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Abstract

This paper studies the uniform convergence rate of the turncated SNP (semi-nonparametric) density
estimator. Using the uniform convergence rate result we obtain, we propose a test statistic testing the
equivalence of two unknown densities where two densities are estimated using the SNP estimator and
supports of densities are possibly unbounded.

Keywords: SNP Density Estimator, Uniform Convergence Rate, Comparison of Two Densities
JEL Classi�cation: C12 C14 C16

1 Introduction

Gallant and Nychka (1987) introduce the semi-nonparametric (SNP) maximum likelihood estimation and
establish its consistency. The SNP estimation is a convenient method that simultaneously estimates the
parameters of a nonlinear model and the nonparametric density of a latent process by the quasi-maximum
likelihood. Partly motivated by its computational convenience and its wide applicability compared to other
nonparametric estimation, the SNP estimator has been popularly used although its convergence rate and
the asymptotic distributional theory of this estimator are not known well. The distributional theory of the
SNP is less of interest because the representation of the SNP estimator is parametric at any instance since
it is a truncation estimator. Also it is noted that ignoring the truncation and treating the SNP estimator as
fully parametric often provides reasonably accurate tests and con�dence intervals (see Eastwood and Gallant
(1991) and Fan, Zhang, and Zhang (2001)). Thus, the determination of a desirable truncation point has
been more challenging (see Coppejans and Gallant (2002)).
However, with exceptions of Fenton and Gallant (1996a, b) that establish the L1 convergence rate and

Coppejans and Gallant (2002) that derive the convergence rate under the Hellinger metric, the convergence

�I would like to thank a co-editor and two anonymous referees for their correcting my errors and valuable suggestions,
which much improved this paper. This paper was written during my doctoral study in UCLA. I am truly grateful to my
advisor, Jinyong Hahn for his advice and encouragement throughout my life in UCLA. Correspondence: Kyoo il Kim, School of
Economics and Social Sciences, Singapore Management University, 90 Stamford Road, Singapore 178903, Tel: +65 6828�0876,
Fax: +65 6828-0833, E-mail: kyookim@smu.edu.sg.
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rate of the SNP density estimator has not been studied well. We often �nd that in deriving the asymptotic
distribution of test statistics related with estimated densities, a convergence rate result in a stronger norm
such as a uniform rate is often required. This paper establishes the uniform convergence rate of the SNP
density estimator with a truncated compact support.
A referee of this paper points out that our proposed estimator does not achieve the optimal convergence

rate obtained by Stone (1990) for log-spline models. However, we note that our approach with truncated
Hermite series is still useful for several reasons. First, it makes easy to test the departure from the normality
by construction. The insigni�cance of additional terms other than the �rst term in the series will suggest
the normality (truncated normal). On the contrary, such test may require additional semiparametric testing
procedure for the log-spline models. Second, our estimator is computationally easier than the Stone (1990)�s
estimator. For example, c(�) in Stone (1990) is hard to evaluate analytically for log-spline models based
on quadratic and higher-order splines. Third, the proposed SNP density estimator can handle the case of
unknown support or unbounded support by estimating the truncated version of such densities. Fourth, the
approach proposed in this paper can extend to the case of data dependent support (for example, setting a
support from the minimum value of observations to the maximum value of observations). Fifth, as noted
above, some studies suggest that treating the SNP estimator as fully parametric ones (ignoring the truncation
of the series) can still provide reasonably accurate inferences. Sixth, the SNP estimation is a convenient
method that allows simultaneous estimations of the parameters of a nonlinear model and the nonparametric
density as proposed in Gallant and Nychka (1987). Lastly, comparing two densities based on two SNP
density estimators is feasible as illustrated in Section 3 of this paper.
Comparison of two densities has been considered in many studies since it can be used for comparing two

samples or testing the independence assumption. However, in most of cases, only kernel density estimators are
considered since the popular U-statistics approach is available for kernel estimators (see Bickel and Rosenblatt
(1973), Rosenblatt (1975), Hall (1984), Robinson (1991), Li (1996), and Hong and White (2000)). This paper
illustrates that the testing for similarity of two densities can be also implemented using the SNP density
estimators. From the advantages of the SNP density estimator over the kernel estimator documented in
literature (see Fenton and Gallant (1996b) for example), it is expected that this alternative testing procedure
can entertain those advantages.
The organization of this paper is as follows. Section 2 establishes the convergence rate of the SNP

estimator. A test statistic testing the similarity of two unknown densities using the SNP estimators is
proposed in Section 3. Concluding Remarks follow in Section 4. Some technical details are presented in
Appendix.

