copyright Owner and License
Authors
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1109/TMC.2011.169