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Abstract

The asymptotic distributions of the least squares estimator of the mean reversion parameter (κ)
are developed in a general class of diffusion models under three sampling schemes, namely, long-
span, in-fill and the combination of long-span and in-fill. The models have an affine structure in
the drift function, but allow for nonlinearity in the diffusion function. The limiting distributions
are quite different under the alternative sampling schemes. In particular, the in-fill limiting
distribution is non-standard and depends on the initial condition and the time span whereas
the other two are Gaussian. Moreover, while the other two distributions are discontinuous
at κ = 0, the in-fill distribution is continuous in κ. This property provides an answer to the
Bayesian criticism to the unit root asymptotics. Monte Carlo simulations suggest that the
in-fill asymptotic distribution provides a more accurate approximation to the finite sample
distribution than the other two distributions in empirically realistic settings. The empirical
application using the U.S. Federal fund rates highlights the difference in statistical inference
based on the alternative asymptotic distributions and suggests strong evidence of a unit root
in the data.

Keywords: Vasicek Model, One-factor Model, Mean Reversion, In-fill Asymptotics, Long-span
Asymptotics, Unit Root Test

JEL classification: C12, C22, G12



1 Introduction

Consider a stochastic process that is specified in terms of a stochastic differential equation

(SDE):

dX(t) = κ(µ−X(t))dt+ σX(X(t))dW (t) (1)

where W (t) is a standard Brownian motion, µ is the long term mean of X(t) and κ captures

the speed of mean reversion of X(t) towards µ if κ > 0. This one factor model includes as a

special case many important models used in financial economics and econometrics.

As an earlier contribution to the continuous time finance literature, Vasicek (1977) proposed

to use the Ornstein-Uhlenbeck (OU) diffusion process to describe the evolution of interest rates.

In this case, the stochastic process X(t) is given by the following SDE:

dX(t) = κ(µ−X(t))dt+ σdW (t) (2)

where σ is the instantaneous volatility. If σX(X(t)) = σ
√

X(t), the model is the well-known

square root model proposed by Cox, Ingersoll and Ross (1985, CIR here after). Chan et

al (1992, CKLS hereafter) proposed a model with σX(X(t)) = σXγ(t). Aı̈t-Sahalia (1996a)

introduced a semiparametric model with σX(X(t)) being nonparametrically specified.

In practice, X(t) are directly observable but only at discrete points in time, say t =

0, δ, 2δ, . . . , nδ(:= T ), where n is the sample size, δ the sampling interval, and T the time

span of the data. Econometric analysis aims to bring the continuous time model (1) to the

discrete data. A recent literature on realized volatility has focused on the diffusion function,

based on the assumption that T is fixed (usually set at 1) but δ → 0; see, for example, An-

dersen et al (2001) and Barndorff-Nielsen and Shephard (2002). In this paper, we shift this

attention to the drift function because the drift function determines the dynamic property and

is important for pricing and forecasting.

Many estimation methods have been proposed to estimate parameters in (2) from the

discrete observations on X(t). Examples include GMM, maximum likelihood (ML), Gaussian

methods, quasi-ML, simulation-based methods such as simulated ML, indirect inference, EMM

and Bayesian MCMC, and nonparametric methods. It has been argued that when the model is

correctly specified, the preferred choice of estimator should be ML (Durham and Gallant, 2002).
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One reason for this choice is that under general regularity conditions, the maximum likelihood

estimator (MLE) is asymptotically efficient as n → ∞. The other reason for this choice is that

MLE is asymptotically normal as n → ∞, facilitating statistical inferences (Aı̈t-Sahalia, 2002,

and Tang and Chen, 2009).

It is now known that ML methods, both the exact and the approximate ML methods, have

a serious finite sample estimation bias in the mean reversion parameter κ. This bias is related

to but much more serious than the finite sample bias in the correlation coefficient estimator

(Phillips and Yu, 2005). The bias is shown to have important implications for financial decisions

(Phillips and Yu, 2005 and 2009b). Various methods have been introduced to reduce the bias

in κ, including the jackknife method (Phillips and Yu, 2005), indirect inference (Phillips and

Yu, 2009a) and the bootstrap method (Tang and Chen, 2009). Various authors have obtained

analytic forms to approximate the bias under various one-factor models (Tang and Chen, 2009,

Yu, 2009b, Ullah, Wang and Yu, 2009).

In addition to the finite sample bias problem, when the true value of κ is small, evidence

has been reported on substantial deviations of the finite sample distribution of the MLE of

κ from its classical asymptotic distribution developed under the assumption of n → ∞. For

example, in the context of Vasicek model with a known µ, Yu (2009a) showed that the finite

sample distribution of the MLE of κ and the classical asymptotic distribution behave quite

differently. The former is skewed to the right even when n is very large (for example, even

when 25,000 daily observations are used!). Similar evidence is documented for other statistics

used in the literature. For example, Pritsker (1998) found that the asymptotic distribution of

the nonparametric test of Aı̈t-Sahalia (1996b) and that of the kernel density estimator of the

marginal distribution do not provide good approximations to their finite sample distributions

unless several thousands years of data become available. Similar evidence can be also found in

Chapman and Pearson (2001). These pieces of evidence naturally raise the concern of making

statistical inferences based on the classical asymptotic theory developed under the assumption

that n → ∞.

This problem is related to the unit root literature where it is found that when the root is

near unity, the finite sample distribution of the AR coefficient is closer to the Dickey-Fuller

distribution than to the asymptotic distribution under the stationary assumption (Ahtola and

Tiao, 1984). To address this problem, Phillips (1987b) provided an asymptotic theory for a
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first-order autoregression with a root near unity. Perron (1991) extended the study by allowing

for a more flexible initial condition and a general but finite value for time span (T ). Both

Phillips and Perron suggested using a SDE model to approximate the discrete time model with

a root local to unity and developed the asymptotic theory by assuming δ → 0 instead of letting

T → ∞.1 Recently, Aı̈t-Sahalia and Park (2009) used the local time approach to develop the

asymptotic theory for the kernel estimate of the marginal distribution for diffusions, with the

hope to better approximate its finite sample distribution.

The main purpose of the present paper is to develop the asymptotic distribution of the least

squares (LS) estimator of κ in Model (2) under three different sampling schemes. The three

alternative sampling schemes are listed below:

T → ∞, δ is fixed, hence n(:= T/δ) → ∞ (A1)

T → ∞, δ → 0 and hence n → ∞ (A2)

δ → 0, T is fixed and hence n → ∞ (A3)

where δ is the sampling interval, n the sample size and T the time span.

Scheme (A1) assumes that the sampling interval is fixed and the sample size increases as

the time span increases. This scheme corresponds to the classical approach to establishing

the asymptotic theory. It is widely used in the literature and referred to as the long-span

asymptotics in the present paper. Tang and Chen (2009) developed the asymptotic distribution

of the MLE of κ (and other parameters) in the context of the Vasicek model and the CIR model

under this scheme. Aı̈t-Sahalia (2002) made use of this scheme to develop the asymptotic

distribution of his approximate MLE. In practical applications in economics and finance, T

measures the number of years from which the sample is collected. Typical values for T is not

very large (between 1 and 50). In some cases, even if T may be large, a smaller T may be used

to avoid possible structural breaks in Model (2). The long-span asymptotic distribution of the

MLE of κ is Gaussian for κ > 0 (stationary) but is skewed for κ = 0 (unit root). The later

result corresponds to the important finding in the unit root literature (Phillips, 1987a). On

the other hand, the finite sample distribution is continuous for all values of κ. This observation

suggests that the long-span asymptotics fail to provide an accurate approximation to the finite

1See Phillips and Magdalinos (2007), Phillips and Han (2008), and Han, Phillips and Sul (2009) for further
contributions to bridge the asymptotic distribution of the unit root case and that of the stationary case.
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sample distribution when κ is close to 0. The discontinuity in the asymptotic distributions has

led to severe criticisms of the use of unit root limit theory in the Bayesian literature; see, for

example, Sim (1988) and Sim and Uhlig (1991).