2 SNP Density Estimator with Truncated Support

We focus on the univariate case to simplify the notation since our objective here is to illustrate how we
can obtain the uniform convergence rate, though the SNP estimation can be used for the multivariate
densities. Extension to the multivariate case is not di¢ cult. Now let a univariate random variable X follows
a distribution with its density function f0(X). Hereafter the upper case X denotes a random variable and
the lower case x denotes its realization. Then the SNP estimator of f0(X) for an i.i.d sample fxigni=1 is

2



de�ned as the quasi-maximum likelihood estimator of

bfSNP = argmax
f2Fn;�;�>0

1

n

nX
i=1

ln

�
1

�
f

�
xi � �
�

��
(1)

where

Fn =

8><>:f : f(x; �) =
0@K(n)X

j=1

�jx
j�1

1A2

e�x
2=2 + �0�(x); � 2 �n

9>=>; ;
where �n =

n
� = (�1; : : : ; �K(n)) :

R1
�1 fn(x; �)dx = 1

o
, K(n) ! 1 as n ! 1 but K(n)

n ! 0, �0 is a small

positive number, and �(�) denotes the standard normal density. It is worthwhile to note some structural
aspects of the SNP density estimator. First, the leading term of the SNP expansion is the normal density
with the weight function e�x

2=2. This enables us to test the normality of the true density by testing
whether K(n) = 1 against a general alternative K(n) > 1. Other weight functions as well as corresponding
alternatives of the term �0�(x) considered in Gallant and Nychka (1987) can generate di¤erent leading terms,
although no applications has been found outside the normal case. Second, the term �0�(x) serves as a lower
bound of the density that insures

R1
�1 (ln f) f0dx exists for any f in Fn and prevents ln f from going out of

range in optimizations. Lastly, the SNP estimator is positive and invariant to location and scale.
It is convenient to rewrite the class Fn in terms of Hermite polynomials:

Fn =

8><>:f : f(x; �) =
0@K(n)X

j=1

#jHj(x)

1A2

+ �0�(x); � 2 �n

9>=>; ; (2)

where �n =
n
� = (#1; : : : ; #K(n)) :

PK(n)
j=1 #2j + �0 = 1

o
, fHj(t)g are de�ned recursively as

H1(t) = (
p
2�)�1=2e�t

2=4;H2(t) = (
p
2�)�1=2te�t

2=4; (3)

Hj(t) = [tHj�1(t)�
p
j � 1Hj�2(t)]=

p
j; for j � 3:

These Hermite polynomials are orthonormal
R1
�1H

2
j (z)dx = 1,

R1
�1Hj(z)Hk(z)dx = 0; j 6= k and bounded

jHj j < eH = 0:6862127 (see Abramowitz and Stegun (1972, Chapter 22)). Under the following assumption
that requires f0 has exponential tails:

Assumption 2.1 (Fenton and Gallant (1996a)) (i) The observed data fxig are a random sample from
the continuous density f0. For some � � 0, f0 can be written as f0(x) = h2f0(x)e

�x2=2 + �0�(x) whereR1
�1

h
dj

dxj hf0(x)
i2
e�x

2=2dx < 1, for j = 0; 1; : : : ; �. (ii) For every a1 > 0 and a0 in (�1;1) there exists

b0 and b1 > 0 such that Pr
�
x2 > a0 + a1B

�
� b0e�b1

p
B,

Fenton and Gallant (1996a) establishes the L1 convergence of the SNP estimator asZ 1

�1

��� bfSNP (x)� f0(x)��� dx = os �n�1=2+�=2+��+ o �n���� a.s.
where the SNP is truncated at K(n) = O (n�) ; � > 0 and � is arbitrary small positive constant. Similarly
the convergence rate under the Hellinger metric is derived in Coppejans and Gallant (2002) with K(n) =
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n(1��)=(�+1) for given � 2 (0; 1),

dH( bfSNP ; f0) � �Z 1

�1

� bf1=2SNP (x)� f
1=2
0 (x)

�2
dx

�1=2
= n��(1��)=(2�+2) a.s.

where dH(�; �) denotes the Hellinger distance under Assumption 2.1 (i) and restricting f0 to have a largest
mode and to satisfy the tail condition lim

K!1
sup

�1<x<1

h2f0
(x)+(

PK
j=1 #jHj(x))

2

(
PK

j=1 #jHj(x))
2
+�0=

p
2�
� C for some C <1.

Di¤erently from the previous literature of the SNP estimation, in this paper we restrict the support of
a density to be truncated as a compact subset X of R. One can interpret our estimator as a truncated
distribution version of the SNP density estimator. Noting the boundary problem of a nonparametric density
estimation, our approach can be accepted as a valid one in the sense that we focus on an estimator that
shows a good performance on the support of interest. One could work on the range of a compact support
that increases as the sample size gets larger but this requires additional technicalities that are beyond the
scope of this paper. In any case the SNP estimation under the compact support may be of interest by itself.
Interestingly, we �nd that there exists a one-to-one mapping between the coe¢ cients of the SNP density
estimator with unbounded support and the coe¢ cients of the SNP density estimator with a truncated
support, which we propose as follows (see Appendix A).
Now let 1A be the indicator function of the set A and consider the class Fn in terms of truncated Hermite

polynomials de�ned on X such that

Fn =

8><>:f : f(x; �) =
0@K(n)X

j=1

#jwjK(x)

1A2

+ �0
�(x)1X (x)R
X �(x)dx

; � 2 �n

9>=>; ; (4)

where �n =
n
� = (#1; : : : ; #K(n)) :

PK(n)
j=1 #2j + �0 = 1

o
and a triangular array fwjK(x)g are de�ned below.

