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Shrinkage Estimation of Covariance Matrix for Portfolio Choice with

High Frequency Data

Cheng Liu, Ningning Xia and Jun Yu ∗

November 18, 2016

Abstract

This paper examines the usefulness of high frequency data in estimating the covariance

matrix for portfolio choice when the portfolio size is large. A computationally convenient

nonlinear shrinkage estimator for the integrated covariance (ICV) matrix of financial as-

sets is developed in two steps. The eigenvectors of the ICV are first constructed from a

designed time variation adjusted realized covariance matrix of noise-free log-returns of rel-

atively low frequency data. Then the regularized eigenvalues of the ICV are estimated by

quasi-maximum likelihood based on high frequency data. The estimator is always positive

definite and its inverse is the estimator of the inverse of ICV. It minimizes the limit of the

out-of-sample variance of portfolio returns within the class of rotation-equivalent estimators.

It works when the number of underlying assets is larger than the number of time series ob-

servations in each asset and when the asset price follows a general stochastic process. Our

theoretical results are derived under the assumption that the number of assets (p) and the

sample size (n) satisfy p/n → y > 0 as n → ∞. The advantages of our proposed estimator

are demonstrated using real data.
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tion.
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1 Introduction

The portfolio choice problem has been an important topic in modern financial economics ever

since the pioneer contribution by Markowitz (1952). It is well-known in the literature that

constructing an optimal portfolio requires a good estimate for the second moment of the future

return distribution, i.e., the covariance matrix of the future returns. The simplest situation for

estimating the covariance matrix is when the returns are independent and identically normally

distributed (IID) over time. In this case, the maximum likelihood estimator (MLE) is the sample

covariance matrix and the efficiency of MLE is justified asymptotically.

However, there are at least two problems for using the sample covariance matrix to select

the optimal portfolio in practice. First, when the portfolio size is large, the sample covariance

matrix is found to lead to poor performances in the selected portfolio; see Jobson and Korkie

(1980) and Michaud (1989). Not surprisingly, the sample covariance matrix is rarely used by

practitioners when the portfolio size is large. The reason for the poor performances is due to

the degree-of-freedom argument. That is, too many parameters have to be estimated in the

covariance matrix when the portfolio size is large. In fact, if the portfolio size is larger than

the number of time series observations in each asset, the sample covariance is always singular.

Second, the returns are not IID over time. This is because typically the covariance is time

varying. In this case, the asymptotic justification for using the sample covariance matrix is lost.

Many alternative estimators of the large dimensional covariance matrix for portfolio choice

have been proposed in the literature. A rather incomplete list includes Ledoit and Wolf (2003,

2004, 2014), Frahm and Memmel (2010), DeMiguel, Garlappi, and Uppal (2009), DeMiguel,

Garlappi, Nogales, and Uppal (2009), Kan and Zhou (2007), Fan, Fan and Lv (2008), Pesaran

and Zaffaroni (2009), Tu and Zhou (2011). Most studies use dimension reduction techniques.

One of the techniques uses factor (either observed factors or latent factors) models. Another

approach uses a statistical technique known as shrinkage, a method first introduced by Stein

(1956). Murihead (1987) reviewed the literature on shrinkage estimators of the covariance ma-

trix. All these estimators are constructed from low frequency data (daily, weekly or monthly

data) over a long period (one year or more). However, if the investment period of a portfolio is

much shorter (say one day or one week or one month) which is empirically more relevant, given

the time varying nature of the covariance, we expect the covariance in the near future to be

similar to the average covariance over an immediate recent time period but not to that over a

long time period. Hence, even if data over a long time period is available, one may only prefer

using data over a short period. If low frequency data over a short time period are used, however,

the degree-of-freedom argument will be applicable.

The recent availability of quality high-frequency data on financial assets has motivated a

growing literature devoted to the model-free measurement of covariances. In a recent study,

Fan, Li and Yu (2012) proposed to use high-frequency data to estimate the ICV over a short

time period for the purpose of portfolio choice. Their setup allows one to impose gross exposure

constraints. The use of gross exposure constraints plays a similar role to the no-short-sale
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constraint in Jagannathan and Ma (2003). Fan, Li and Yu (2012) demonstrated the substantial

advantages of using high-frequency date in both simulation and empirical studies.

There are several reasons why it is better to use high frequency data to estimate the covari-

ance matrix. First, the use of high frequency data drastically increases the sample size. This is

especially true for liquid assets. Second, one does not need to assume returns are IID any more

for establishing the large sample theory for the estimator. This generalization is important due

to the time-varying nature of spot covariance. Not surprisingly, the literature on estimating the

ICV based on high frequency data is growing rapidly.

In this paper, we also use high frequency data to estimate the ICV for the purpose of portfolio

choice. Unlike Fan, Li and Yu (2012) where portfolio choice is done under pre-specified exposure

constraints, we focus our attention on how to get a good shrinkage estimator of the ICV without

any pre-specified constraint.1 This shift of focus is due to the lack of guidance on how to specify

the gross exposure constraints. Our estimator designs the shrinkage function as in Ledoit and

Wolf (2014). However, we differ from Ledoit and Wolf (2014) in the following important ways.

First, instead of applying the shrinkage function to the eigenvalues of sample covariance matrix

by assuming the returns are IID, we regularize the eigenvalues of a designed time variation

adjusted (TVA) realized covariance matrix under the assumption that the covariance matrix

is time varying. Second, instead of using low frequency data, we use high frequency data

for constructing the designed TVA realized covariance matrix and estimating its regularized

eigenvalues. We show that our proposed estimator, which will be given in Section 3, not only

has some desirable properties in terms of estimating the ICV, but also asymptotically achieves

the minimum out-of-sample portfolio risk.

The paper is organized as follows. In Section 2 we set up the portfolio choice problem.

Section 3 introduces our estimator and discusses its properties and implementations. In Section

4, we compare the out-of-sample performance of our proposed method with several methods

proposed in the literature using actual data, including the equal weight, the linear shrinkage

estimator of Ledoit and Wolf (2004), and the high frequency method of Fan, Li and Yu (2012).

Section 5 concludes. The appendix collects the proof of our theoretical results.

2 Portfolio Selection: The Setup

Suppose that a portfolio is constructed based on a pool of p assets whose log-price is denoted

by Xt = (X1t, · · · , Xpt)
′, where M′ denotes the transpose of the vector or matrix M. Instead of

assuming Xt follows a Brownian motion which means that the log-returns are IID, we assume

Xt follows a more general diffusion process as

dXt = µtdt+ ΘΘΘtdBt, (1)

1DeMiguel, Garlappi, Nogales, and Uppal (2009) showed that adding a constraint for 1-norm of weights is

equivalent to shrinkage the estimator of covariance matrix.
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where µt = (µ1t, · · · , µpt)′ is a p-dimensional drift process at time t, ΘΘΘt is a p × p (spot)

covolatility matrix at time t, and Bt is a p-dimensional standard Brownian motion.

A portfolio is constructed based on Xt with weight wT which satisfies w′T1 = 1 at time T

and a holding period τ , where 1 is a p-dimensional vector with all elements being 1. Over the

period [T, T + τ ], it has a return w′T
∫ T+τ
T dXt, and has a risk (variance)

RT,T+τ (wT ) = w′T Σ̃T,T+τwT , where Σ̃T,T+τ =

∫ T+τ

T
ETΣtdt,

with Σt = ΘΘΘtΘΘΘ
′
t being the (spot) covariance matrix at time t and ET denotes the expectation

conditional on information up to time T (see Fan, Li and Yu, 2012). Typically, the holding

period τ is short (say one day or one week or one month).

To focus on finding a good approximation for Σ̃T,T+τ , we consider the following global min-

imum variance (GMV) problem:

min
wT

w′T Σ̃T,T+τwT with w′T1 = 1. (2)

By taking the derivative of wT , we have the following theoretical optimal weight,

wT =
Σ̃
−1

T,T+τ1

1′Σ̃
−1

T,T+τ1
, (3)

which is a function of the expected ICV conditional on the current time T , i.e., Σ̃T,T+τ .

Denote the ICV over the period [T − h, T ] by

ΣT−h,T :=

∫ T

T−h
Σtdt.

If h is small, following Fan, Li and Yu (2012), we use the following approximation

Σ̃T,T+τ ≈
τ

h
ΣT−h,T . (4)

Consequently, the theoretical optimal weight becomes

wT =
Σ−1
T−h,T1

1′Σ−1
T−h,T1

. (5)

The reason for choosing a small h from the historical sample (i.e. a small time span for

[T − h, T ]) to approximate the expected ICV is due to the time varying and persistent nature

of the covariance matrix. If a big h (say 10 years) is used and an average covariance matrix is

used to approximate the expected ICV, the approximation errors would be inevitably large. In

fact, as rightly argued in Fan, Li and Yu (2012), even when the true covariance matrices are

available, an average of them will still lead to large approximation errors.
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Let Σ̂
∗
T−h,T denote a generic (invertible) estimator of the ICV ΣT−h,T . The plug-in estimator

of the optimal portfolio weight for wT in (5) is

ŵ∗T :=

(
Σ̂
∗
T−h,T

)−1
1

1′
(
Σ̂
∗
T−h,T

)−1
1
.