Like Scheme (A1), Scheme (A3) also allows the sample size to go to infinity. However, this

is achieved by decreasing the sampling interval but fixing the time span. In this paper this

scheme is referred to as the in-fill asymptotics. Under this scheme, Phillips (1987b) and Perron

(1991) developed the asymptotic distribution of the LS estimator of the AR coefficient (ϕ) in

the discrete time models. Yu (2009a) developed the in-fill asymptotic distribution of κ in the

context of the Vasicek model with a known intercept. He found that the in-fill asymptotic

distribution is much closer to the finite sample distribution than the long-span asymptotic

distribution in the empirically realistic cases. It is important to investigate the robustness of

this result under a more general set-up. In practical applications in economics and finance, data

are often measured in the annualized term. As a result, δ = 1/252 (1/52, 1/12), corresponding

to the daily (weekly, monthly) data. For intra-day data, δ is even smaller than and 1/252.

Scheme (A2) combines both the long-span scheme and the in-fill scheme and is referred to

as the double asymptotics in this paper. Not surprisingly, this set of assumptions is strongest.

Under this scheme, Brown and Hewitt (1975) developed the asymptotic distribution for the

MLE of κ in the Vasicek model when µ is known. Bandi and Phillips (2003, 2007) developed the

asymptotic distribution for both the non-parametric and the parametric estimators of a con-

tinuous time model. Phillips and Yu (2009b) employed this scheme to develop the asymptotic

distribution for a two-stage ML estimator.

The present paper contributes to the literature in three aspects. First, the limit theory is

developed for the LS estimator of κ in the context of a general class of continuous time models

under the three schemes. Under Schemes (A1) and (A2) the limiting distribution is Gaussian

that is independent on the initial condition as well as the parameters in the diffusion function.

However, under Scheme (A3) the limiting distribution is no-Gaussian and skewed to the right.

It depends on both the initial condition and the parameters in the diffusion function. Our

results differs from Perron (1991) in that he was primarily concerned about the distribution of

the AR coefficient. Our result significantly extend the work of Yu (2009a) in that his model

specification is much more restrictive (namely µ = 0 and σX(X(t)) = σ). Our asymptotic

results under Scheme (A3) generalize those of Phillips (1987b) because we allow a general
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initial condition and a general value for the time span. We extend the asymptotic results of

Tang and Chen (2009) in two important ways: (1) the model is more general (the diffusion

function is more flexible); (2) different sampling schemes are considered.

Second, we compare the performance of the three alternative distributions. To the best

of our knowledge, this is the first time in the literature that the relative performance of all

three alternative distributions is examined. Our results suggest that for empirically realistic

cases, Schemes (A1) and (A2) fail to provide accurate approximations to the finite sample

distribution, whereas the distribution under Scheme (A3) is very accurate, even under the

monthly frequency.

Third, we provide an answer to the Bayesian criticisms to unit root econometrics. Since

the limiting distribution under Scheme (A3) is continuous in κ, the same distribution is used

to construct the confidence interval, regardless of the true value of κ. Consequently, the

confidence regions based on our asymptotic distribution is connected. Our results show that

it is the limiting distribution developed under Scheme (A1) or (A2) but not the unit root

limiting distribution that fails to provide a satisfactory approximation to the finite sample

distribution of κ when κ is close to 0. Our answer to the Bayesian criticisms is to use the

limiting distribution under Scheme (A3) to construct the confidence interval.

The paper is organized as follows. Section 2 reviews and extends the results for the Vasicek

model with a known mean. Section 3 derives the results for Vasicek model with a unknown

mean. In Section 4, the results are generalized to the model with a flexible diffusion func-

tion. Section 5 reports Monte Carlo results and compares the performance of the alternative

schemes. Section 6 examines the practical effects of the alternative asymptotic distributions

using monthly Federal fund data and tests for unit root in the data. Section 7 concludes.

Proofs of the main results in the paper are given in Appendix

2 Vasicek Model with a Known Mean

The Vasicek model with a known mean (without the loss of generality, it is assumed to be zero)

is given by:

dX(t) = −κX(t)dt+ σdW (t), X(0) = X0. (3)
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The exact discrete time model corresponding to (3) has the AR(1) structure:

Xtδ = ϕX(t−1)δ + σ

√
1− e−2κδ

2κ
ϵt, (4)

where ϕ = e−κδ, ϵt
i.i.d∼ N(0, 1).

When there is no confusion, we will simply write Xtδ by Xt. When the discrete data

{X0δ, X1δ, . . . , Xnδ} (nδ = T ) are available, the LS estimator of ϕ is:

ϕ̂n =

∑
Xt−1Xt∑
X2

t−1

,

where
∑

:=
∑n

t=1. If κ > 0, the model is strictly stationary. In this case, under Scheme

(A1), by the central limit theory of the martingale difference sequences, we have
√
n(ϕ̂n−ϕ) d→

N(0, 1 − ϕ2) as n → ∞. Since κ̂ = − ln ϕ̂n/δ, by the Delta method, we have for κ > 0, as

T → ∞

√
T (κ̂− κ) d→ N

(
0,

e2κδ − 1

δ

)
. (5)

The asymptotic distribution of κ̂ was developed in Tang and Chen (2009). It can be seen that

the limiting distribution of κ̂ is independent on the diffusion parameter of the model as well as

the initial condition, greatly facilitating statistical inference of κ.

If κ = 0, then ϕ = 1 and the model has a unit root. Phillips (1987a) showed that under

Scheme (A1):

n(ϕ̂n − ϕ) d→
∫ 1
0 WdW∫ 1
0 W 2dr

, (6)

as n → ∞. By the generalized Delta method (Shao, 2003), as T → ∞, we have for κ = 0, as

T → ∞,

T (κ̂− κ) d→ −
∫ 1
0 WdW∫ 1
0 W 2dr

. (7)

Similarly, under Scheme (A2) with T → ∞ and δ → 0, the asymptotic distribution is:

√
T (κ̂− κ) d→ N(0, 2κ), (8)
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for κ > 0 and

T (κ̂− κ) d→ −
∫ 1
0 WdW∫ 1
0 W 2dr

, (9)

for κ = 0.

To review the asymptotic results under Scheme (A3), we follow Perron (1991) and introduce

a few new notations. Denote Jc(r) =
∫ r
0 ec(r−s)dW (s), γ0 = X0/

(
σ
√
T
)
, c = −κT and

A1(γ0, c) = γ0

∫ 1

0
ecrdW (r) +

∫ 1

0
Jc(r)dW (r),

B1(γ0, c) = γ20(e
2c − 1)/2c+ 2γ0

∫ 1

0
ecrJc(r)dW (r) +

∫ 1

0
J2
c (r)dr.

Phillips (1987b) derived the in-fill asymptotic distribution of ϕ̂n when T = 1 and X(0) = 0,

n(ϕ̂n − ϕ) d→
∫ 1
0 J−κ(r)dW (r)∫ 1

0 J2
−κ(r)dr

. (10)

For a general T and a general initial condition X(0) = X0, Perron (1991) extended the results

of Phillips and showed that:

n(ϕ̂n − ϕ) d→ A1(γ0, c)

B1(γ0, c)
. (11)

He further derived the analytical expression for the moment generating function (MGF) of the

limiting distribution, facilitating the calculation of its distribution. The asymptotic distribution

of κ̂ under (A3) can be easily obtained by applying the generalized Delta method to (11):

T (κ̂− κ) d→ −A1(γ0, c)

B1(γ0, c)
. (12)

This result is closely related to that obtained in Yu (2009a) who showed that, under Scheme

(A3),

κ̂ d→ −
∫ T
0 XtdXt∫ T
0 X2

t dt
, (13)

where Xt = e−κtX0 + σ
∫ t
0 e

−κ(t−s)dW (s). To simplify the calculation, Yu obtained an alter-

native form of the limiting distribution by replacing the stochastic integral with the Riemann

integral, i.e.,

κ̂ d→ T −X(T )2

2
∫ T
0 X(t)2dt

(14)
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Using simulations, Yu demonstrated the superiority of this in-fill asymptotic distribution over

the long-span asymptotic distribution (5). It can be verified that the limiting distribution given

in (12) is the same as that given in (14). In (12) the initial condition and the parameter in

the diffusion function are explicit whereas they are implicit in (14). Interestingly, the in-fill

asymptotic theory is the same for κ < 0 as for κ = 0. This is in sharp contrast to the long-span

asymptotic theory and the double asymptotic theory reviewed earlier.