First we de�ne wjK(x) =
Hj(x)1X (x)pR

X H2
j (x)dx

that is bounded by

sup
x2X ;j�K

jwjK(x)j �
1q

min
j�K

R
X H

2
j (x)dx

sup
x2X

jHj(x)j < C eH
for some constant C <1, since

R
X H

2
j (x)dx is bounded away from zero for all j and jHj(x)j < eH uniformly

over x and j. Denoting W
K
(x) = (w1K(x); : : : ; wKK(x))

0, further de�ne QW =
R
X W

K
(x)W

K
(x)0dx and

its symmetric matrix square root as Q�1=2
W

. Now let

WK(x) � (w1K(x); : : : ; wKK(x))0 � Q�1=2W
W

K
(x) (5)

then by construction, we have
R
X W

K(x)WK(x)0 = IK . Then these truncated and transformed Hermite
polynomials are orthonormal

R
X w

2
jK(x)dx = 1;

R
X wjK(x)wkK(x)dx = 0; j 6= k from which the conditionPK(n)

j=1 #2j + �0 = 1 follows since for any f in Fn, we have
R
X fdx = 1. Now de�ne �(K) = supx2X



WK(x)




using a matrix norm kAk =
p
tr(A0A) for a matrix A, which is the Euclidian norm for a vector. Then, we can

obtain �(K) = O(
p
K) as shown in Lemma B.1. If the range of X is su¢ ciently large, then

R
X H

2
j (x)dx � 1

and QW � IK and hence wjK � Hj which implies immediately

sup
x2X



WK(x)


 � sup

x2X

vuut KX
j=1

H2
j �

p
K eH2 = O

�p
K
�
:
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For brevity, we set (�; �) = (0; 1) without loss of generality (wlog) hereafter noting the SNP estimator is
invariant to location and scale. The SNP density estimator with the compact support is obtained by solving

bf = argmax
f2Fn

1

n

nX
i=1

ln f (xi) ; f 2 Fn (6)

or equivalently bf = f(x;b�K), b�K = argmax
�2�n

1

n

nX
i=1

ln f (xi; �)

for f 2 Fn de�ned in (4)1 . Note this truncated version of the SNP density estimator is positive and invariant
to location and scale. The term �0�(x)1X (x)=

R
X �(x)dx helps ln f not to go out of range in optimizations so

that the excess in�uence of one or several summands when f(�) are arbitrary small is avoided. Interestingly,
we �nd there exists a one-to-one relationship between elements of Fn and Fn (see Appendix A). In this
sense, we interpret our version of the SNP estimator as a truncated version of the original SNP estimator
(with unbounded support) developed by Gallant and his co-authors.

2.1 Uniform Convergence Rate

To derive the uniform convergence rate, we impose

Assumption 2.2 (i) The observed data fxig are an i.i.d. sample from the continuous density f0, (ii) f0(x)
is s-times continuously di¤erentiable with s � 3, (iii) uniformly bounded from above and bounded away from
zero on its compact support X , (iv) f0(x) has the form of f0(x) = h2f0(x)e

�x2=2 + �0
�(x)1X (x)R
X �(x)dx

for arbitrary
small positive number �0.

Note that di¤erently from Fenton and Gallant (1996a) and Coppejans and Gallant (2002), we do not
require a tail condition since we impose the compact support condition. Under Assumption 2.2, we obtain

Theorem 2.1 Suppose Assumption 2.2 holds and �(K)2K
n ! 0. Then, for K = O (n�) with � < 1

3 , we have

sup
x2X

��� bf(x)� f0(x)��� = O ��(K)2� op �n�1=2+�=2+��+O ��(K)2K�s=2
�

(7)

for arbitrary small positive constant �.

Compared to the L1 convergence rate derived by Fenton and Gallant (1996a), Theorem 2.1 shows that
the uniform convergence rate is slower than the L1 rate since it requires uniformity over the support of X.
The derived uniform convergence rate depends on the choice of sieve. For example, if someone uses the
power series sieve rather than the Hermite polynomials (truncated and transformed as in (5)), he/she will
achieve a slower convergence rate since �(K) = O(K) for the power series sieve compared to �(K) = O(

p
K)

for the Hermite polynomials. When we choose K such that two terms in (7) are balanced, which is achieved

when � = 1=(1 + s), the convergence rate will be n�(s�2)=2(1+s) noting op
�
n�1=2+�=2+�

�
= Op

�q
K
n

�
e¤ectively. Thus, our rate cannot attain Stone�s (1982) bound on the best obtainable rate, which equals to�
n�1 lnn

�s=(1+2s)
. In the next section, we derive Theorem 2.1.

1To implement this estimation, in practice one needs to pick the optimal length of series according to some criteria, since
the approximation precision depends on the choice of smoothing parameter K. One could use the Coppejans and Gallant
(2002)�s method, which is a cross-validation strategy based on the integrated squared error (ISE). Leave-one-out or Leave-one
partition-out (so called hold-out-sample cross-validation ) method can be adopted depending on the size and property of data.
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2.2 Derivation of the Convergence Rate

Though we have a particular sieve in mind for the SNP estimator, we derive the convergence rate result for
a general sieve that satis�es some conditions. First note, according to Theorem 8, p.90, in Lorentz (1986),
we can approximate a v-times continuously di¤erentiable function h such that there exists a K-vector 
K
that satis�es

sup
z2Z

��h(z)�RK(z)0
K�� = O(K� v
dim(z) ) (8)

where Z is the compact support of h and RK(z) is a triangular array of polynomials. Now let f0(x) =
h2f0(x)e

�x2=2 + �0
�(x)R

X �(x)dx
and assume hf0(x) (and hence f0(x)) is s-times continuously di¤erentiable on X .