We need to find the optimal Σ̂
∗
T−h,T for portfolio choice. Given that the optimal portfolio

is typically meant to perform the best out-of-sample, following Ledoit and Wolf (2014), we

define a loss function for portfolio selection to be the out-of-sample variance of portfolio returns

conditional on Σ̂
∗
T−h,T ,

L(Σ̂
∗
T−h,T ,ΣT−h,T ) = (ŵ∗T )′ΣT−h,T ŵ∗T =

1′
(
Σ̂
∗
T−h,T

)−1
ΣT−h,T

(
Σ̂
∗
T−h,T

)−1
1{

1′
(
Σ̂
∗
T−h,T

)−1
1

}2 , (6)

where we approximate Σ̃T,T+τ by τ
hΣT−h,T and ignore the scale τ

h without any loss. The best

estimator of the ICV is therefore the one that minimizes the loss function L(Σ̂
∗
T−h,T ,ΣT−h,T ).

Although this paper mainly focuses on the GMV problem, our estimation technique has a

much wider implications for other problems that also require the estimation of ICV, including

the Markowitz portfolios with and without estimating the conditional mean. In the empirical

studies, we will show the usefulness of our proposed method in the context of the Markowitz

portfolio.

3 The New Estimator of ICV

Denote the trading time points for the ith asset by 0 ≤ ti1 < ti2 < ... < ti,Ni ≤ T with i = 1, ..., p.

It is difficult to estimate the ICV based on tick-by-tick high frequency data when the number

of stocks (p) is large for the following reasons. First, data are always non-synchronous. Second,

data are contaminated by microstructure noises. Denote Yi,tij the log-price of the ith asset at

time tij and Xi,tij the latent log efficient price of the ith asset. Then

Yi,tij = Xi,tij + εi,tij ,

where εi,tij is the market microstructure noise at time tij . Third, the spot covariance matrix Σt

of returns of latent log-price Xt is time varying. Fourth, the returns of the efficient price are

not independent over time. To find a good estimator for the ICV, we first introduce an initial

estimator, denoted the time variation adjust (TVA) realized covariance matrix, and discuss its

disadvantages for estimating the ICV in subsection 3.1. To improve the initial estimator, we

propose to regularize its eigenvalues. In subsection 3.2, we provide the theoretical background

for regularizing the eigenvalues of TVA realized covariance matrix. We then demonstrate how

to regularize its eigenvalues in subsection 3.3.
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3.1 The initial estimator of ICV: TVA

To simplify the problem, we propose the following structural assumption for Xt. The same

assumption was also used in Zheng and Li (2011).

Definition 3.1. (Class C). Suppose that Xt is a p-dimensional process satisfying Equation (1).

We say that Xt belongs to class C if, almost surely, there exist γt ∈ D([T − h, T ];R) and ΛΛΛ a

p× p matrix satisfying tr(ΛΛΛΛΛΛ′) = p such that

ΘΘΘt = γtΛΛΛ,

where D([T − h, T ];R) stands for the space of càdlàg functions from [T − h, T ] to R.

Remark 3.1. Class C allows the covariance matrix to be time varying because γt is time varying.

The assumption of ΘΘΘt = γtΛΛΛ may be too strong than necessary but facilitates the mathematical

proof of the results in the present paper.

If Xt belongs to class C, we can decompose

ΣT−h,T =

∫ T

T−h
γ2
t dt ·ΛΛΛΛΛΛ′ = P

(∫ T

T−h
γ2
t dt · Γ

)
P′,

where Γ is a diagonal matrix, P an orthogonal matrix, and PΓP′ the eigen-decomposition of

ΛΛΛΛΛΛ′ such that the eigenvalues and eigenvectors of Σt = ΘΘΘtΘΘΘ
′
t are time varying and invariant

respectively.

To estimate ΣT−h,T , Zheng and Li (2011) proposed to use the so-called TVA realized covari-

ance matrix over the period [T − h, T ], which is defined as

STVA
T−h,T =

tr (
∑n

k=1 ∆Xk∆X′k)

p
· S̆T−h,T , where S̆T−h,T =

p

n

n∑
k=1

∆Xk∆X′k
|∆Xk|2

, (7)

∆Xk = Xτk −Xτk−1
, and Xτk denotes the log efficient price Xt at time τk for

T − h := τ0 < τ1 < · · · < τn := T.

Zheng and Li (2011) demonstrated that tr (
∑n

k=1 ∆Xk∆X′k)/p is a good estimator for∫ T
T−h γ

2
t dt and S̆T−h,T is similar to the sample covariance matrix with IID samples. Here sim-

ilarity means that S̆T−h,T is a consistent estimator of population covariance matrix ΛΛΛΛΛΛ′ when

p is fixed, while the limiting spectral distribution of S̆T−h,T , which will be introduced later in

the paper, is equivalent to that of the sample covariance matrix of IID samples generated from

a distribution with zeros mean and population covariance ΛΛΛΛΛΛ′, when p goes to ∞ together with

the sample size n.

Clearly, the construction of TVA requires a synchronous record of p assets at (τ0, τ1, · · · , τn).

Since data is always non-synchronous, we need to synchronize them. In this paper, we use the

previous tick method (see Zhang, 2011) to interpolate the prices. However, the efficient price is

latent due to the presence of microstructure noise. To deal with this problem, we suggest using
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sparse sampling so that the impact of microstructure noise can be ignored. Based on a Hausman

type test, Aı̈t-Sahalia and Xiu (2016) showed that when data are sampled every 15 minutes, the

observed prices are free of the microstructure noise problem. In this paper, we will follow this

suggestion by sampling the interpolated data every 15 minutes. Denote (τ0, τ1, · · · , τn) the time

stamps at every 15 minutes. So Yτk ≈ Xτk .

Denote the sparsely-sampled log-prices by Yτ0 ,Yτ1 , ...,Yτn . The feasible TVA realized co-

variance matrix is constructed as

S̃
TVA

T−h,T =
tr (
∑n

k=1 ∆Yk∆Y′k)

n

n∑
k=1

∆Yk∆Y′k
|∆Yk|2

, (8)

with ∆Yk = Yτk −Yτk−1
. Since S̃

TVA

T−h,T has the same properties as STVA
T−h,T , we treat S̃

TVA

T−h,T
the same as STVA

T−h,T and only use STVA
T−h,T in the rest of this paper.

It is well-known that the eigenvalues of the sample covariance matrix are more spread out

than those of the population covariance matrix. This property is applicable not only to the

sample covariance matrix but also to STVA
T−h,T . In other words, the smallest eigenvalues of STVA

T−h,T
tend to be biased downwards, while the largest ones upwards. As a result, there is a need to

regularize the eigenvalues of STVA
T−h,T .

3.2 Theoretical background for regularizing the eigenvalues of STVA
T−h,T

Let us first introduce some concepts in the random matrix theory. Let p denote the number

of variables and n = n(p) the sample size. For any p × p symmetric matrix M, suppose that

its eigenvalues are λ1, · · · , λp, sorted in the non-increasing order. Then the empirical spectral

distribution (ESD) of M is defined as

FM(x) :=
1

p

p∑
i=1

I(λi ≤ x), for x ∈ R,

where I denotes the indicator function of a set. The limit of ESD as p→∞, if exists, is referred

to the limiting spectral distribution (LSD hereafter). Let Supp(G) denotes the support interval

of distribution function G. For any distribution G, sG(·) denotes its Stieltjes transform defined

as

sG(z) =

∫
1

λ− z
dG(λ), for z ∈ C+ := {z ∈ C : =(z) > 0},

where =(·) denotes the imaginary part of a complex number.

3.2.1 The limit of loss function

Suppose the eigen-decomposition of STVA
T−h,T is

STVA
T−h,T = UVU′ = Udiag(v1, ..., vp)U

′, (9)

where v1, ..., vp are eigenvalues of STVA
T−h,T sorted in the non-increasing order, U = (u1, ...,up) are

corresponding eigenvectors. Let diag(M) denote a diagonal matrix with the diagonal elements

being the diagonal elements of M if M is a matrix or being M if M is a vector.
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To regularize the eigenvalues of STVA
T−h,T , following Ledoit and Wolf (2014), we restrict our

attention to a class of rotation-equivalent estimators which is defined below. This strategy allows

us to use a nonlinear shrinkage method to regularize the eigenvalues. However, different from

Ledoit and Wolf (2014), we do not assume returns are IID. Instead we assume that Xt ∈ C.