There is an extensive literature on unit root testing. Nearly all unit root tests are formulated

from the discrete time models. In Equation (4) the unit root hypothesis is equivalent to ϕ = 1.

However, the unit root tests can be also performed in continuous time. For example, the

unit root hypothesis is equivalent to κ = 0 in Equation (3). The asymptotic distribution of

κ̂ under Scheme (A1) and κ = 0 is different from that under Scheme (A1) and κ = κ0 > 0.

This discontinuity is the same as the well-known discontinuity in the asymptotic theory in

ϕ̂ and suggests that the confidence intervals obtained from (5) and (7) may be two disjoint

pieces (Sim, 1988). On the other hand, the confidence intervals obtained from the finite sample

distributions must be connected because the finite sample distribution is continuous in κ. This

observation has generated some severe criticisms in the Bayesian literature to the use of the

nonstationary asymptotic theory (Sim and Uhlig, 1991). See also the critique of the criticisms

(Phillips, 1991). Since the in-fill asymptotic distribution is continuous in κ, it provides a unified

framework to make statistical inference about κ. In particular, the limiting distribution in (12)

is skewed and behaves similar to the unit root limiting distribution when κ is positive and close

to 0. Consequently, our answer to the Bayesian criticisms is that the disconnecting confidence

intervals are caused by the poor approximation of (5) and (8) to the finite sample distribution,

but not by the use of the nonstationary asymptotic theory. Extensive simulations will be

carried out later to verify the validity of this claim.

3 Vasicek Model with Unknown Mean

In this section, we consider the Vasicek model with an unknown mean:

dX(t) = κ(µ−X(t))dt+ σdW (t), X(0) = X0. (15)
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The exact discrete time model corresponding to (15) is an AR(1) model with intercept:

Xiδ = µ(1− e−κδ) + ϕX(i−1)δ + σ

√
1− e−2κδ

2κ
ϵi, (16)

where ϕ = e−κδ, ϵi
i.i.d∼ N(0, 1).

The LS estimator of ϕ is:

ϕ̂n =

∑
(Xt−1 −X−)(Xt −X)∑

(Xt−1 −X)2
,

where X− = 1
n

∑
Xt−1 and X = 1

n

∑
Xt.

Under Scheme (A1), Tang and Chen (2009) derived the long-span asymptotic distribution

of κ̂ when κ > 0:
√
T (κ̂− κ) d→ N

(
0,

e2κδ − 1

δ

)
, (17)

as T → ∞. Letting δ → 0, when κ > 0, the asymptotic distribution of κ̂ under (A2) is

√
T (κ̂− κ) d→ N(0, 2κ). (18)

Asymptotic distributions given in (17) and (18) are the same as those in (5) and (8), respec-

tively.

The in-fill asymptotic distribution has not been derived in the literature and it is more

complicated than that in the known mean case. Theorem 3.1 presents the result.

Theorem 3.1 For Model (15), under Scheme (A3), the in-fill asymptotic distribution of κ̂ is

T (κ̂− κ) d→ −A2(γ0, c)

B2(γ0, c)
, (19)

where

A2(γ0, c) =
b

c

∫ 1

0
c1dW (r)+

∫ 1

0
Jc(r)dW (r)+γ0

∫ 1

0
ercdW (r)−

∫ 1

0
dW (r)

(
c2b+

∫ 1

0
Jc(r)dr+c4γ0

)
,

B2(γ0, c) = c3b
2 +

2b

c

∫ 1

0
c1Jc(r)dr +

∫ 1

0
J2
c (r)dr + c24bγ0 + 2γ0

∫ 1

0
ercJc(r)dr

+γ20
e2c − 1

2c
−
(
c2b+

∫ 1

0
Jc(r)dr+c4γ0

)2

.

and c = −κT , c1 = erc−1, c2 =
ec−c−1

c2
, c3 =

e2c−4ec+2c+3
2c3

, c4 =
ec−1
c , Jc(r) =

∫ r
0 ec(r−s)dW (s),

b = µ
√
−cκ/σ, γ0 = X0/

(
σ
√
T
)
.
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Remark 3.1 The in-fill asymptotic theory in (19) is analogous to that of (12) in the Vasicek

model with a known mean. It holds true for all values of κ, whether κ < 0 or κ = 0.

Remark 3.2 In the Vasicek model with a known mean, Perron (1991) derived the expression

for the MGF of −A1(γ0, c)/B1(γ0, c). Unfortunately, it does not seem that the MGF has an

analytic expression for −A2(γ0, c)/B2(γ0, c).

Remark 3.3 If the mean µ in model (15) is known (and assumed to be 0) and X0 = 0, then

model (15) reduces to model (3) with X0 = 0. In this case, by letting b = 0 and X0 = 0, we

get:

T (κ̂− κ) d→ −
∫ 1
0 Jc(r)dW (r)−

∫ 1
0 dW (r)

∫ 1
0 Jc(r)dr∫ 1

0 J2
c (r)dr −

(∫ 1
0 Jc(r)dr

)2 .

This asymptotic distribution coincides with that in Phillips (1987b).

Remark 3.4 If κ → 0 (so c → 0) and X0 = 0, there is a unit root in the model in the limit.

The numerator in (19) becomes

lim
c→0

b

c

∫ 1

0
c1dW (r) +

∫ 1

0
Jc(r)dW (r)−

∫ 1

0
dW (r)

(
c2b+

∫ 1

0
Jc(r)dr

)
= b

∫ 1

0

(
r − 1

2

)
dW (r) +

∫ 1

0
W (r)dW (r)−

∫ 1

0
dW (r)

∫ 1

0
W (r)dr,

and the denominator becomes

lim
c→0

c3b
2 +

2b

c

∫ 1

0
c1Jc(r)dr−

(
c2b+

∫ 1

0
Jc(r)dr

)
2 +

∫ 1

0
J2
c (r)dr

=
b2

12
+ 2b

∫ 1

0

(
r − 1

2

)
W (r)dr +

∫ 1

0
W 2(r)dr −

(∫ 1

0
W (r)dr

)
2.

Hence, the in-fill asymptotic distribution of ϕ̂n in this case is (see Appendix)

n(ϕ̂n − ϕ) d→
b
∫ 1
0

(
r − 1

2

)
dW (r) +

∫ 1
0 W (r)dW (r)−

∫ 1
0 dW (r)

∫ 1
0 W (r)dr

b2

12 + 2b
∫ 1
0

(
r − 1

2

)
W (r)dr +

∫ 1
0 W 2(r)dr −

(∫ 1
0 W (r)dr

)
2
.