Denote a K-vector �K = (#1K ; : : : ; #KK)
0. Then, there exists a �K such that

sup
x2X

���hf0(x)� ex2=4WK(x)0�K

��� = O(K�s) (9)

by (8) noting hf0(x) is s-times continuously di¤erentiable over X , X is compact, and
n
ex

2=4wjK(x)
o
are

linear combinations of power series. (9) implies that

sup
x2X

���hf0(x)e�x2=4 �WK(x)0�K

��� � sup
x2X

e�x
2=4 sup

x2X

���hf0(x)� ex2=4WK(x)0�K

��� = O(K�s) (10)

since sup
x2R

e�x
2=4 � 1. From this result, now it is shown below that supx2X jf0(x)� f(x; �K)j = O (�(K)K�s).

First, note (10) implies

WK(x)0�K �O(K�s) � hf0(x)e�x
2=4 �WK(x)0�K +O(K

�s)

from which it follows that�
WK(x)0�K �O(K�s)

�2 � �WK(x)0�K
�2 � h2f0(x)e

�x2=2 �
�
WK(x)0�K

�2
(11)

�
�
WK(x)0�K +O(K

�s)
�2 � �WK(x)0�K

�2
assuming WK(x)0�K is positive and O(K�s) is a positive sequence without loss of generality. Now, note
that

sup
x2X

��WK(x)0�
�� � sup

x2X



WK(x)


 k�k = O (�(K)) (12)

by the Cauchy-Schwarz inequality and from k�k2 < 1 for any � 2 �n by construction. Now applying the
mean value theorem to the upper bound of (11), we have

sup
x2X

����WK(x)0�K +O(K
�s)
�2 � �WK(x)0�K

�2��� = sup
x2X

���2WK(x)0�K +O(K
�s)
�
O(K�s)

��
� sup

x2X

��2WK(x)0�K
��O(K�s) +O(K�2s) = O(�(K)K�s)

where the last result is from (12). Similarly for the lower bound, we have

sup
x2X

����WK(x)0�K �O(K�s)
�2 � �WK(x)0�K

�2��� = O(�(K)K�s).
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From (11), it follows that supx2X
���h2f0(x)e�x2=2 � �WK(x)0�K

�2��� = O(�(K)K�s) and hence

sup
x2X

jf0(x)� f(x; �K)j = O
�
�(K)K�s� . (13)

Now to establish the convergence rate of the SNP estimator, a pseudo true density function is introduced
where the pseudo true density is given by

f�K(x) =
�
WK(x)0��K

�2
+ �0

�(x)R
X �(x)dx

such that
f�K(x) = f(x; �

�
K) and �

�
K = argmax

�
E [ln f (X; �)] for f 2 Fn: (14)

We �rst obtain

Lemma 2.1 Suppose Assumption 2.2 holds. Then for �K in (9) and ��K de�ned in (14), we have k�K � ��Kk =
O
�
K�s=2� and thus

sup
x2X

jf0(x)� f�K(x)j = O
�
�(K)2K�s=2

�
: (15)

Proofs of lemmas and technical derivations are in Appendix. Lemma 2.1 establishes the distance between
the true density and the pseudo true density. Now the stochastic order of




b�K � ��K


 is derived using the
uniform law of large numbers. De�ne bQn(�) = 1

n

Pn
i=1 ln f(xi; �) and Q(�) = E [ln f (x; �)]. Then we have

sup
�2�n

��� bQn(�)�Q(�)��� = op �n�1=2+�=2+�� (16)

for all su¢ ciently small � > 0 from Lemma D.5. For k� � �ok � o(�n), we also have

sup
k���ok�o(�n);�2�n

��� bQn(�)� bQn(�o)� (Q(�)�Q(�o))��� = op ��nn�1=2+�=2+�� (17)

as shown in Lemma D.6. From (16) and (17), it follows that

Lemma 2.2 Suppose Assumption 2.2 holds and �(K)2K
n ! 0. Then for K(n) = O (n�) with � < 1

3 ,


b�K � ��K


 = op �n�1=2+�=2+��
where � is an arbitrary small positive constant.