Definition 3.2. (Class of Estimators S). We consider a generic positive definite estimator

for ΣT−h,T of the type Σ̂
∗
T−h,T := Udiag(gn(v1), · · · , gn(vp))U

′, with v1 ≥ · · · ≥ vp being the

eigenvalues of STVA
T−h,T , U = (u1, ...,up) being corresponding eigenvectors. Here gn is a real

univariate function and can depend on STVA
T−h,T . We assume that there exists a nonrandom

real univariate function g(x), defined on Supp(F) and continuously differentiable, such that

gn(x)
a.s.−→ g(x), for all x ∈ Supp(F), where F denotes the LSD of STVA

T−h,T .

Here, gn(x) is called the shrinkage function because what it does is to shrink the eigenvalues of

STVA
T−h,T by reducing the dispersion around the mean, pushing up the small ones and pulling down

the large ones. The high dimensional asymptotic properties of STVA
T−h,T are fully characterized by

its limiting shrinkage function g(x). As noted in Stein (1975) and Ledoit and Wolf (2014), the

estimators in this class are rotation equivalent, a property that is desired when the user does

not have any prior preference about the orientation of the eigenvectors.

Since we consider the case that p goes to∞ together with the sample size, finding the optimal

estimator of ΣT−h,T within class S for portfolio selection is equivalent to finding the optimal

shrinkage function g(x) that minimizes the limit of the loss function L
(
Σ̂
∗
T−h,T ,ΣT−h,T

)
for

Σ̂
∗
T−h,T ∈ S. We have the following theorem to show the limit of L

(
Σ̂
∗
T−h,T ,ΣT−h,T

)
.

Theorem 3.1. Suppose that Xt is a p -dimensional diffusion process in class C for some drift

process µt, covolatility process ΘΘΘt = γtΛΛΛ and p-dimensional Brownian motion Bt, which satisfies

the following assumptions:

(A.i) µt = 0 for t ∈ [T − h, T ], and γt is independent of Bt.

(A.ii) There exists C0 < ∞ such that for all p, |γt| ∈ (1/C0, C0) for all t ∈ [T − h, T ] almost

surely;

(A.iii) All eigenvalues of Σ̆ = ΛΛΛΛΛΛ′ are bounded uniformly from 0 and infinity;

(A.iv) limp→∞ tr (ΣT−h,T ) /p = limp→∞
∫ T
T−h γ

2
t dt := θ > 0 almost surely;

(A.v) Almost surely, as p → ∞, the ESD of ΣT−h,T converges to a probability distribution H

on a finite support;

(A.vi) The observation time points τk’s are independent of the Brownian motion Bt and there

exists a constant C1 > 0 such that max1≤k≤n n(τk − τk−1) ≤ C1.

If p/n → y ∈ (0,∞), then the ESD of STVA
T−h,T converges almost surely to a nonrandom

probability distribution F . If Equation (9) is satisfied, then

p× L
(
Σ̂
∗
T−h,T ,ΣT−h,T

)
a.s.→
∫

x

|1− y − yx× s̆F (x)|2g(x)
dF (x)/

(∫
dF (x)

g(x)

)2

,
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where Σ̂
∗
T−h,T := Udiag(gn(v1), · · · , gn(vp))U

′ is in class S by regularizing STVA
T−h,T , g(x) is the

limiting shrinkage function of Σ̂
∗
T−h,T . In addition, for all x ∈ (0,∞), s̆F (x) is defined as

limz∈C+→x sF (z), and sF (z) is the Stieltjes transform of the limiting spectral distribution of

STVA
T−h,T .

Remark 3.2. Theorem 3.1 extends the result in Proposition 3.1 of Ledoit and Wolf (2014) from

the IID case to Class C and from the sample covariance to the TVA realized covariance.

Remark 3.3. Without loss of generality, if we assume that all the eigenvalues of Σ̂
∗
T−h,T and

ΣT−h,T are bounded, 1′
(
Σ̂
∗
T−h,T

)−1
ΣT−h,T

(
Σ̂
∗
T−h,T

)−1
1 = Op(p) and 1′

(
Σ̂
∗
T−h,T

)−1
1 =

Op(p), so that L
(
Σ̂
∗
T−h,T ,ΣT−h,T

)
= Op(

1
p). This is why we investigate the limiting behavior

of p× L
(
Σ̂
∗
T−h,T ,ΣT−h,T

)
in Theorem 3.1.

Lemma 3.1. Under the assumptions of Theorem 3.1, a generic positive-definite estimator

Σ̂
∗
T−h,T within class S minimizes the almost sure limit of the loss function L

(
Σ̂
∗
T−h,T ,ΣT−h,T

)
if and only if its limiting shrinkage function g satisfies

g(x) =
x

|1− y − yx× m̆F (x)|2
, ∀ x ∈ Supp(F). (10)

Lemma 3.1 is a direct conclusion from Theorem 3.1 and Proposition 4.1 of Ledoit and Wolf

(2014). Unfortunately, the above minimization problem does not yield a closed-form solution

for g(x) because of m̆F (x) is unknown. In addition, finding m̆F (x) and then g(x) is numerically

difficult in practice. Finding a good algorithm for estimating m̆F (x) is of great interest as it

was done in Ledoit and Wolf (2014) that used a commercial package. However, in this paper we

propose to find an alternative interpretation of g(x), which offers an easier way to approximate

g(x).

3.2.2 Alternative interpretation of g(x)

Motivated from Ledoit and Pèchè (2011), we can show that g(x) in (10) is equivalent to the

asymptotic quantity corresponding to the oracle nonlinear shrinkage estimator derived from the

following Frobenius norm of the difference between UṼU′ and ΣT−h,T , i.e.,

min
Ṽ diagonal

‖UṼU′ −ΣT−h,T ‖F ,

where the Frobenius norm is defined as ‖M‖F =
√

tr(MM′) for any real matrix M.

Elementary matrix algebra shows that the solution is

Ṽ = diag(ṽ1, · · · , ṽp), where ṽi = u′iΣT−h,Tui, i = 1, · · · , p. (11)

To characterize the asymptotic behavior of ṽi, i = 1, · · · , p, following the idea of Ledoit and

Pèchè (2011), we define the following non-decreasing function

Ψp(x) =
1

p

p∑
i=1

ṽi I(vi ≤ x) =
1

p

p∑
i=1

u′iΣT−h,Tui · I(vi ≤ x). (12)

9



Theorem 3.2. Assume that assumptions (A.i)-(A.vi) in Theorem 3.1 hold true and let Ψp be

defined as in (12). If p/n→ y ∈ (0,∞), then there exists a nonrandom function Ψ defined over

R such that Ψp(x) converges almost surely to Ψ(x) for all x ∈ R\{0}. If in addition y 6= 1, then

Ψ can be expressed as

∀ x ∈ R, Ψ(x) =

∫ x

−∞
δ(v)dF (v), (13)

where F is the LSD of STVA
T−h,T , and if v > 0,

δ(v) =
v

|1− y − yv × m̆F (v)|2
.

Remark 3.4. Theorem 3.2 extends the result in Theorem 4 of Ledoit and Pèchè (2011) from

the IID case to Class C.

Theorem 3.2 implies that the asymptotic quantity that corresponds to ṽi = u′iΣT−h,Tui is

δ(v) provided that v corresponds to vi. An interesting finding is that the results of Lemma

3.1 and Theorem 3.2 are consistent with each other, even though they are motivated from two

different perspectives. Given that it is much easier to work on the minimization problem in (11),

we recommend to regularize the eigenvalues of STVA
T−h,T by using (11), which is to find a good

estimator for each ṽi = u′iΣT−h,Tui with i = 1, ..., p .

3.3 Regularized estimators of eigenvalues of STVA
T−h,T

Note that ṽi = u′iΣT−h,Tui is actually the integrated volatility of process u′iXt over [T − h, T ]

for i = 1, 2, · · · , p. A natural estimator of each ṽi is the realized volatility
∑n

k=1(u′i∆Xk)
2.

Unfortunately, this is not a good idea. To see the problem, note that

Σ̂
∗∗
T−h,T = Udiag

(
n∑
k=1

(u′1∆Xk)
2, ...,

n∑
k=1

(u′p∆Xk)
2

)
U′.

Let us consider the simplest case where γt = 1, Λ = Ip with Ip be a p-dimensional identity

matrix, and τk − τk−1 = h
n for k = 1, ..., n. We can write ∆Xk =

(
h
n

)1/2
Zk with Zk’s are IID

p-dimensional standard normals such that
∆Xk∆X′k
|∆Xk|2

= ZkZ
′
k

|Zk|2
. Since |Zk|2 ∼ p as p → ∞, we

have

STVA
T−h,T =

tr (
∑n

k=1 ∆Xk∆X′k)

p

p

n

n∑
k=1

∆Xk∆X′k
|∆Xk|2

∼
tr (

∑n
k=1 ∆Xk∆X′k)

p

1

n

n∑
k=1

ZkZ
′
k,

n∑
k=1

∆Xk∆X′k =
h

n

n∑
k=1

ZkZ
′
k.
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By denoting ∆X = (∆X1, ...,∆Xn)′, we have

Σ̂
∗∗
T−h,T = Udiag

(
n∑
k=1

(u′1∆Xk)
2, ...,

n∑
k=1

(u′p∆Xk)
2

)
U′

= Udiag
(
u′1∆X∆X′u1, ...,u

′
p∆X∆X′up

)
U′

= Udiag
(
U′∆X∆X′U

)
U′

∼ ∆X∆X′,

which is actually the sample covariance matrix of IID samples generated from N(0, hIp). Hence,

its eigenvalues are also more spread out than that of hIp, a well-known result in the literature.