This distribution is the same as that obtained in Haldrup and Hylleberg (1995). Haldrup and

Hylleberg considered the asymptotic distribution of the LS estimator for a random walk with a

drift. Obviously, the results of Haldrup and Hylleberg is a special case of ours. We must note

that c = 0 means b = 0, but here we keep b in the distribution for the purpose of comparison.
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Remark 3.5 If the initial value X0 is set to zero, we get the asymptotic distribution of κ:

T (κ̂− κ) d→ −
b
c

∫ 1
0 c1Jc(r)dr +

∫ 1
0 Jc(r)dW (r)−

∫ 1
0 dW (r)

(
c2b+

∫ 1
0 Jc(r)dr

)
c3b2 +

2b
c

∫ 1
0 c1Jc(r)dr +

∫ 1
0 J2

c (r)dr −
(
c2b+

∫ 1
0 Jc(r)dr

)2 . (20)

Remark 3.6 We have obtained the double asymptotic distribution of κ̂ in (18) as a limit case

of the long-span asymptotic distribution in (17). The double asymptotic distribution can be

also obtained as the limit of the in-fill asymptotic distribution (19). To see it, let the time span

T → ∞, i,e. c → −∞, and we have (−2c)
∫ 1
0 J2

c (r)dr
p→ 1, (−2c)1/2

∫ 1
0 Jc(r)dW (r) d→ N(0, 1),

(−2c)3/2
∫ 1
0 ercJc(r)dr

d→ N(0, 1) and (−2c)1/2
∫ 1
0 ercdW (r) d→ N(0, 1). Therefore, the limit of

the numerator is

b

c

∫ 1

0
c1dW (r) +

∫ 1

0
Jc(r)dW (r)+γ0

∫ 1

0
ercdW (r)−

∫ 1

0
dW (r)

(
c2b+

∫ 1

0
Jc(r)dr+c4γ0

)
∼ b

c
(−2c)−1/2N(0, 1)− b

c

(
1 +

ec − c− 1

c

)
N(0, 1) + (−2c)−1/2N(0, 1)− (−c)−1χ2(1)

∼ (−2c)−1/2N(0, 1) + op(c
−1/2),

and the limit of the denominator is

c3b
2 +

2b

c
c1Jc(r)dr +

∫ 1

0
J2
c (r)dr + c24bν + 2γ0

∫ 1

0
ercJc(r)dr+γ20

e2c − 1

2c

−
(
c2b+

∫ 1

0
Jc(r)dr+c4γ0

)2

∼ b2

c2
+

2b

c
(−2c)−3/2N(0, 1)− 2b

c
(−c)−1N(0, 1)−

(
−b

c
+ (−c)−1N(0, 1)

)2

+ (−2c)−1

= (−2c)−1 + op(c
−1).

Consequently,

T (κ̂− κ) ∼ −(−2c)−1/2N(0, 1) + op(c
−1/2)

(−2c)−1 + op(c−1)
,

and
√
T (κ̂− κ) d→ N(0, 2κ). (21)
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4 General One-factor Model

The model considered in this section has the following expression:

dX(t) = κ(µ−X(t))dt+ σ(X(t))dW (t), X(0) = X0. (22)

Obviously, the standard Lipschitz condition is needed for σ(X(t)) to ensure that the solution to

this SDE exists and is unique. Moreover, we need X(t) to be a positive recurrent and strictly

stationary time-reversible process which satisfies strong mixing properties. In particular, fol-

lowing Genon-Catalot, et al (2000), we make the following standard assumptions.

Assumption 1: The function σ(X(t)) is defined on (0,+∞) and satisfies

σ2(x) ∈ C2 and 0 < σ(x) < +∞, ∀x ∈ (0,+∞),

and

∃K > 0, ∀x ∈ (0,+∞), |σ2(x)| ≤ K(1 + x2).

For u0 ∈ (0,+∞), denote the scale and the speed densities of X(t), respectively, by,

s(x) = exp

{
−2

∫ x

u0

κ(µ− u)

σ2(u)
du

}
and m(x) =

1

σ2(x)s(x)
.

Assumption 2:
∫∞
0 s(x)dx = +∞,

∫∞
0 m(x)dx = M < +∞.

Define the stationary probability density by

π(x) =
1

M
m(x)I[x∈(0,+∞)],

where I[·] is the indicator function.

Assumption 3: As x → 0 or x → +∞, limσ(x)m(x) = 0.

Assumption 4: Define γ(x) = σ′(x) − 2κ(µ − x)/σ(x). If x → 0 or x → +∞, lim 1/γ(x) =

γ̃0 < ∞ .

Assumption 5: E(|X(t)|p) < ∞ for some p > 2.

Remark 4.1 Assumption 1 is the global Lipschitz and growth condition. It is typically used in

the literature to ensure the existence and uniqueness of a strong solution to SDE (22). Together

with Assumption 2, it guarantees the positive recurrence (Genon-Catalot et al, 2000). However,

the global Lipschitz may be replaced by the local Lipschitz and growth condition in the one-factor

model, as explained in Aı̈t-Sahalia (2002).
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Remark 4.2 The ρ-mixing property is ensured by Assumptions 3-4 as shown in Genon-Catalot

et al (2000) where the mixing rate is also provided; see Appendix.

Remark 4.3 Assumption 5 is not as primitive as other assumptions. However, it has been

widely used in the literature; see, for example, Yoshida (1992) and Phillips and Yu (2009b).

We now develop the in-fill asymptotic distribution of the LS estimator of κ. First, note

that the exact discrete time model of (22) is given by

Xtδ = µ(1− e−κδ) + ϕX(t−1)δ +

∫ δ

0
e−κ(δ−τ)σ(X(t−1)δ+τ )dW (τ). (23)

Define Ytδ = Xtδ/
√
δ and we can rewrite (23) as

Ytδ = µ(1− e−κδ)/
√
δ + ϕY(t−1)δ +

1√
δ

∫ δ

0
e−κ(δ−τ)σ(

√
δY(t−1)δ+τ )dW (τ).

Letting

uth =
1√
δ

∫ δ

0
e−κ(δ−τ)σ(

√
δY(t−1)δ+τ )dW (τ)

=
e−κδ

√
δ

∫ δ

0
e−κτσ(

√
δY(t−1)δ+τ )dW (τ) :=

e−κδ

√
δ
vth,

we have

Yth = µ(1− e−κδ)/
√
δ + ϕY(t−1)h + uth. (24)

Note that, in general, uth is conditionally heteroskedastic. The LS estimator of ϕ is

ϕ̂n =

∑
(Y(t−1)h − Y −)(Yth − Y )∑

(Y(t−1)h − Y −)2

where Y − = 1
n

∑
Y(t−1)h and Y = 1

n

∑
Yth. The LS estimator of κ is κ̂ = − ln(ϕ̂n)/δ. Theorem

4.1 establishes the in-fill asymptotic theory of κ̂ under Scheme (A3).

Theorem 4.1 For Model (22), under Scheme (A3) and Assumptions 1-5, the in-fill asymptotic

distribution of κ̂ is

T (κ̂− κ) d→ −A3(γ
′
0, c)

B3(γ′0, c)
. (25)
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where

A3(γ
′
0, c) =

b′

c

∫ 1

0
c1dW (r)+

∫ 1

0
Jc(r)dW (r)+γ′0

∫ 1

0
ercdW (r)−

∫ 1

0
dW (r)

(
c2b

′ +

∫ 1

0
Jc(r)dr+c4γ

′
0

)
,

B3(γ
′
0, c) = c23b

′2 +
2b′

c

∫ 1

0
c1J(r)dr +

∫ 1

0
J2
c (r)dr + c24b

′γ′0 + 2γ′0

∫ 1

0
ercJc(r)dr

+γ′20
e2c − 1

2c
−
(
c2b

′ +

∫ 1

0
Jc(r)dr+c4γ

′
0

)2

,

and c = −κT , c1 = erc−1, c2 =
ec−c−1

c2
, c3 =

e2c−4ec+2c+3
2c3

, c4 =
ec−1
c , σ̃2 = limn→∞E(n−1

∑
u2t ),

b′ = µκ
√
T/σ̃, γ′0 = X0/(σ̃

√
T ), Jc(r) =

∫ r
0 ec(r−s)dW (s).