Thus we obtain

sup
x2X

��� bf(x)� f�K(x)��� = sup
x2X

����WK(x)0(b�K � ��K)��WK(x)0(b�K + ��K)���� (18)

� C1

�
sup
x2X



WK(x)


�2 


b�K � ��K


 = O ��(K)2� op �n�1=2+�=2+��

since k�k2 < 1 for any � 2 �n. Finally, we obtain Theorem 2.1 as

sup
x2X

��� bf(x)� f0(x)��� � sup
x2X

��� bf(x)� f�K(x)���+ sup
x2X

jf�K(x)� f0(x)j (19)

= O
�
�(K)2

�
op

�
n�1=2+�=2+�

�
+O

�
�(K)2K�s=2

�
from (15) and (18).
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3 Comparison of Densities Using a Symmetric Kullback-Leibler
Divergence Measure

Here2 we are interested in testing the equivalence of two densities where these densities are estimated using
two di¤erent samples. Examples include the comparison of income distribution across two regions, groups,
or time. Suppose that we are testing

H0 : f = g (20)

against
HA : f 6= g:

Testing the symmetry of f(x) also �ts into this framework where we put g(x) = f(�x).
A natural measure to compare f(�) and g(�) will be the integrated squared error given by Is(f(z),g(z)) =R

Z(f(z) � g(z))
2dz assuming f and g have the common compact support Z. Under the null we have

Is(f(z),g(z)) = 0. Li (1996) develops a test statistic of this sort when both densities are estimated using a
kernel method. Other possible measures for the distance of two density functions are the Kullback-Leibler
(KL) information distance or the Hellinger metric. The KL measure is entertained in Ullah and Singh
(1989), Robinson (1991), and Hong and White (2000) when they eventually test the a¢ nity of two densities.
Ullah and Singh (1989) and Robinson (1991) are based on a �rst order theory while Hong and White (2000)
improves on these delivering higher power by using a second order theory. Su and White (2003) use a class of
the Hellinger metric when they test for the conditional independence restriction by comparing a joint density
and the product of two marginal densities. The KL measure is de�ned by IKL =

R
Z (ln f(z)� ln g(z)) f(z)dz

or IKL =
R
Z (ln g(z)� ln f(z)) g (z) dz which are equally zero under the null and have positive values under

the alternative as shown in Kullback and Leibler (1951). However, it is noted that the KL information
distance is not a proper distance measure, since it is not symmetric although it still serves as a valid
discrepancy measure. Here we propose a variation of the Kullback-Leibler measure which is symmetric and
nonnegative. We de�ne

I(f; g) =

Z
Z
(ln f(z)� ln g(z)) f(z)dz +

Z
Z
(ln g(z)� ln f(z)) g (z) dz (21)

which has zero value under the null but is strictly positive under the alternative by construction. It is also
symmetric, I(f; g) = I(g; f). The proposed test statistic will be constructed as a sample analogue of (21).
Now suppose that bf and bg are estimated using the samples fxigni=1 and fyigni=1, respectively. The sizes

of two samples do not have to be the same but here we impose the same size for notational convenience. For
these two sets of data, we assume

Assumption 3.1 Suppose fxigni=1 and fyig
n
i=1 are iid, respectively and xi ? yj for all i; j = 1; : : : n. xi

and yi have the density function f and g, respectively, which are continuous and bounded away from zero on
their common compact support Z.

Here we focus on the SNP density estimators, though the result presented here is quite general as in
Robinson (1991). Di¤erent estimators require di¤erent primitive conditions and trimming devices that
ensures the su¢ cient conditions for validity of the test statistic we propose here. We �rst present general
conditions for consistency and asymptotic validity of the test statistic and show these conditions are satis�ed

2 In this section, we do not distinguish a random variable from its realizatoin to make notation simple unless otherwise noted.
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for the SNP density estimator. A set of conditions in the case of the kernel density estimation can be found
in Robinson (1991).

3.1 Test Statistic and Its Asymptotic Property

Here we derive a test statistic based a symmetric KL measure of (21) as

I( bf; bg) =

Z
Z
(ln bf(z)� ln bg(z)) bf(z)dz + Z

Z
(ln bg(z)� ln bf(z))bg(z)dz

=

Z
Z
(ln bf(z)� ln bg(z))d bF (z) + Z

Z
(ln bg(z)� ln bf(z))d bG(z)

where d bF (z) = bf(z)dz and d bG(z) = bg(z)dz. Noting RZ(ln bf(z)�ln bg(z))d bF (z) � 1
n

Pn
i=1

�
ln bf(xi)� ln bg(xi)�

and
R
Z(ln bg(z) � ln bf(z))d bG(z) � 1

n

Pn
i=1

�
ln bg(yi)� ln bf(yi)�, we propose a test statistic3 in the following

form bI( bf; bg) = 1

n� 1
X
i2Nx

�
ln bf(xi)� ln bg(xi+1)�+ 1

n� 1
X
i2Ny

�
ln bg(yi)� ln bf(yi+1)� (22)

where Nx and Ny are subsets of f1; 2; ; : : : ; n� 1g. Nx and Ny trim out those observations of bf(�) �
�f (n) or bg(�) � �g(n) for chosen positive values of �f (n) and �g(n) that tend to zero as n ! 14 . To

be precise, we de�ne Nx =
n
i : 1 � i � n� 1 such that bf(xi) > �f (n) and bg(xi+1) > �g(n)o and Ny =n

i : 1 � i � n� 1 such that bf(yi+1) > �f (n) and bg(yi) > �g(n)o.
However, unfortunately,

p
nbI( bf; bg) will have a degenerate distribution under the null similarly as discussed

in Robinson (1991) and cannot be used as a reasonable statistics. To resolve this problem, we entertain a
modi�cation of (22) in spirit of Robinson (1991) as

bI
( bf; bg) = 1

n
 � 1
X
i2Nx

ci(
)
�
ln bf(xi)� ln bg(xi+1)�+ 1

n
 � 1
X
i2Ny

ci(
)
�
ln bg(yi)� ln bf(yi+1)�

where for a nonnegative constant 
,

ci(
) = 1 + 
 if i is odd

= 1� 
 if i is even

and n
 is de�ned as5

n
 = n+ 
 if n is odd and n
 = n if n is even. (23)