To solve this problem, we use the idea from Abadir et al. (2014) and Lam (2016) by splitting

the sample into two parts. We use the estimated eigenvectors from a fraction of the data to

transform the data into approximately orthogonal series.2 We then use the independence of two

sample covariance matrices to regularize the eigenvalues of one of them. Therefore, instead of

based U on ∆Xk = Xτk −Xτk−1
(k = 1, ..., n) for T − h := τ0 < ... < τn := T , we base U∗ on

∆X∗r = Xτ∗r −Xτ∗r−1
(r = 1, ...,m) for

0 := τ∗0 < τ∗1 < ... < τ∗m < T − h,

where U∗ = (u∗1, ...,u
∗
p) are the eigenvectors of STVA

0,T−h corresponding to the eigenvalues with the

non-increasing order, and the TVA realized covariance matrix

STVA
0,T−h =

tr
{ ∑m

r=1 ∆X∗r (∆X∗r)
′}

p
· S̆0,T−h, with S̆0,T−h =

p

m

m∑
r=1

∆X∗r (∆X∗r)
′

|∆X∗r |2
.

In addition, since the eigenvectors of Σt is assumed to be time invariant, we also consider the

following optimization problem

min
V∗ diagonal

‖U∗V∗ (U∗)′ −ΣT−h,T ‖F ,

and estimate each diagonal element of the oracle minimizer V∗ = diag(v∗1, ..., v
∗
p) with v∗i =

(u∗i )
′ΣT−h,Tu∗i based on the data over the time period [T − h, T ]. To get an accurate estimator

for each v∗i with i ∈ {1, ..., p}, we propose to use all the tick-by-tick high frequency data and

take into account with the microstructure noises.

Let us first consider the case that the data are synchronous and equally recorded at time

points {T − h := t∗0 < t∗1 < · · · < t∗N := T}, where the time interval ∆ = t∗j − t∗j−1 → 0 for all

j = 1, ..., N as N → ∞ and h fixed. Notice that here {t∗j : j = 0, ..., N} may be quite different

from {τk : k = 0, ..., n} and ∆ can be one second or a few seconds, and should be much smaller

than τk − τk−1 which is 15 minutes.

2Strictly speaking, the asymptotic justification of the method requires the IID assumption as shown in Lam

(2016). While the IID assumption does not hold for Class C, we examine the effectiveness of this method using

real data later.
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We assume each observation is contaminated by microstructure noise such that Yt = (Y1t, ..., Ypt)
′

(observed) contains the true log-price Xt (latent) and the microstructure noise εt = (ε1t, . . . , εpt)
′

in an additive form

Yt = Xt + εt, for t ∈ [T − h, T ], (14)

where the p-dimensional noise εt is assumed to satisfy

Assumption 1. The p-dimensional noise εt = (ε1t, . . . , εpt)
′ at different time points t = t∗0, t

∗
1, · · · , t∗N

are IID random vectors with mean 0 (a p-dimensional vector with all elements being 0), positive

definite covariance matrix A0 and finite fourth moment. In addition, εt and Xt are mutually

independent.

This assumption has commonly been used in the literature; see, for example, Aı̈t-Sahalia

et al. (2010), Zhang (2011), Liu and Tang (2014). To estimate (u∗i )
′ΣT−h,Tu∗i , we apply the

quasi-maximum likelihood (QML) approach developed in Xiu (2010). Based on (1) and (14),

we have

Ỹit = (u∗i )
′Yt = (u∗i )

′Xt + (u∗i )
′εt = X̃it + ε̃it

dX̃it = (u∗i )
′dXt = (u∗i )

′µtdt+ (u∗i )
′ΘΘΘtdBt = µ̃itdt+ σ̃itdB̃it (15)

by letting

X̃it = (u∗i )
′Xt, ε̃it = (u∗i )

′εt, µ̃it = (u∗i )
′µt,

σ̃itdB̃it = (u∗i )
′ΘΘΘtdBt, σ̃2

it = (u∗i )
′ΘΘΘt((u

∗
i )
′ΘΘΘt)

′ = (u∗i )
′ΘΘΘtΘΘΘ

′
tu
∗
i = (u∗i )

′Σtu
∗
i ,

such that v∗i =
∫ T
T−h σ̃

2
itdt.

Ignoring the impact of µ̃itdt by considering µ̃it = 0, we follow the idea in Xiu (2010) to

give two misspecified assumptions for each i ∈ {1, ..., p}. First, the spot volatility is assumed

to be time invariant: σ̃2
it = (u∗i )

′Σtu
∗
i = σ̃2

i . Second, the noise ε̃it is assumed to be normally

distributed with mean 0 and variance ã2
i . Then the quasi-log likelihood function for Ỹi,t∗j − Ỹi,t∗j−1

is

l(σ̃2
i , ã

2
i ) = −1

2
log det(Ω∗)− Np

2
log(2π)− 1

2

(
Ỹ
∗
i

)′
(Ω∗)−1

(
Ỹ
∗
i

)
(16)

where Ω∗ is a tridiagonal matrix with the diagonal elements being σ̃2
i ∆ + 2ã2

i and the tridi-

agonal elements being −ã2
i , Ỹ

∗
i =

(
Ỹi,t∗1 − Ỹi,t∗0 , ..., Ỹi,t∗N − Ỹi,t∗N−1

)′
. The QML estimator of(∫ T

T−h σ̃
2
itdt, (u

∗
i )
′A0u

∗
i

)
is the value of (σ̃2

i , ã
2
i ) which maximizes l(σ̃2

i , ã
2
i ). We denote the esti-

mator of v∗i =
∫ T
T−h σ̃

2
itdt by v̂∗i , which is positive. Xiu (2010) proved that v̂∗i is consistent and

asymptotically efficient for
∫ T
T−h σ̃

2
itdt.

Remark 3.5. As discussed in Xiu (2010), if (t∗j−t∗j−1)s for j = 1, ..., N are random and IID, we

can add another misspecified assumption that they are equal. We then apply the above approach

to get v̂∗i which is also a consistent estimator of (u∗i )
′ΣT−h,Tu∗i . Since the tick-by-tick data over

the time period [T − h, T ] is typically non-synchronous, we propose to first synchronize data by
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the refresh time scheme of Barndorff-Nielsen et al. (2011) and then apply the QML procedure

to obtain v̂∗i (i = 1, · · · , p). The first refresh time t∗0 during a trading day is the first time when

all assets have been traded at least once since T − h. The second refresh time t∗1 is the first time

when all assets have been traded at least once since the first refresh point in time t∗0. Repeating

this sequence yields in total N + 1 refresh times, t∗0, t
∗
1, ..., t

∗
N , and corresponding N + 1 sets of

synchronized refresh prices Yt∗0
,Yt∗1

, ...,Yt∗N
with each Yi,t∗j (i = 1, ..., p; j = 0, 1, ..., N) being the

log-price of the ith asset nearest to and previous to t∗j . Barndorff-Nielsen et al. (2011) showed

that if the trading time of p assets arrive as independent standard Poisson processes with common

intensity λ such that the mean of trading frequency of each asset over [T − h, T ] is λh, then the

synchronized data obtained by the refresh time scheme is λh/ log p. Based on this observation,

if each of 100 (or1,000) assets have around 20,000 observations within a trading day, then the

number of synchronized observations is around 4,342 (or 2,895). While this sampling strategy

loses around 78.3% or 85.5% of observations, it keeps much more data than the sparsely sampling

technique at every 15 minutes, where the size is only 26 within a trading day.

Therefore, our shrinkage QML estimators for ΣT−h,T and Σ−1
T−h,T are, respectively,

Σ̂T−h,T = U∗ diag(v̂∗1, ..., v̂
∗
p) (U∗)′ , Σ̂−1

T−h,T = U∗diag
{

(v̂∗1)−1, ..., (v̂∗p)
−1
}

(U∗)′ , (17)

and our estimated optimal weight ŵT is obtained by replacing Σ−1
T−h,T in (5) with Σ̂−1

T−h,T ,

ŵT =
Σ̂−1
T−h,T1

1′Σ̂−1
T−h,T1

. (18)

Notice that like U, U∗ cannot be obtained directly from observations. We therefore approximate

U∗ by the eigenvectors of

S̃
TVA

0,T−h =
tr
{ ∑m

r=1 ∆Y∗r (∆Y∗r)
′}

m

m∑
r=1

∆Y∗r (∆Y∗r)
′

|∆Y∗r |2
,

where ∆Y∗r = Yτ∗r −Yτ∗r−1
(r = 1, ...,m), and Yτ∗r ’s are the log-prices obtained by synchronizing

all the trading prices of p assets during [0, T − h) via the previous tick method.