Remark 4.4 In the Vasicek model, since σ(X(t)) = σ, σ̃ = σ and the result in Theorem 4.1

reduces to that in Theorem 3.1.

Remark 4.5 Using the standard limit theory of martingale difference sequence, under Scheme

(A1), we get
√
n(ϕ̂n − ϕ) d→ N

(
0,

(1− ϕ2)2

σ̃4
σ̄2

)
where σ̄2 = limn→∞E(n−1

∑
Y

2
t−1u

2
t ). By the Delta method, we can easily get

√
T (κ̂− κ) d→ N

(
0,

(eκδ − e−κδ)2

δ

σ̄2

σ̃4

)
. (26)

Remark 4.6 Using the same argument as for the Vasicek model, we get the double asymptotics

for the one-factor model under Scheme (A2):

√
T (κ̂− κ) d→ N(0, 2κ). (27)

Interestingly, this is the same as that under the homoskedastic model. Under the CIR model,

Tang and Chen (2009, Theorem 3.2.4) obtained the same doubt asymptotic distribution of a

quasi ML estimator.

Remark 4.7 If the initial value X0 = 0, then the distribution (25) reduces to

T (κ̂− κ) d→ −
b′

c

∫ 1
0 c1dW (r) +

∫ 1
0 Jc(r)dW (r)−

∫ 1
0 dW (r)

(
c2b

′ +
∫ 1
0 Jc(r)dr

)
c23b

′2 + 2b′

c

∫ 1
0 c1J(r)dr +

∫ 1
0 J2

c (r)dr −
(
c2b′ +

∫ 1
0 Jc(r)dr

)2 .
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5 Monte Carlo Simulations

Perron (1991) obtained the MGF of −A1(γ0, c)/B1(γ0, c) in Equation (12) and used it to

tabulate the distribution and the density function. Unfortunately, the in-fill asymptotic dis-

tributions in (19) and (25) do not have a closed-form expression for the MGF, nor for the

density. In the present paper, we use the method proposed by Chan (1988) to obtain the

density of the limiting distributions. As suggested by Chan, the in-fill asymptotic distributions

expressed in (19) and (25) may be approximated by Riemann sums and dW (r) by ϵi/
√
n,

where {ϵi} is a sequence of the standard normal random variables and n the sample size.

Consequently, the limiting distribution
∫ 1
0 Jc(r)dW (r)/

∫ 1
0 J2

c (r)dr may be approximated by

n
(∑n

i=1

∑i
k=1 e

c(i−k)/nϵkϵi+1

)
/
(∑n

i=1(
∑i

k=1 e
c(i−k)/nϵk)

2
)
. Chan compared several approx-

imation methods and concluded that the above approximation performs better in the sense

that it generate smaller approximation errors, converges faster and is easy to implement.

We design several Monte Carlo experiments to compare the accuracy of the alternative

asymptotic distributions of κ̂ to the true distribution, all in the context of the following Vasicek

model with µ being a unknown parameter:

dX(t) = κ(µ−X(t))dt+ σdW (t), X(0) = X0.

The true value of κ is set at 0.01, 0.1 and 1, respectively. The first two values are empirically

realistic for interest rate data while the last value is empirically realistic for volatility. The true

value of µ is set to 0.1, σ to 0.1 and X0 = 0 or X0 ∼ N(µ, σ2/2κ). The value of the sampling

interval δ is set at 1/12, 1/52 and 1/252. The time span T is set at 10, so the sample size is

120, 520 and 2520 for monthly, weekly and daily frequencies, respectively.

The percentiles of the statistic T (κ̂−κ) and the in-fill asymptotic distribution are obtained

from 10,000 replications. The Monte Carlo simulation results are reported in Tables 1-6 where

the 0.5%, 1%, 5%, 10%, 90%, 95%, 99%, and 99.5% quantiles of the four distributions (i.e.,

the true distribution, the asymptotic distributions developed under Schemes (A1), (A2) and

(A3)), for κ = 0.01, 0.1, 1, respectively. Tables 1-3 report the results when X0 = 0 and Tables

4-6 report the results when X0 ∼ N(µ, σ2/2κ).

Several features are apparent in the Tables. First, in all cases, the percentiles are not

sensitive to the frequency. This observation suggests that the precision of the estimation and
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the power of a unit root test cannot be increased by using data in a higher frequency but with

a fixed time span, even though the sample size increases in this case. On the other hand, the

percentiles are sensitive to the value of κ and to the initial condition. The smaller the value of

κ, the more sensitive the percentiles to the initial condition. This feature is related to the role

that the initial condition plays in the unit root tests; see, for example, Phillips (1987), Müller

and Elliott (2003), and Harvey et al (2009).

Second, normality always provides inaccurate approximations of the finite sample distribu-

tion, suggesting that when κ is in the range, (A1) and (A2) should not be used in practice as far

as statistical inference of κ is concerned. The percentiles from the limiting distribution under

Schemes (A1) and (A2) are very different from those obtained from the true distribution, even

when κ = 1. It is obvious that the true distribution of κ̂ is highly skewed to the right. The

long-span asymptotic distribution and the doubt asymptotic distribution perform particularly

poorly in the right tail. Interestingly, in all cases, the percentiles of the long-span asymptotic

distribution match well to those of the double asymptotic distribution, even when δ = 1/12,

suggesting that δ → 0 is not a too strong assumption.

Third, the in-fill asymptotic distribution provides much more adequate approximations to

the finite sample distribution. The smaller the δ is, the better the performance of the in-fill

distribution, consistent with our expectation.

Fourth, in all cases, the median of T (κ̂− κ) is substantially bigger than zero, suggesting a

severe positive bias in κ̂. The bias cannot be reduced by using data in a higher frequency but

with a fixed time span. All these results are consistent with those in Phillips and Yu (2005)

and Tang and Chen (2009). The bias also manifests in the in-fill asymptotic distribution but

not in the long-span and the doubt asymptotic distributions.

Finally, the in-fill asymptotic distribution is less accurate when κ and δ become larger and

hence a root is further away from unity. However, the in-fill asymptotic distribution continues

to perform much better than the long-span and the doubt asymptotic distributions.

6 An Empirical Application

In this section, we apply the alternative asymptotic theory to the Vasicek model based on real

monthly time series data on a short term interest rate series. The data involve the Federal
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funds rate and are available from the H-15 Federal Reserve Statistical Release. It is sampled

monthly and has 432 observations covering the period from July 1954 to June 2002. Since all

yields are expressed in annualized form, we have δ = 1/12 for the monthly data. The same

data were used in Aı̈t-Sahalia (1999).

Table 7 shows the sample sizes, means, standard deviations, first seven autocorrelations,

and Phillips-Perron Z(t) unit root test statistic (with a fitted intercept in the regression) for

the series. The presence of a unit root cannot be rejected at the 10% level. These results,

together with the form of the sample autocorrelogram, suggest that the interest rate is highly

persistent.

Assuming X0 is the same as the first observation, the ML/LS estimates of the three pa-

rameters κ, µ and σ are: κ̂ = 0.2613, µ̂ = 0.0717 and σ̂ = 0.0223. Consequently, we can get the

90% and 95% confidence intervals for κ under the three schemes, which are reported in Table

8. Under Schemes (A1) and (A2), the limit distribution is different when κ > 0 from that

when κ = 0. So two sets of confidence intervals are reported in the two cases. As found in the

Monte Carlo study, the confidence intervals obtained from (A1) and (A2) are nearly identical

since δ = 1/12 is small.