3By construction of the test statistic, the way to name fxigni=1 and fyig
n
i=1 will a¤ect the test statistic since ln bg(xi+1)

is not evaluated at the �rst observation of fxigni=1 and ln bf(xi) is not evaluated at the last observation of fxigni=1. Similarly
ln bf(yi+1) is not evaluated at the �rst observation of fyigni=1 and ln bg(yi) is not evaluated at the last observation of fyigni=1.
However, if the sample size is large enough, then this naming e¤ect will be negligible.

4This trimming is a usual device in an inference procedure for nonparametric estimations. Even though the SNP density
estimator that we are interested in is always positive by construction di¤erently from higher order Kernel estimators, we still
introduce this trimming device to avoid the excess in�uence of one or several summands when bf(�) or bg(�) are arbitrary small.

5Consider s(n) � 1
n


Pn
i=1 ci(
) when n = 2m and n = 2m + 1, respectively. It follows that s(2m) = ((1+
)m+(1�
)m)

n

=

2m
n


= n
n


and s(2m+ 1) = 1
n

((1 + 
)m+ (1� 
)m+ (1 + 
)) = 2m+1+


n

= n+


n

. Thus, by constructing nr as (23), we have

s(n) = 1.
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We let I = I(f; g); eI
 = bI
(f; g), and bI
 = bI
( bf; bg) for notational simplicity. Now note, for any increasing
sequence d(n), any positive C <1, and 
, we have

Pr(d(n)bI
 < C) � Pr(d(n) ���bI
 � I��� > d(n)I � C) � Pr(���bI
 � I��� > I=2)
when n is su¢ ciently large and (20) is not true (i.e. I > 0). Since the probability Pr(

���bI
 � I��� > I=2) goes
to zero under the alternative as long as bI
 �!

p
I, one could construct a test statistic of the form

Reject (20) when d(n)bI
 > C: (24)

Therefore, as long as bI
 �!
p
I, (24) is a valid test consistent against all departures from (20). We call a test

statistic consistent against one direction of departure from the null hypothesis if the rejection probability
approaches one as the sample size gets large regardless of the size of that departure. The following lemma
establishes the conditions for bI
 �!

p
I. First, we let Eh[�] denote an expectation operator that takes

expectation with respect to a density h.

Lemma 3.1 Suppose Assumption 3.1 holds. Suppose that (i) Ef [jln f j] <1 and Eg [jln f j] <1,

(ii) Ef [jln gj] <1 and Eg [jln gj] <1, (iii)
1

n� 1

n�1X
i=1

Pr(i =2 Nx) = o(1) and
1

n� 1

n�1X
i=1

Pr(i =2 Ny) = o(1):

Further suppose (iv)

1

n
 � 1
X
i2Nx

ci(
) ln
� bf(xi)=f(xi)� �!

p
0;

1

n
 � 1
X
i2Ny

ci(
) ln
� bf(yi+1)=f(yi+1)� �!

p
0;

1

n
 � 1
X
i2Nx

ci(
) ln (bg(xi+1)=g(xi+1)) �!
p
0; and

1

n
 � 1
X
i2Ny

ci(
) ln (bg(yi)=g(yi)) �!
p
0;

then we have bI
 �!
p
I.

See Appendix for the proof. The larger the order of d(n) is, while d(n)bI
 preserves the limiting normal
distribution with zero mean under the null, the test statistic will have higher powers. In what follows, we
show that we can achieve this with d(n) = O (

p
n). SupposeX

i2Nx

ci(
) ln
� bf(xi)=f(xi)� = op

�p
n
�
,
X
i2Nx

ci(
) ln (bg(xi+1)=g(xi+1)) = op �pn� ; (25)

X
i2Ny

ci(
) ln (bg(yi)=g(yi)) = op
�p
n
�
,
X
i2Ny

ci(
) ln
� bf(yi+1)=f(yi+1)� = op �pn� ;

then it follows immediately that bI
 � eI
 = op� 1p
n

�
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for all 
 � 0. This implies that the asymptotic distribution of
p
nbI
 will be identical to that of pneI
 under

the null, which means the e¤ect of nonparametric estimation is negligible. Now consider, under the null
f = g,

eI
 =
1

n
 � 1
X
i2Nx

ci(
) (ln f(xi)� ln g(xi+1)) +
1

n
 � 1
X
i2Ny

ci(
) (ln g(yi)� ln f(yi+1)) (26)

=
2


n
 � 1
X
i2Q

(ln f(xi+1)� ln f(xi)) +
1 + 


n
 � 1
ln f(x1)�

cmaxQ+1(
)

n
 � 1
ln f(xmaxQ+1)

+
2


n
 � 1
X
i2Q

(ln g(yi+1)� ln g(yi)) +
1 + 


n
 � 1
ln g(y1)�

cmaxQ+1(
)

n
 � 1
ln g(ymaxQ+1)