4 Empirical Studies

In this section, we demonstrate the performance of our proposed method using real data. Three

portfolio sizes are considered (p = 30, 40 and 50) based on stocks traded in the U.S. markets.

These portfolios are 30 Dow Jones Industrial Average (30 DJIA) constituent stocks, 30 DJIA

stocks and 10 stocks with the largest market caps (ranked on March 30, 2012) from S&P 500

other than 30 DJIA stocks, 30 DJIA stocks and 20 stocks with the largest market caps from

S&P 500 other than 30 DJIA stocks. We download daily data starting from March 19, 2012

and ending on December 31, 2013 (450 trading days) from the Center for Research in Security
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Prices (CRSP) and 200 days intra-day data staring on March 19, 2013 and ending on December

31, 2013 from the TAQ database. The daily data are used to implement some existing methods

in the literature for the purpose of comparison. For the high frequency data, the same data

cleaning procedure as in Barndorff-Nielsen et al. (2011) is applied to pre-process the data by

1) deleting entries that have 0 or negative prices, 2) deleting entries with negative values in

the column of “Correlation Indicator”, 3) deleting entries with a letter code in the column of

“COND”, except for “E” or “F”, 4) deleting entries outside the period 9:30 a.m. to 4 p.m., and

5) using the median price if there are multiple entries at the same time.

4.1 Summary of the proposed method

Given that, in the empirical applications, the basic unit is daily, we can summarize the proposed

method as follows. Suppose we want to construct a portfolio strategy at the end of the Jth day

(which is denoted T in previous sections) based on a pool of p assets with a holding period of J̆

days. We use the ICV in the most recent J − J1 days (which is denoted [T − h, T ] in previous

sections) multiplied by J̆
J−J1 to approximate the expected ICV during the holding period.

Step 1: Split data of J days into two parts. The first part contains data of first J1 days,

recorded as the 1st, ..., J1th days. The rest of data of J − J1 days belong to the second part.

Step 2: Synchronize data in the lth day for each l ∈ {1, ..., J1} using the previous tick method

at the 15-minute interval. Denote the log-price at the 15-minute frequency by Y0,Y1, ...,Ym.

Step 3: Synchronize the data in lth day for each l ∈ {J1 + 1, ..., J} using the refresh time

scheme to obtain synchronous data and denote the log-price by Yl∗
·0,Y

l∗
·1, ...,Y

l∗
·nl for each l ∈

{J1 + 1, ..., J}.

Step 4: Obtain the eigenvectors of
tr (

∑m
k=1 ∆Yk∆Y′k)

m

∑m
k=1

∆Yk∆Y′k
|∆Yk|2

(the corresponding

eigenvalues are sorted in the non-increasing order), and put them together as a p × p matrix

which is denoted by U∗. Here ∆Yk = Yk −Yk−1.

Step 5: Obtain Ỹ
l∗
·j = (U∗)′Yl∗

·j for l = J1 + 1, ..., J, j = 1, ..., nl. Estimate the integrated

volatility of the ith element of (U∗)′Xt during the lth day by QML that maximizes (16) with

Ỹ
∗
i being replaced by Ỹ

l∗
i· =

(
Ỹ l∗
i1 , ..., Ỹ

l∗
i,nl

)
and with Ỹ l∗

ij being the ith element of Ỹ
l∗
·j . Denote

the estimator by v̂l∗i .

Step 6: The SQML estimator of the ICV in the lth day is defined as U∗diag(v̂l∗1 , ..., v̂
l∗
p ) (U∗)′.

We then use J̆
J−J1

∑J
l=J1+1 U∗diag(v̂l∗1 , ..., v̂

l∗
p ) (U∗)′ to approximate the expected ICV during

the holding period, and its inverse to approximate Σ̂−1
T−h,T in (18) to get the estimated optimal

weight.

For the purpose of comparison, we consider two different U∗s. We denote the two different

SQML estimators by SQrM if U∗ in Step 4 is obtained from 15-minute intra-day data and SQrD

if Y0, ...,Ym are the daily closing log-prices.
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4.2 The GMV portfolio

We first consider the GMV portfolio problem (2) whose theoretical optimal weight is chosen by

(3). Following the choice of many practitioners, we apply the plug-in method to estimate the

optimal weight and replace Σ̃
−1

T,T+τ by its approximation, h
τ Σ̂−1

T−h,T with different hs. We refer

to Brandt (2010) for a review of the impacts of a plug-in method in portfolio choice.

We compare the out-of-sample performance of our proposed method with some other methods

in the literature, including the equal weight (denoted by EW), the weight estimated by plugging

in the optimal linear shrinkage of the sample covariance matrix (denoted by LS), the weight

derived by the procedure suggested in Fan, Li and Yu (2012) (denoted by TS). After the weights

are determined, the portfolios are constructed accordingly.

LS is obtained by replacing Σ̃
−1

T,T+τ in (3) with the inverse of the linear shrinkage estimator

ŜLS = (1− κ)S + κλ̄Ip,

where S = J−1
LS

∑JLS
i=1 (Yi −Yi−1)(Yi −Yi−1)′ = Q diag(λ1, ..., λp)Q

′ is the sample covariance

matrix of previous JLS daily log-returns, λ1, ..., λp are the eigenvalues of S, Q contains cor-

responding eigenvectors, λ̄ =
∑p

i=1 λi/p, and κ is determined by the asymptotic optimization

results derived in Ledoit and Wolf (2004).

Fan, Li and Yu (2012) considered the following risk optimization problem under gross-

exposure constraints

min w′ΣT−h,Tw s.t. ‖w‖1 ≤ c and w′1 = 1, (19)

where ΣT−h,T was also used to approximate Σ̃T,T+τ . The pair-wise two scales covariance

(TSCV) estimator of ΣT−h,T was constructed based on the high frequency data synchronized by

the pair-wise refresh time scheme over previous JTS trading days. Since this pair-wise estimator

may not be positive semi-definite, they projected the estimator (denoted by M here) by

M1 = (M + λ−minIp)/(1 + λ−min), (20)

where λ−min is the negative part of the minimum eigenvalue of the estimator M. They then

minimize w′M1w to obtain the optimal weight ŵ for a given c. In this paper, following the

simulation and the empirical studies in Fan, Li and Yu (2012), we set c = 1.2.

In practice, one choice that we have to make is the number of days over which we do the

estimation. For our new developed approach, we let J1 = 50, 60, ..., 250 when we use daily

log-returns, and let J1 = 5 (one week), 6, ..., 21 (one month) days when we use 15-minute

intra-day log-returns in Step 4. Moreover, we choose J − J1 = 1, 2, ...., 5. The optimal result

among all possible combinations is reported. Similarly, we report the optimal results for LS

when JLS ∈ {50, 60, ..., 250} and TS when JTS ∈ {1, 2, ...., 10}, and denote them by TSo, LSo

respectively.

The following three measures are calculated to compare the out-of-sample performance of all

the methods during 174 investment days (we have 200 days intra-day data in total and we use
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26 days intra-day data to get SQrM), from April 25, 2013 to December 31, 2013: (1) the average

of log-returns of the portfolio multiplied by 252 (denoted by AV); (2) the standard deviation of

log-returns of the portfolio multiplied by
√

252 (denoted by SD); (3) information ratio calculated

by AV/SD (denoted by IR).

In general, a high AV and a high IR with a low SD are expected for a good portfolio. Since

the GMV portfolio is designed to minimize the variance of a portfolio, the most important

performance measure for GMV is SD. Therefore, we first compare the standard deviations of

different methods and then compare the information ratios and the average returns.

Reported in Table 1 are the AV, SD and IR for all the methods. The number in the

bold face represents the lowest SD. Several conclusions can be made from Table 1. First and

foremost, SQrM outperforms all the other strategies in terms of SD. SQrM also achieves the

highest information ratio when p = 50. Second, as expected, the standard deviation of the GMV

portfolio decreases, as p increases from 30 to 50, for most methods. The only exception is the

EW. Third, SQrM performs better than SQrD, indicating that high frequency data are useful

in portfolio choice.

4.3 Markowitz portfolio with momentum signals (MwM)

We now consider a ‘full’ Markowitz portfolio without any short-sale constraint. The Markowitz

portfolio minimizes the variance of a portfolio under two conditions:

min w′Σ̃T,T+τw subject to w′1 = 1 and w′e = b,

where b is a target expected return chosen by an investor and e is a signal to denote the vector

of expected returns of p assets. The above problem has the following analytical solution

w = c1Σ̃
−1

T,T+τ1 + c2Σ̃
−1

T,T+τe, (21)

where

c1 =
C − bB
AC −B2

, c2 =
bA−B
AC −B2

, A = 1′Σ̃
−1

T,T+τ1, B = 1′Σ̃
−1

T,T+τe, C = e′Σ̃
−1

T,T+τe.