It is well documented in the term structure literature that the short term interest rates

are highly persistent. However, no agreement has reached among economists whether or not

the short term interest rates have a unit root. For example, Aı̈t-Sahalia (1996b) argued that

the short term interest rate is stationary while Stock and Watson (1988) reported evidence

of a unit root in the Federal fund rate. Using the confidence intervals (either 90% or 95%)

constructed under Schemes (A1) and (A2) and κ = κ0 > 0, one would conclude that there is

no unit root in the data. However, the confidence intervals (both 90% and 95%) constructed

under Schemes (A1) and (A2) and κ = 0 suggest that there is a unit root in the data. This

discrepancy is, of course, due to the discontinuity in the asymptotic distributions at unity.

Under Scheme (A3) the confidence interval does not depend on the true value of κ and

hence only one confidence interval is needed. In this case, both the 90% and the 95% con-

fidence intervals contain zero, suggesting that there is a unit root in the data. Interestingly,

the confidence intervals are very similar to those obtained from the unit root asymptotic dis-

tribution. We conclude that it is the asymptotic normality but not the unit root asymptotic

distribution that causes the problem of the disconnected confidence interval. As we showed
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earlier, the asymptotic distribution under Scheme (A3) is more accurate and robust to the

hypothesized value of κ. Consequently, we believe the empirical result based on Scheme (A3)

and hence the unit root hypothesis are more reliable.

7 Conclusion

In this paper, we have developed the asymptotic distributions of the LS estimator of the mean

reversion parameter (κ) in a general class of continuous time models under three schemes,

namely, long-span, in-fill and the combination of long-span and in-fill. While the drift has an

affine structure in our model, nonlinearity is allowed in the diffusion function. The limiting

distributions are quite different under the alternative schemes. In particular, the in-fill limiting

distribution is non-standard and depend on the time span and the initial value. However, it is

applicable to all values of κ, including the unit root case. Consequently, the confidence intervals

obtained from the in-fill limiting distribution are not disconnected. Monte Carlo simulations

suggest that the in-fill asymptotic distribution provides more accurate approximations to the

finite sample distribution than the other two asymptotic distributions in empirically realistic

cases. Empirical applications to U.S. Federal fund rates suggest an importance difference in

statistical inference based on the alternative asymptotic distributions. While the long-span

and the double asymptotic distributions reject the hypothesis of unit root in the model, the

in-fill asymptotic distribution does not reject the hypothesis of unit root in the model.

A more general continuous time model may be specified by the following system of SDEs:

d

(
X(t)
V (t)

)
=

(
κ(µ−X(t))
µV (V (t))

)
dt+

(
σX(X(t), V (t))

σV (V (t))

)
dW (t), (28)

Here X(t) is observed by the econometrician and V (t) helps to determine the volatility of X(t)

that is latent and evolves randomly. This stochastic volatility model has been widely used in

finance to price contingent-claims. It is useful to generalize the in-fill limit theory to cover the

stochastic volatility model. We plan to report the results in future work.
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8 Appendix

8.1 Proof of Theorem 3.1

To prove this theorem, we follow Phillips (1987b), Perron (1991) and Haldrup and Hylleberg

(1995). Define a(δ) = σ
√

(1− e−2κδ)/2κ and Yt = Xt/a(δ). Dividing Equation (16) by a(δ),

we get:

Yt = µ(1− e−κδ)/a(δ) + ϕYt−1 + ϵt. (29)

In Equation (29), the drift has the order of Op(n
−1/2). When n → ∞, we can define the drift

as µ∗ = b/
√
n, where b = µ

√
−cκ/σ.

Expanding (29), we have:

Yt = µ∗ϕ
t − 1

ϕ− 1
+

t∑
j=0

e(t−j)c/nϵj + etc/nY0 + op(n
−1/2)

=
b√
n

etc/n − 1

ec/n − 1
+

t∑
j=0

e(t−j)c/nϵj + etc/nY0 + op(n
−1/2),

where c = −κT , T is the time span, and Y0 = X0/a(δ) is the initial condition. To simplify the

expressions, denote X0/(σ
√
T ) by γ0. Obviously, n−1/2Y0 → γ0 (as n → ∞).

Define the partial sum of ϵt as Zn(r) = n−1/2S[nr] = n−1/2
∑[nr]

t=1 ϵt (0 ≤ r ≤ 1). We have,

as n → ∞,

Zn(r)
d→ W (r).

Before proving Theorem 3.1 we first establish the following lemma.
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Lemma 8.1 If Yt is generated according to (29), then as n → ∞

n−1/2Y[nr]
d→ b(ecr − 1)

c
+ Jc(r) + γ0e

rc, for 0 ≤ r ≤ 1; (a)

n−3/2
n∑

t=1

Yt
d→ ec − c− 1

c2
b+

∫ 1

0
Jc(r)dr+

ec − 1

c
γ0; (b)

n−2
n∑

t=1

Y 2
t

d→ e2c − 4ec + 2c+ 3

2c3
b2 +

2b

c

∫ 1

0
(erc − 1)Jc(r)dr +

∫ 1

0
J2
c (r)dr

+
e2c − 2ec + 1

c2
bγ0 + 2γ0

∫ 1

0
ercJc(r)dr+γ20

e2c − 1

2c
; (c)

n−1
n∑

t=1

Yt−1ϵt
d→ 2b

c

∫ 1

0
(ecr − 1)Jc(r)dr +

∫ 1

0
Jc(r)dW (r)+γ0

∫ 1

0
ercdW (r). (d)

Proof of Lemma 8.1: (a)

n−1/2Y[nr] = n−1/2

 b√
n

e[nr]c/n − 1

ec/n − 1
+

[nr]∑
j=0

e([nr]−j)c/nϵj + e[nr]c/nY0 + op(n
−1/2)


=

b(e[nr]c/n − 1)

n(ec/n − 1)
+ n−1/2

[nr]∑
j=0

e([nr]−j)c/nϵj + n−1/2e[nr]c/nY0 + op(n
−1/2)

d→ b(erc − 1)

c
+ Jc(r) + ercγ0.

(b)

n−3/2
n∑

t=1

Yt =
n−2b

ec/n − 1

(
n∑

t=1

etc/n − n

)
+ n−3/2

n∑
t=1

t∑
j=1

e(t−j)c/nϵj + n−3/2
n∑

t=1

etc/nY0 + op(1)

= n−2 b

ec/n − 1

(
ec(n+1)/n − ec/n

ec/n − 1
− n

)
+ n−1

n∑
t=1

n−1/2
t∑

j=1

e(t−j)c/nϵj

+n−3/2Y0
ec(n+1)/n − ec/n

ec/n − 1
+ op(1)

=
b(ec(n+1)/n − ec/n)

n2(ec/n − 1)2
− b

n(ec/n − 1)
+ n−1

n∑
t=1

Jc

(
t

n

)
+
ec − 1

c
γ0 + op(1)

d→ ec − c− 1

c2
b+

∫ 1

0
Jc(r)dr+

ec − 1

c
γ0.
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(c)

n−2
n∑

t=1

Y 2
t = n−2

n∑
t=1

 b

n1/2

etc/n − 1

ec/n − 1
+

t∑
j=0

e(t−j)c/nϵj + etc/nY0

2

= n−2
n∑

t=1

{ b

n1/2

etc/n − 1

ec/n − 1
+

t∑
j=0

e(t−j)c/nϵj

2

+

2

 b

n1/2

etc/n − 1

ec/n − 1
+

t∑
j=0

e(t−j)c/nϵj

 etc/nY0 + e2tc/nY 2
0

}

= n−2
n∑

t=1

{b2
n

(etc/n − 1)2

(ec/n − 1)2
+

 t∑
j=0

e(t−j)c/nϵj

2

+
2b

n1/2

etc/n − 1

ec/n − 1

t∑
j=0

e(t−j)c/nϵj

+
2b

n1/2

etc/n − 1

ec/n − 1
etc/nY0 + 2etc/nY0

t∑
j=0

e(t−j)c/nϵj + e2tc/nY 2
0

}
.