+Op

 
1

n� 1

n�1X
i=1

Pr(i =2 Nx)
!
+Op

 
1

n� 1

n�1X
i=1

Pr(i =2 Ny)
!

where Q = fi : 1 � i � n � 1; i eveng. We are willing to choose 
 > 0.6 Now suppose (25) holds. Further
suppose

1

n� 1

n�1X
i=1

Pr(i =2 Nx) = o
�
1p
n

�
;
1

n� 1

n�1X
i=1

Pr(i =2 Ny) = o
�
1p
n

�
(27)

and assume
E
�
j ln f(xi)j2

�
<1 and E

�
j ln g(yi)j2

�
<1; (28)

then, under the null of (20), we have

1p
n=2

X
i2Q

(ln f(xi+1)� ln f(xi)) �!
d
N(0;�) and

1p
n=2

X
i2Q

(ln g(yi+1)� ln g(yi)) �!
d
N(0;�) (29)

where � = E
h
(ln f(xi+1)� ln f(xi))2

i
or E

h
(ln g(yi+1)� ln g(yi))2

i
that equals to 2Var[ln f(�)] or 2Var[ln g(�)]

by the Lindberg-Levy central limit theorem under the null. Therefore from (26) and (29), we conclude that
under (25), (27), and (28), p

nbI
 = pneI
 + op(1) �!
d
N(0; 4
2�) (30)

under (20) for any 
 > 0 noting f = g and fx1; : : : ; xn; y1; : : : yng are iid under the null. Finally, we conclude
that p

nbI

2
b� 1

2

�!
d
N(0; 1)

for any b� = �+ op(1). Possible candidates of b� will be
b�1 = 2

0@ 1

2n

nX
i=1

n
(ln bf(xi))2 + (ln bf(yi))2o�( 1

2n

nX
i=1

(ln bf(xi) + ln bf(yi)))2
1A or

b�2 = 2

0@ 1

2n

nX
i=1

n
(ln bg(xi))2 + (ln bg(yi))2o�( 1

2n

nX
i=1

(ln bg(xi) + ln bg(yi)))2
1A

or its average b�3 = b�1+b�2
2 . All of these are consistent under (28) and under Condition (iii) and (iv) of

Lemma 3.1 and (20). We summarize the result as follows
6 It is obvious that the distribution of (30) degenerates when 
 = 0. See Robinson (1991) for related discussion.
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Theorem 3.1 Suppose Assumption 3.1 holds. Provided that (25), (27), and (28) hold under (20), we have

b�
 � p
nbI


2
b� 1
2

�!
d
N(0; 1)

for any 
 > 0 and thus we reject (20) if b�
 > C� where C� is the size � one sided critical value of the
standard normal distribution.

3.2 Primitive Conditions for the SNP Estimator

In what follows, we show that all the conditions for Lemma 3.1 and Theorem 3.1 are satis�ed for the SNP
density estimator. Here we should note that Lemma 3.1 holds whether or not the null (f = g) is true while
Theorem 3.1 is required to hold only under the null. We start with conditions for Lemma 3.1. First, note
Condition (i) and (ii) in Lemma 3.1 immediately hold since f and g are assumed to be continuous and Z is
compact. Condition (iii) of Lemma 3.1 is veri�ed as follows. For �f (n) and �g(n) that are positive numbers
tending to zero as n!1, consider

1

n� 1

n�1X
i=1

Pr(i =2 Nx) (31)

� 1

n� 1

n�1X
i=1

Pr
� bf(xi) � �f (n) or bg(xi+1) � �g(n)�

� 1

n� 1

n�1X
i=1

Pr
���� bf(xi)� f(xi)���+ �f (n) � f(xi) or jbg(xi+1)� g(xi+1)j+ �g(n) � g(xi+1)�

� 1

n� 1

n�1X
i=1

Pr

�
sup
x2Z

��� bf(x)� f(x)���+ �f (n) � f(xi) or sup
x2Z

jbg(x)� g(x)j+ �g(n) � g(xi+1)�

and hence as long as supx2Z
��� bf(x)� f(x)��� = op(1), supx2Z jbg(x)� g(x)j = op(1), �f (n) = o(1), and �g(n) =

o(1), we have 1
n�1

Pn�1
i=1 Pr(i =2 Nx) = op(1) since f and g are bounded away from zero. Therefore under

� � 1
3 �

2
3� and s > 2,

1

n� 1

n�1X
i=1

Pr(i =2 Nx) = op(1)

from Theorem 2.1 and also we can show 1
n�1

Pn�1
i=1 Pr(i =2 Ny) = op(1) similarly.

