Publication Type
Conference Proceeding Article
Version
publishedVersion
Publication Date
10-2010
Abstract
Bursty features in text streams are very useful in many text mining applications. Most existing studies detect bursty features based purely on term frequency changes without taking into account the semantic contexts of terms, and as a result the detected bursty features may not always be interesting or easy to interpret. In this paper we propose to model the contexts of bursty features using a language modeling approach. We then propose a novel topic diversity-based metric using the context models to find newsworthy bursty features. We also propose to use the context models to automatically assign meaningful tags to bursty features. Using a large corpus of a stream of news articles, we quantitatively show that the proposed context language models for bursty features can effectively help rank bursty features based on their newsworthiness and to assign meaningful tags to annotate bursty features.
Keywords
bursty features, bursty features ranking, bursty feature tagging, context modeling
Discipline
Databases and Information Systems | Numerical Analysis and Scientific Computing
Publication
CIKM 2010: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, 26-30 October 2010, Ontario
First Page
1769
Last Page
1772
ISBN
9781450300995
Identifier
10.1145/1871437.1871725
Publisher
ACM
City or Country
Edmonton, Canada
Citation
ZHAO, Xin; JIANG, Jing; HE, Jing; LI, Xiaoming; YAN, Hongfei; and Shan, Dongdong.
Context Modeling for Ranking and Tagging Bursty Features in Text Streams. (2010). CIKM 2010: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, 26-30 October 2010, Ontario. 1769-1772.
Available at: https://ink.library.smu.edu.sg/sis_research/1314
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
http://dx.doi.org/10.1145/1871437.1871725
Included in
Databases and Information Systems Commons, Numerical Analysis and Scientific Computing Commons