To choose e and b, we follow Ledoit and Wolf (2014). In particular, the ith element of e is the

momentum factor which is chosen as the arithmetic average of the previous 250 days returns on

the ith stock. b is the arithmetic average of the momentums of the top-quintile stocks according

to e. In Table 2, we report the annualized AV, SD, and IR of the daily log-returns for all methods,

namely, SQrM, SQrD, LS, the equal weight constructed on top-quintile stocks according to their

momentums (denoted by EW-TQ), and the method with Σ̃
−1

T,T+τ in (21) being replaced by the

inverse of the sample covariance matrix of previous JSP days daily log-returns (denoted by SP

when JSP = 250). Similar to the GMV portfolio, we choose optimal J and J1 for SQrM and

SQrD. For the Markowitz portfolio, a more relevant criterion for the comparison is IR. In this

paper, we first compare the IRs and then the SDs.

In Table 2, the number in bold face represents the highest IR while the number with a

‘*’ represents the lowest SD. It can be seen that SQrM and SQrD perform better than other
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methods in terms of IR except the EW when p = 30, 40. However, the SDs of SQrM and SQrD

are much lower than that of EW and also lower than that of the other methods.

4.4 Robustness of sample period

To check the robustness of our strategy, we split the entire 174 investment days into two sub-

periods, one from April 25, 2013 to August 27, 2013 and the other from August 28, 2013 to

December 31, 2013. The results of the GMV portfolio are reported in Tables 3 and 4. It can be

seen that SQrM and SQrD continue to outperform other methods in terms of SD in all cases.

Empirical results of the Markowitz portfolio with the momentum signal are reported in Tables

5 and 6. Again SQrM and SQrD continue to outperform other methods in almost all cases in

terms of IR and SD.

We also perform a moving-window analysis to check the robustness of our empirical results.

Staring from April 25, 2013, we calculate the standard deviation of daily log-returns of each

method over 42 trading days and repeat this exercise by moving one trading day at each pass.

To compare our method with other methods, we use figures to show the results of TSo, LSo,

SQrD and SQrM for the GMV portfolio and SPo, LSo, SQrD and SQrM for the MwM portfolio,

where the optimal numbers of days chosen for each method is to minimize or maximize the mean

of SDs or IRs of 133 different investment periods (each investment period is 42 days) for the

GMV and MwM portfolio, respectively. Figures 1, 2, 3 plot the results when p = 30, 40 and 50.

We find that SQrM performs better and better as the portfolio size increases. In general, it

has the lowest SD and the highest IR for both the GMV portfolio and the MwM portfolios. This

result indicates that high frequency data are useful in portfolio choice, especially for controlling

the risk.

4.5 Robustness of time span

From a statistical perspective, a longer span of historical data contains more information about

the dynamic of an asset price so that it may be reasonable to believe that methods based on a

longer span of data should perform better than those based on less data. However, the model

specification is more likely to be wrong over a longer span. Hence there is a trade off between

the estimation error and the specification error. In this subsection we examine this trade off

empirically in the context of the LS portfolio and the SQrD portfolio. In particular, the LS

portfolio and the SQrD portfolio are constructed based on different historical data sets for the

GMV portfolio. For LS, we set JLS = 50, 60, ..., 250. For SQrD, we fix J − J1 = 1 and set

J1 = 50, 60, ..., 250.

Figure 4 plots the risk of daily log-returns for the two GMV portfolios as a function of JLS

or J1 when p = 30 and p = 50. Some interesting findings emerge. First, the risk of log-returns of

a portfolio does not necessarily decrease when a longer span of historical data is used. Second,

SQrD performs better than LS in almost all cases and is more stable across different time spans.

This is especially true when p = 50. Once again, there is an advantage for using our estimator
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for portfolio selection. Third, when p = 30, the risk of the SQrD portfolio decreases when J1

increases initially. This is because more data are used in estimation, reducing the estimation

error. However, the risk increases when J1 > 110. This is because the construction of SQrD

relies on the assumption that Xt ∈ C. As J1 increases, the time span becomes longer, and

hence the assumption that Xt ∈ C is more likely to be invalid. This can also explain why SQrM

performs better than SQrD.

5 Conclusions

This paper has developed a new estimator for the ICV and its inverse from high frequency data

when the portfolio size p and the sample size of data n satisfies p/n→ y > 0 as n goes to∞. The

use of high frequency data drastically increases the sample size and hence reduces the estimation

error. To further prevent the estimation error from accumulating with p, a new regularization

method is applied to the eigenvalues of an initial estimator of the ICV. Our proposed estimator

of the ICV is always positive definite and its inverse is the estimator of the inverse of the ICV. It

minimizes the limit of the out-of-sample variance of portfolio returns within the class of rotation-

equivalent estimators. It works when the number of underlying assets is larger than the number

of time series observations in each asset and when the asset price follows a general stochastic

process.

The asymptotic optimality for our proposed method is justified under the assumption that

p/n → y > 0 as n goes to ∞. The usefulness of our estimator is examined in real data.

The method is used to construct the optimal weight in the global minimum variance and the

Markowitz portfolio with momentum signal based on the DJIA 30 and another 20 stocks chosen

from S&P500. The performance of our proposed method is compared with that of some existing

methods in the literature. The empirical results show that our method performs favorably

out-of-sample.

6 Appendix

In the appendix we first prove Theorem 3.2 as the proof of Theorem 3.1 relies on Theorem 3.2.

Proof of Theorem 3.2. By assumption (A.i), we can write

∆Xk =

∫ τk

τk−1

γtΛΛΛdWt
d
=

(∫ τk

τk−1

γ2
t dt

)1/2

Σ̆
1/2

zk,

where ‘
d
= ’ stands for ‘equal in distribution’, Σ̆ = ΛΛ′ and zk = (Z1k, · · · , Zpk)′ consists of

independent standard normals. Then

STVA
T−h,T =

tr
(
Σ̂

RCV

T−h,T

)
p

· p
n

n∑
k=1

Σ̆
1/2

(
zkz
′
k

z′kΣ̆zk

)
Σ̆

1/2
,
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where Σ̂
RCV

T−h,T =
∑n

k=1 ∆Xk∆X′k, ∆Xk = Xτk −Xτk−1
. Denote

SIIDT−h,T :=
n∑
k=1

1

n
Σ

1/2
T−h,T zkz

′
kΣ

1/2
T−h,T =

∫ T

T−h
γ2
t dt ·

(
1

n

n∑
k=1

Σ̆
1/2

zkz
′
kΣ̆

1/2

)
.

From Theorem 2 of Ledoit and Pèchè (2011), we know that p−1tr
{(

SIIDT−h,T − zI
)−1

ΣT−h,T

}
converges to

sΨ(z) =

∫
r

r{1− y − yz × sF (z)} − z
dH(r),

almost surely, where H is the LSD of matrices ΣT−h,T and F is the LSD of matrices SIIDT−h,T or

STVA
T−h,T , since they share the same LSD by Theorem 2 of Zheng and Li (2011).

On the other hand, we have that sΨ(z) is the Stieltjes transform of the bounded function

Ψ(x) defined in (13) by Theorem 4 of Ledoit and Pèchè (2011) and the Stieltjes transform of

function Ψp(x) is

sΨp(z) =
1

p
tr
{(

STVA
T−h,T − zI

)−1
ΣT−h,T

}
.

Therefore we only need to show that

1

p
tr
{(

SIIDT−h,T − zI
)−1

ΣT−h,T

}
− 1

p
tr
{(

STVA
T−h,T − zI

)−1
ΣT−h,T

}
a.s.→ 0.

To prove this, it suffices to show the following two facts:

max
1≤k≤n

∣∣∣∣1pz′kΣ̆zk − 1

∣∣∣∣ a.s.→ 0, (22)

and

1

p
tr
(
Σ̂

RCV

T−h,T

)
−
∫ T

T−h
γ2
t dt

a.s.→ 0. (23)

To prove (22), by assumption (A.iii), all the eigenvalues of Σ̆ are bounded, so that tr(Σ̆
r
) =

O(p) for all 1 ≤ r <∞. From Lemma 2.7 of Bai and Silverstein (1998), we have

E

(
max

1≤k≤n

∣∣∣p−1z′kΣ̆zk − 1
∣∣∣6) ≤ Cn

p6

({
E|Zjk|4tr

(
Σ̆

2
)}3

+ E|Zjk|12tr
(
Σ̆

6
))

= O(n−2),

where the last step comes from the fact that the higher order moments of Zjk’s are finite since

they are normally distributed. Thus, (22) follows by the Borel-Cantelli lemma.