The first term of the sum is:

1

n2

n∑
t=1

b2

n

(etc/n − 1)2

(ec/n − 1)2
=

b2

n3(ec/n − 1)2

n∑
t=1

(e2ct/n − 2ect/n + 1)

=
b2

n3(ec/n − 1)2

(
e2c/n − e2c(n+1)/n

1− e2c/n
− 2

ec/n − ec(n+1)/n

1− ec/n
+ n

)

= b2

(
e2c/n − e2c(1+1/n)

(ec/n − 1)2n2(1− e2c/n)n
− 2

ec/n − e(1+1/n)c

(ec/n − 1)2n2(1− ec/n)n
+

1

n2(ec/n − 1)2

)

→ e2c − 4ec + 2c+ 3

2c3
b2.

The second term of the sum is:

1

n2

n∑
t=1

 t∑
j=1

e(t−j)c/nϵj

2

=
1

n

n∑
t=1

n−1/2
t∑

j=1

e(t−j)c/nϵj

2

=
1

n

n∑
t=1

J2
c (

t

n
) +Op(n

−1) d→
∫ 1

0
J2
c (r)dr.
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The third term of the sum is:

1

n2

2b

n1/2(ec/n − 1)

n∑
t=1

(
etc/n − 1

) t∑
j=1

e(t−j)c/nϵj

=
2b

n(ec/n − 1)

1

n

n∑
t=1

(
etc/n − 1

) 1√
n

t∑
j=1

e(t−j)c/nϵj

=
2b

n(ec/n − 1)

 1

n

n∑
t=1

etc/n
1√
n

t∑
j=1

e(t−j)c/nϵj −
1

n

1√
n

t∑
j=1

e(t−j)c/nϵj


=

2b

c

(
1

n

n∑
t=1

ect/nJc

(
t

n

)
− 1

n

n∑
t=1

Jc

(
t

n

))
+Op(n

−1)

d→ 2b

c

∫ 1

0
(ecr − 1)Jc(r)dr.

The fourth term of the sum is:

2b

n5/2

n∑
t=1

etc/n − 1

ec/n − 1
etc/nY0 =

2bY0

n5/2(ec/n − 1)

n∑
t=1

(
e2tc/n − etc/n

)
=

2bY0

n(ec/n − 1)

1

n3/2

(
e2c/n − e2c(n+1)/n

1− e2c/n
− ec/n − ec(n+1)/n

1− ec/n

)

=
2bY0

n(ec/n − 1)

1

n1/2

(
e2c − 1

2c
− ec − 1

c

)
→ e2c − 2ec + 1

c2
bγ0.

The fifth term of the sum is:

2n−2
n∑

t=1

etc/nY0

t∑
j=1

e(t−j)c/nϵj

 = 2n−3/2Y0

n∑
t=1

(
etc/nn−1/2

n∑
t=1

e(t−j)c/nϵj

)

= 2n−3/2Y0

n∑
t=1

etc/nJc

(
t

n

)
+Op(n

−3/2)

= 2n−1/2Y0

∫ 1

0
ercJc(r)dr +Op(n

−3/2)

d→ 2γ0

∫ 1

0
ercJc(r)dr.

Obviously, the last term of the sum converges to γ20
e2c−1
2c . Combing the above equations we

can easily get the results of Lemma 1 (c).
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(d) For the sum

n−1
n∑

t=1

Ytϵt+1 = n−1
n∑

t=1

 b√
n

etc/n − 1

ec/n − 1
+

t∑
j=1

e(t−j)c/nϵj + etc/nY0

 ϵt+1

=
1

n

n∑
t=1

b√
n

etc/n − 1

ec/n − 1
ϵt+1 +

1

n

n∑
t=1

ϵt+1

t∑
j=1

e(t−j)c/nϵj +
Y0
n

n∑
t=1

etc/nϵt+1,

the first term is:

1

n

n∑
t=1

b√
n

etc/n − 1

ec/n − 1
ϵt+1 =

b

n(ec/n − 1)

1√
n

n∑
t=1

(etc/n − 1)ϵt+1

=
b

c

n∑
t=1

(etc/n − 1)

∫ (t+1)/n

t/n
dZn(r)

=
b

c

n∑
t=1

∫ (j+1)/n

j/n
(erc − 1)dZn(r) +Op(n

−1)

d→ b

c

∫ 1

0
(erc − 1)dW (r).

It is easy to see that the second term is the same as the first term except for the coefficient,

i.e.,

1

n

n∑
t=1

ϵt+1

t∑
j=1

e(t−j)c/nϵj
d→
∫ 1

0
Jc(r)dW (r).

And the last term is:

Y0
n

n∑
t=1

etc/nϵt+1
d→ Y0√

n

∫ 1

0
ercdW (r) = γ0

∫ 1

0
ercdW (r)

Therefore,

1

n

∑
Ytϵt+1

d→ 2b

c

∫ 1

0
(ecr − 1)Jc(r)dr +

∫ 1

0
Jc(r)dW (r)+ν

∫ 1

0
ercdW (r)

To prove Theorem 3.1, we note that

ϕ̂n =

∑
(Yt−1−Y −)(Yt − Y )∑

(Yt−1 − Y −)2
= ϕ+

∑
(Yt−1 − Y −)ϵt∑
(Yt−1 − Y −)2

.
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Hence,

n(ϕ̂n − ϕ) =
n−1

∑
(Yt−1 − Y −)ϵt

n−2
∑

(Yt−1 − Y −)2
=

n−1
∑

Yt−1ϵt − n−1/2
∑

ϵtn
−3/2

∑
Yt

n−2
∑

Y 2
t−1 − (n−3/2

∑
Yt−1)2

d→

−
b
c

∫ 1

0
c1dW (r) +

∫ 1

0
Jc(r)dW (r)+γ0

∫ 1

0
ercdW (r)−

∫ 1

0
dW (r)

(
c2b+

∫ 1

0
Jc(r)dr+c4γ0

)
c3b2 +

2b
c c1

∫ 1

0
Jc(r)dr +

∫ 1

0
J2
c (r)dr + c24bγ0 + 2γ0

∫ 1

0
ercJc(r)dr+γ2

0
e2c−1
2c −

(
c2b+

∫ 1

0
Jc(r)dr+c4γ0

)2
where c = −κT, c1 = erc−1, c2 =

ec−c−1
c2

, c3 =
e2c−4ec+2c+3

2c3
, c4 =

ec−1
c and Jc(r) =

∫ r
0 ec(r−s)dW (s),

b = µ
√
−cκ/σ, γ0 = X0/σ

√
T . Since κ̂ = − ln (ϕ̂n)/δ, by the generalized Delta method (Theo-

rem 1.12, Shao, 2003), we can get the result of the theorem.

Before we prove Theorem 4.1, we need a lemma. Its proof can be found in Genon-Catalot

et al (2000).

Lemma 8.2 (Genon-Catalot et al, 2000): (1) Under Assumptions 1-4, Xt is time reversible,

and Xt as well as Xtδ, for all δ, are ergodic and β-mixing. (2) Under Assumptions 1-4, Xt

is ρ-mixing if and only if the limits in Assumption 4 are finite. (3) Under Assumptions 1-

4 and assume that the limits in Assumption 4 are finite, there exists a positive λ such that

αX(t) ≤ e−λt/4.

