A Neural Network Approach for Analysis of Small Business Lending
Publication Type
Journal Article
Publication Date
2000
Abstract
In this paper, we apply the neural network method to small business lending decisions. We use the neural network to classify the loan applications into the groups of acceptance or rejection, and compare the model results with the actual decisions made by loan officers. Data were collected from a leading bank in Central New York. The sample contains important financial statement and business information of borrowers and the loan officers' decisions. We conduct the network training on the data sample and find that the neural network has a stronger discriminating power for classifying the acceptance and rejection groups than traditional parametric and nonparametric classifiers. The results show that the neural network model has a high predictive ability. Our findings suggest that neural networks can be a very useful tool for enhancing small-business lending decisions and reducing loan processing time and costs. [PUBLICATION ABSTRACT]
Discipline
Business
Research Areas
Quantitative Finance
Publication
Review of Quantitative Finance and Accounting
Volume
15
Issue
3
First Page
259
Last Page
276
ISSN
0924-865X
Identifier
10.1023/A:1008324023422
Citation
WU, Chunchi and Wang, X..
A Neural Network Approach for Analysis of Small Business Lending. (2000). Review of Quantitative Finance and Accounting. 15, (3), 259-276.
Available at: https://ink.library.smu.edu.sg/lkcsb_research/798