We now prove (23).∣∣∣∣p−1tr
(
Σ̂

RCV

T−h,T

)
−
∫ T

T−h
γ2
t dt

∣∣∣∣ =

∣∣∣∣∣p−1
n∑
k=1

∫ τk

τk−1

γ2
t dt · z′kΣ̆zk −

∫ T

T−h
γ2
t dt

∣∣∣∣∣
=

∣∣∣∣∣
n∑
k=1

∫ τk

τk−1

γ2
t dt ·

(
p−1z′kΣ̆zk − 1

)∣∣∣∣∣
≤ max

1≤k≤n

∣∣∣p−1z′kΣ̆zk − 1
∣∣∣ · ∫ T

T−h
γ2
t dt

a.s.→ 0.
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by assumption (A.iv) and the result in Equation (22).

Then,

1

p
tr
{(

SIIDT−h,T − zI
)−1

ΣT−h,T

}
− 1

p
tr
{(

STVA
T−h,T − zI

)−1
ΣT−h,T

}
=

1

p
tr
{(

SIIDT−h,T − zI
)−1 (

STVA
T−h,T − SIIDT−h,T

) (
STVA
T−h,T − zI

)−1
ΣT−h,T

}
=

1

p
tr


(
SIID
T−h,T − zI

)−1 tr
(
Σ̂

RCV

T−h,T

)
p(n)

·
n∑

k=1

(
1

p−1z′kΣ̆zk
− 1

)
Σ̆

1/2
zkz′`Σ̆

1/2
(
STVA
T−h,T − zI

)−1
ΣT−h,T


+

1

p(n)
tr

((
SIIDT−h,T − zI

)−1
{
p−1tr

(
Σ̂

RCV

T−h,T

)
−
∫ T

T−h
γ2
t dt

}
×

n∑
k=1

Σ̆
1/2

zkz
′
kΣ̆

1/2 (
STVA
T−h,T − zI

)−1
ΣT−h,T

)
:= I1 + I2.

From assumptions (A.ii)-(A.v), and the facts that ‖(SIIDT−h,T − zI)−1‖ ≤ 1/=(z), ‖(STVA
T−h,T −

zI)−1‖ ≤ 1/=(z) with ‖·‖ denoting the L2 norm of a matrix, (22) and (23), we have that both

|I1| and |I2| converge to 0, almost surely. Therefore, the proof of Theorem 3.2 is completed. �

Proof of Theorem 3.1. The convergence of ESD of STVA
T−h,T is shown in Theorem 2 of Zheng and

Li (2011). Note that

∥∥∥∥(Σ̂
∗
T−h,T

)−1
∥∥∥∥ ≤ C for some fixed number C when p large enough by

assumption (A.v) and the fact that
(
Σ̂
∗
T−h,T

)−1
belongs to class S. Thus, from Lemma 2.7 of

Bai and Silverstein (1998) and Borel-Cantelli lemma, we have

1

p
1′
(
Σ̂
∗
T−h,T

)−1
1− 1

p
tr

{(
Σ̂
∗
T−h,T

)−1
}

a.s.→ 0.

Moreover, we have

1

p
tr

{(
Σ̂
∗
T−h,T

)−1
}

=
1

p

p∑
i=1

1

gn(vi)
=

∫
1

gn(x)
dFSTVA

T−h,T (x)

a.s.→
∫

1

g(x)
dF (x).

Therefore,

1

p
1′
(
Σ̂
∗
T−h,T

)−1
1
a.s.→
∫

1

g(x)
dF (x). (24)

Similarly, we can show that

1

p
1′
(
Σ̂
∗
T−h,T

)−1
ΣT−h,T

(
Σ̂
∗
T−h,T

)−1
1− 1

p
tr

{(
Σ̂
∗
T−h,T

)−1
ΣT−h,T

(
Σ̂
∗
T−h,T

)−1
}

a.s.→ 0.
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Using Theorem 3.2, we have

1

p
tr

{(
Σ̂
∗
T−h,T

)−1
ΣT−h,T

(
Σ̂
∗
T−h,T

)−1
}

=
1

p
tr(U′ΣT−h,TUV−2) =

1

p

p∑
i=1

u′iΣT−h,Tui
gn(vi)2

a.s.→
∫

x

|1− y − yx× m̆F (x)|2g(x)2
dF (x).

Thus,

1

p
1′
(
Σ̂
∗
T−h,T

)−1
ΣT−h,T

(
Σ̂
∗
T−h,T

)−1
1
a.s.→
∫

x

|1− y − yx× m̆F (x)|2g(x)2
dF (x). (25)

Combining (24) and (25), we obtain that

p ·
1′
(
Σ̂
∗
T−h,T

)−1
Σ0,T−h

(
Σ̂
∗
T−h,T

)−1
1(

1′
(
Σ̂
∗
T−h,T

)−1
1

)2

a.s.→

∫ x

|1− y − yx× m̆F (x)|2g(x)2
dF (x)( ∫ dF (x)

g(x)

)2 .
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Table 1: The out-of-sample performance of different daily rebalanced strategies for the GMV

portfolio between April 25, 2013 and December 31, 2013.

Period: 04/25/2013—12/31/2013

p = 30 EW TS TSo LS LSo SQrD SQrM

AV 20.13 13.22 13.22 15.31 12.96 10.59 15.62

SD 10.17 9.65 9.65 9.80 9.52 9.34 9.17

IR 1.98 1.37 1.37 1.56 1.36 1.80 1.70

p = 40 EW TS TSo LS LSo SQrD SQrM

AV 21.00 16.51 17.80 16.00 11.84 19.06 18.09

SD 10.43 9.66 9.62 9.85 9.29 9.29 9.10

IR 2.01 1.71 1.85 1.62 1.27 2.05 1.99

p = 50 EW TS TSo LS LSo SQrD SQrM

AV 21.00 20.15 20.15 13.28 10.25 17.74 20.52

SD 10.36 9.40 9.40 9.47 9.18 9.26 8.68

IR 2.03 2.14 2.14 1.40 1.12 1.91 2.36

Note: AV, SD, IR denote the average, standard deviation, and information ratio of 174 daily log-returns,

respectively. AV and SD are annualized and in percent. The smallest number in the row labeled by SD is

reported in bold face. TSo corresponds to the case where ΣT−h,T is estimated by the two-scale covariance

matrix obtained based on historical intra-day data (10 days when p = 30, 50; 8 days when p = 40). LSo

corresponds to the case where ΣT−h,T is estimated by the linear shrinkage of the sample covariance matrix of

daily log-returns (110, 90 and 90 days when p = 30, 40 and 50 respectively). The optimal number of days is

chosen by minimizing SD of 174 log-returns of each portfolio.
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Table 2: The out-of-sample performance of different daily rebalanced strategies for Markowitz

portfolio with momentum signal between April 25, 2013 and December 31, 2013.

Period: 04/25/2013—12/31/2013

p = 30 EW-TQ SP SPo LS LSo SQrD SQrM

AV 31.74 0.02 4.18 13.02 13.02 20.02 15.91

SD 13.27 12.10 12.06 11.59 11 56 11.37 11.11∗

IR 2.39 0.00 0.35 1.12 1.12 1.76 1.43

p = 40 EW SP SPo LS LSo SQrD SQrM

AV 36.49 6.86 8.94 18.98 18.98 24.67 20.21

SD 13.55 10.90 10.99 11.29 10.66 11.25 10.07∗

IR 2.69 0.63 0.81 1.68 1.68 2.19 2.01

p = 50 EW-TQ SP SPo LS LSo SQrD SQrM

AV 28.64 7.53 11.33 15.81 15.81 22.65 23.35

SD 13.16 10.42 10.80 10.60 10.60 10.51 9.83∗

IR 2.18 0.72 1.05 1.49 2.03 2.15 2.38

Note: AV, SD, IR denote the average, standard deviation, and information ratio of 174 daily log-returns

respectively. AV, SD are annualized and in percent. The smallest number in the row labeled by SD is reported

in bold face. SPo corresponds to the case where ΣT−h,T is estimated by the sample covariance matrix of daily

log-returns (190, 230 and 130 days when p = 30, 40 and 50, respectively). LSo corresponds to the case where

ΣT−h,T is estimated by the linear shrinkage of the sample covariance matrix of daily log-returns (250 days when

p = 30, 40 and 50). The optimal number of days is chosen by maximizing IR of 174 log-returns of each portfolio.

25



Table 3: The out-of-sample performance of different daily rebalanced strategies for the GMV

portfolio between April 25, 2013 and August 27, 2013.