8.2 Proof of Theorem 4.1

For Model (24), we need to show that uth in the following local-to-unity model

Yth = e−κδY(t−1)h + uth, t = 0, h, 2h, · · ·nh(:= T )

satisfies the four conditions imposed by Phillips (1987b, page 537):

(i) E(uth) = 0 for all t;

(ii) suptE|uth|p < ∞ for some p > 2;

(iii) As n → ∞, σ̃2 = limE(n−1S2
n) exists and σ̃2 > 0, where Sth = u1h + ...+ uth;

(iv) ut is strong mixing with mixing coefficients αm that satisfy

∞∑
m=1

α1−2/p
m < ∞.

It is easily to see that (i) is satisfied using conditioning argument. To verify condition (ii),

first note that the exact discrete time model of (22) is given by

Xtδ = µ(1− e−κδ) + ϕX(t−1)δ +

∫ δ

0
e−κ(δ−τ)σ(X(t−1)δ+τ )dW (τ).
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Defining Ytδ = Xtδ/
√
δ and

uth =
1√
δ

∫ δ

0
e−κ(δ−τ)σ(

√
δY(t−1)δ+τ )dW (τ)

=
e−κδ

√
δ

∫ δ

0
e−κτσ(

√
δY(t−1)δ+τ )dW (τ) :=

e−κδ

√
δ
vth,

where vth =
∫ δ
0 e−κτσ(

√
δY(t−1)δ+τ )dW (τ), we get

Yth = µ(1− e−κδ)/
√
δ + ϕY(t−1)h + uth. (30)

Obviously, vth is a martingale. Suppose M is an positive integer, we now introduce M

martingale increments, {ζm}Mm=1, where

ζ1 =

∫ δ/M

0
e−κτσ(

√
δY(t−1)δ+τ )dW (τ), · · · , ζM =

∫ δ

δ(M−1)/M
e−κτσ(

√
δY(t−1)δ+τ )dW (τ).

The quadratic variation of each ζm is given by

ζ2m =

∫ δm/M

δ(m−1)/M
e−2κτσ2(

√
δY(t−1)δ+τ )dτ.

By the Burkholder inequality (Burkholder, 1966), for any α > 1, ∃Cα > 0 such that

(E|vth|)α ≤ Cα

(
E
∣∣ζ21 + · · ·+ ζ2m

∣∣)α/2 = Cα

(
E

∣∣∣∣∫ δ

0
e−2κτσ2(

√
δY(t−1)δ+τ )dτ

∣∣∣∣)α/2

.

Now if we choose α = p, then by Assumption 5 we have:

sup
t

E|uth|p =

(
e−κδ

√
δ

)p

sup
t

(E|vth|)p

≤ Cp

(
e−κδ

√
δ

)p(
E

∣∣∣∣∫ δ

0
e−2κτσ2(

√
δY(t−1)δ+τ )dτ

∣∣∣∣)p/2

≤ C ′
p

(
e−κδ

√
δ

)p(
E

∣∣∣∣∫ δ

0
e−2κτdτ

∣∣∣∣)p/2

= C ′
p

(
1− e−2κδ

2κδ

)p/2

.

This quantity converges to C ′
p as δ → 0 and hence verifies condition (ii).

For condition (iii), since {ut} is α-mixing (strong mixing), by Corollary 5.1 of Hall and

Heyde (1980), we obtain that limn→∞ n−1ES2
n = σ̃2, where 0 < σ̃2 < ∞. We must note that
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σ̃2 cannot be zero due to the fact that ES2
n =

∑n
t=1E(u2t )+2

∑
i>j E(uiuj) =

∑n
t=1E(u2t ) and

E(u2t ) is some certain constant.

For (iv), we note that ut = g(Xt−1), where g(·) is a measurable function. By Theorem

3.49 of White (2001), ut is also α-mixing with αU (t) ≤ e−λt/4 under Assumptions 1-5. Thus,∑∞
m=1 α

1−2/β
m,U ≤

∑∞
m=1 e

−λm(1−2/β)/4 < ∞ for some β > 2 and positive λ.

Define σ̃2 = limn→∞E(n−1S2
n). Under Assumptions 1-5, the partial sum {St} obeys a

central limit theory on the functional space D, i.e, as n → ∞,

Z̃n(r) = n−1/2σ̃−1S[nr]
d→ W (r) (0 ≤ r ≤ 1)

where [nr] denotes the integer part of nr. This result can be found in Phillips (1987a, 1987b).

The remaining part of the proof is the same as in the Vasicek model. To save space, we just

list the main results here. Defining µ′ = b⋆√
n
, b⋆ = µκ

√
T , b′ = b⋆/σ̃ = µκ

√
T/σ̃ and γ′0 =

X0

σ̃
√
T
,

where X0 is the initial value, we get:

Yt = µ(1− e−κδ)/
√
δ + e−κδYt−1 + ut

= µ′ϕ
t − 1

ϕ− 1
+

t∑
j=0

e(t−j)c/nuj + etc/nY0 + op(n
−1/2)

=
b⋆√
n

etc/n − 1

ec/n − 1
+

t∑
j=0

e(t−j)c/nuj + etc/nY0 + op(n
−1/2)

The following lemma is important to prove Theorem (4.1):

Lemma 8.3 If Yt is generated according to (24), then as n → ∞

n−1/2σ̃−1Y[nr]
d→ b′(ecr − 1)

c
+ Jc(r) + γ′0e

rc for 0 ≤ r ≤ 1; (a′)

n−3/2σ̃−1
n∑

t=1

Yt
d→ ec − c− 1

c2
b′ +

∫ 1

0
Jc(r)dr+

ec − 1

c
γ′0; (b′)

n−2σ̃−2
n∑

t=1

Y 2
t

d→ e2c − 4ec + 2c+ 3

2c3
b′2 +

2b′

c

∫ 1

0
(erc − 1)Jc(r)dr +

∫ 1

0
J2
c (r)dr

+
e2c − 2ec + 1

c2
b′γ′0 + 2γ′0

∫ 1

0
ercJc(r)dr+γ′20

e2c − 1

2c
; (c′)

n−1σ̃−2
n∑

t=1

Yt−1ut
d→ 2b′

c

∫ 1

0
(ecr − 1)Jc(r)dr +

∫ 1

0
Jc(r)dW (r)+γ′0

∫ 1

0
ercdW (r). (d′)
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The proof of Lemma 8.3 is the same as that of Lemma 8.1. By using the results in Lemma

8.2, one can get easily get the results of Theorem 4.1. The proof is omitted.
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Table 7. Summary statistics and unit root tests for monthly Federal fund rates

Number of Observations 432

Mean 0.0698

Standard Deviation 0.0319

Autocorrelation ρ1 0.977
Autocorrelation ρ2 0.939
Autocorrelation ρ3 0.901
Autocorrelation ρ4 0.868
Autocorrelation ρ5 0.841
Autocorrelation ρ6 0.817
Autocorrelation ρ7 0.797

Z(t) test -2.53
10% critical value -2.57
P value 0.1081

Table 8. Estimate of κ, and 90% and 95% confidence intervals

(A1) (A2) (A3)

κ > 0 κ = 0 κ > 0 κ = 0

90% CI (0.0609, 0.4616) (-0.1277, 0.2576) (0.0631, 0.4594) (-0.1277, 0.2576) (-0.1579 0.3551)

95% CI (0.0225, 0.4999) (-0.2054, 0.2729) (0.0251, 0.4973) (-0.2054, 0.2729) (-0.2430, 0.3795)

37


	Asymptotic Distributions of the Least Squares Estimator for Diffusion Processes
	Citation

	tmp.1288584724.pdf.2Ci6V