Period: 04/25/2013—08/27/2013

p = 30 EW TS TSo LS LSo SQrD SQrM

AV 5.23 2.23 2.23 2.63 9.90 2.93 1.87

SD 10.93 10.05 10.05 10.64 9.85 9.97 9.81

IR 0.48 0.22 0.22 0.25 1.00 0.29 0.19

p = 40 EW TS TSo LS LSo SQrD SQrM

AV 5.04 3.64 4.35 0.48 4.49 0.43 0.42

SD 11.09 10.26 10.00 10.51 9.45 9.78 9.73

IR 0.45 0.36 0.43 0.05 0.48 0.04 0.04

p = 50 EW TS TSo LS LSo SQrD SQrM

AV 6.53 9.35 9.35 -1.78 8.29 1.70 5.70

SD 11.06 10.12 10.12 10.18 9.18 9.89 9.30

IR 0.59 0.92 0.92 -0.17 0.89 0.17 0.61

Note: AV, SD, IR denote the average, standard deviation, and information ratio of 87 daily log-returns,

respectively. AV, SD are annualized and in percent. The smallest number in the row labeled by SD is reported

in bold face. TSo corresponds to the case where ΣT−h,T is estimated by the two-scale covariance matrix

obtained based on historical intra-day data (10 days when p = 30, 50; 8 days when p = 40). LSo corresponds to

the case where ΣT−h,T is estimated by the linear shrinkage of the sample covariance matrix of daily log-returns

(110, 90 and 90 days when p = 30, 40 and 50 respectively).
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Table 4: The out-of-sample performance of different daily rebalanced strategies for the GMV

portfolio between August 28, 2013 to December 31, 2013.

Period: 08/28/2013—12/31/2013

p = 30 EW TS TSo LS LSo SQrD SQrM

AV 35.04 24.22 24.22 27.99 16.02 30.70 29.36

SD 9.31 9.24 9.24 8.87 9.17 8.64 8.45

IR 3.76 2.62 2.62 3.15 1.75 3.55 3.48

p = 40 EW TS TSo LS LSo SQrD SQrM

AV 36.97 29.37 31.25 31.52 19.19 20.15 25.94

SD 9.69 9.01 9.19 9.09 9.16 8.54 8.32

IR 3.82 3.26 3.40 3.47 2.09 4.411 4.30

p = 50 EW TS TSo LS LSo SQrD SQrM

AV 35.47 30.95 30.95 28.33 12.20 33.78 35.34

SD 9.60 8.64 8.64 8.67 9.05 8.52 7.95

IR 3.70 3.58 3.58 3.27 1.35 3.96 4.44

Note: AV, SD, IR denote the average, standard deviation, and information ratio of 87 daily log-returns,

respectively. AV, SD are annualized and in percent. The smallest number in the row labeled by SD is reported

in bold face. TSo corresponds to the case where ΣT−h,T is estimated by the two-scale covariance matrix

obtained based on historical intra-day data (10 days when p = 30, 50 and 8 days when p = 40). LSo corresponds

to the case where ΣT−h,T is estimated by the linear shrinkage of the sample covariance matrix of daily

log-returns (110, 90 and 90 days when p = 30, 40 and 50 respectively).
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Table 5: The out-of-sample performance of different daily rebalanced strategies for the

Markowitz portfolio with momentum signal between April 25, 2013 to August 27, 2013.

Period: 04/25/2013—08/27/2013

p = 30 EW-TQ SP SPo LS LSo SQrD SQrM

AV 8.70 -10.05 -1.43 -2.99 -2.99 1.73 0.13

SD 14.51 13.02 13.03 12.54 12.54 11.94∗ 12.06

IR 0.60 -0.81 -0.11 -0.24 -0.24 0.01 0.04

p = 40 EW-TQ SP SPo LS LSo SQrD SQrM

AV 9.21 -11.39 -9.39 -4.04 -4.04 4.14 -2.69

SD 14.19 10.91 10.94 11.45 10.99 11.49 10.42∗

IR 0.65 -1.04 -0.86 -0.35 -0.35 0.36 -0.26

p = 50 EW-TQ SP SPo LS LSo SQrD SQrM

AV 3.50 -8.15 1.71 -6.25 -6.25 6.98 4.16

SD 14.28 11.01 10.48 10.92 10.92 10.84 10.47∗

IR 0.25 -0.74 0.16 -0.57 -0.57 0.64 0.40

Note: AV, SD, IR denote the average, standard deviation, and information ratio of 87 daily log-returns

respectively. AV, SD are annualized and in percent. The smallest number in the row labeled by SD is reported

in bold face. SPo corresponds to the case where ΣT−h,T is estimated by the sample covariance matrix of daily

log-returns (190, 230 and 130 days when p = 30, 40 and 50 respectively). LSo corresponds to the case where

ΣT−h,T is estimated by the linear shrinkage of the sample covariance matrix of daily log-returns (250 days when

p = 30, 40 and 50).

28



Table 6: The out-of-sample performance of different daily rebalanced strategies for the

Markowitz portfolio with momentum signal between August 28, 2013 to December 31, 2013.

Period: 08/28/2013—12/31/2013

p = 30 EW-TQ SP SPo LS LSo SQrD SQrM

AV 54.79 10.59 9.79 29.02 29.02 39.95 31.35

SD 11.82 11.14 11.06 10.53 10.53 10.69 10.02∗

IR 4.64 0.95 0.89 2.76 2.76 3.74 3.11

p = 40 EW-TQ SP SPo LS LSo SQrD SQrM

AV 63.78 25.11 27.28 41.99 41.99 45.21 43.11

SD 12.73 10.84 10.97 11.00 11.00 10.92 9.55∗

IR 5.01 2.32 2.49 3.82 3.82 4.14 4.51

p = 50 EW-TQ SP SPo LS LSo SQrD SQrM

AV 53.77 23.20 20.94 37.87 37.87 38.31 42.54

SD 11.80 9.76 11.13 10.16 10.16 10.14 9.05∗

IR 4.56 2.38 1.88 3.73 3.73 3.78 4.70

Note: AV, SD, IR denote the average, standard deviation, and information ratio of 87 daily log-returns

respectively. AV, SD are annualized and in percent. The smallest numbers in the row labeled by SD is reported

in bold face. SPo corresponds to the case where ΣT−h,T is estimated by the sample covariance matrix of daily

log-returns (190, 230 and 130 days when p = 30, 40 and 50, respectively). LSo corresponds to the case where

ΣT−h,T is estimated by the linear shrinkage of the sample covariance matrix of daily log-returns (250 days when

p = 30, 40 and 50).
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Figure 1: Information ratios and standard deviations of log-returns of four strategies based on

rolling windows of historical data for the GMV and MwM portfolios when p = 30.
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Note: Rolling windows of annualized standard deviations and information ratios of log-returns for the GMV and

MwM portfolios. Each point is the standard deviation or information ratio of 42 log-returns of each portfolio

strategy. Move one trading day forward at one time such that there are 133 different investment periods and

each period contains 42 days (two months). The upper plots correspond to: SQrM uses 1 day of all intra-day

data and 9 days of 15-minute data; SQrD uses 5 days of all intra-day data and 110 days of daily data; LSo uses

250 daily data; TSo uses 10 days of intra-day data. The bottom plots correspond to: SQrM use 5 days of all

intra-day data and 14 days of 15-minute data; SQrD uses 2 days of all intra-day data and 90 days of daily data;

LSo and SPo use 110 days of daily data.
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Figure 2: Information ratios and standard deviations of log-returns of four strategies based on

rolling windows of historical data for the GMV and MwM portfolios when p = 40.
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Note: Rolling windows of annualized standard deviations and information ratios of log-returns for the GMV and

MwM portfolios. Each point is the standard deviation or information ratio of 42 log-returns of each portfolio

strategy. Move one trading day forward at one time such that there are 133 different investment periods and

each period contains 42 days (two months). The upper plots correspond to: SQrM uses 1 day of all intra-day

data and 17 days of 15-minute data; SQrD uses 1 days of all intra-day data and 110 days of daily data; LSo uses

250 daily data; TSo uses 10 days of intra-day data. The bottom plots correspond to: SQrM use 4 days of all

intra-day data and 15 days of 15-minute data; SQrD uses 5 days of all intra-day data and 200 days of daily data;

LSo and SPo use 250 and 190 days of daily data, respectively.
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Figure 3: Information ratios and standard deviations of log-returns of four strategies based on

rolling window of historical data for the GMV and MwM portfolios when p = 50.
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Note: Rolling windows of annualized standard deviations and information ratios of log-returns for the GMV and

MwM portfolios. Each point is the standard deviation or the information ratio of 42 log-returns of each portfolio

strategy. Move one trading day forward at one time such that there are 133 different investment periods and

each period contains 42 days (two months). The upper plots correspond to: SQrM uses 1 day of all intra-day

data and 15 days of 15-minute data; SQrD uses 1 days of all intra-day data and 130 days of daily data; LSo uses

250 daily data; TSo uses 9 days of intra-day data. The bottom plots correspond to: SQrM use 4 days of all

intra-day data and 13 days of 15-minute data; SQrD uses 5 days of all intra-day data and 90 days of daily data;

LSo and SPo use 250 and 130 days of daily data, respectively.
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Figure 4: Standard deviation of log-returns of SQrD and LS in 174 investment days for the

GMV when p = 30 and p = 50.
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Note: Each point is the standard deviation of 174 log-returns of each portfolio strategy.
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