Condition (iv) of Lemma 3.1 is easily established from the uniform convergence rate result. Using
jln(1 + t)j � 2 jtj in a neighborhood of t = 0, consider������ 1

n
 � 1
X
i2Ny

ci(
) ln bf(yi+1)=f(yi+1)
������ (32)

� (1 + 
) sup
y2Z

���ln bf(y)� ln f(y)��� � (1 + 
) sup
y2Z

2

�����f(y)� bf(y)bf(y)
�����

= O
�
�(K)2

�
op

�
n�1=2+�=2+�

�
+O

�
�(K)2K�s=2

�
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from Theorem 2.1 and since bf(�) is bounded away from zero. Therefore, 1
n
�1

P
i2Ny

ci(
) ln
bf(yi+1)
f(yi+1)

= op(1)

under � � 1
3 �

2
3� and s > 2 with K = O(n�) noting �(K) = O

�p
K
�
. Similarly we can show

1
n
�1

P
i2Nx

ci(
) ln
bf(xi)
f(xi)

= op(1), 1
n
�1

P
i2Nx

ci(
) ln
bg(xi+1)
g(xi+1)

= op(1), and 1
n
�1

P
i2Ny

ci(
) ln
bg(yi)
g(yi)

=

op(1) under � � 1
3 �

2
3� and s > 2:

Now we establish conditions for Theorem 3.1. Again (28) immediately holds since f and g are assumed
to be continuous and Z is compact. Next, we show (27). From (31) and the Markov inequality, we have

1

n� 1

n�1X
i=1

Pr(i =2 Nx) (33)

� sup
x2Z

�
1

f(x)�

�
1

n� 1

n�1X
i=1

E
h��� bf(xi)� f(xi) + �f (n)����i

+ sup
x2Z

�
1

g(x)�

�
1

n� 1

n�1X
i=1

E [jbg(xi+1)� g(xi+1) + �g(n)j� ]
and hence 1

n�1
Pn�1

i=1 Pr(i =2 Nx) = op( 1p
n
) as long as

sup
x2Z

��� bf(x)� f(x)���� = op( 1p
n
), sup

x2Z
jbg(x)� g(x)j� = op( 1p

n
);

�f (n)
� = o( 1p

n
), and �g(n)� = o( 1p

n
) noting f(�) and g(�) are bounded away from zero. Note

sup
x2Z

��� bf(x)� f(x)���� = op

�
n(�1=2+3�=2+�)�

�
+O

�
n(1�s=2)��

�
and

sup
x2Z

jbg(x)� g(x)j� = op

�
n(�1=2+3�=2+�)�

�
+O

�
n(1�s=2)��

�
from Theorem 2.1 and �(K) = O

�p
K
�
letting K = O (n�). In particular, we choose � = 4 and hence

supx2Z

��� bf(x)� f(x)���� = op(
1p
n
) and supx2Z jbg(x)� g(x)j� = op(

1p
n
) under � � 1

4 �
2
3� and s � 2 + 1

4� .

�f (n)
� = o( 1p

n
) and �g(n)� = o( 1p

n
) hold under �f (n) = o(n�

1
8 ) and �g(n) = o(n�

1
8 ). Therefore, under

� � 1
4 �

2
3�, s � 2+

1
4� , �f (n) = o(n

� 1
8 ), and �g(n) = o(n�

1
8 ), we have 1

n�1
Pn�1

i=1 Pr(i =2 Nx) = o
�

1p
n

�
and

similarly we can show 1
n�1

Pn�1
i=1 Pr(i =2 Ny) = o

�
1p
n

�
.

Next, we verify (25) as

Lemma 3.2 Suppose Assumption 3.1 holds. Further suppose Assumption 2.2 holds for f and g and �(K)2K
n !

0. Then, X
i2Nx

ci(
) ln
� bf(xi)=f(xi)� = op �pn� ; X

i2Nx

ci(
) ln (bg(xi+1)=g(xi+1)) = op �pn� ;
X
i2Ny

ci(
) ln (bg(yi)=g(yi)) = op �pn� ; and X
i2Ny

ci(
) ln
� bf(yi+1)=f(yi+1)� = op �pn�

for K(n) = O(n�) with � < 1
4 , s � maxf

1
2� ; 2 +

1
4�g, �f (n) = o(n

� 1
8 ), and �g(n) = o(n�

1
8 ).
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See Appendix for the proof. Thus, we have provided primitive conditions under which all the conditions
of Lemma 3.1 and Theorem 3.1 are satis�ed. We summarize the results in the following lemma.

Lemma 3.3 Suppose Assumption 3.1 and Assumption 2.2 hold for f and g. Then, under � < 1
3 and s � 3,

all the conditions for Lemma 3.1 hold. Also for � < 1
4 and s � 4, under the null of (20), all the conditions

of Theorem 3.1 are satis�ed for the SNP estimators when we use trimming devices, �f (n) = o(n�
1
8 ) and

�g(n) = o(n
� 1
8 ).

4 Conclusion

This paper establishes the uniform convergence rate of the SNP density estimator with a compact support.
The estimator studied in this paper can be interpreted as a truncated distribution version of the Gallant
and Nychka (1987)�s SNP estimator. It turns out that the convergence rate depends on the choice of sieve
and the (truncated and transformed) Hermite polynomials provide a preferred rate.
Based on this result, in the spirit of Robinson (1991), we are able to test the equivalence of two unknown

densities where two densities are estimated by the SNP estimator. The proposed test statistic entertains a
version of the Kullback-Leibler information distance, which is symmetric and nonnegative. Other than the
computational advantages, the SNP density estimator is of interest for implementing the test, since there
are certain cases where the kernel estimator cannot be used but still the SNP method can be used especially
when the density of interest is derived from the data whose DGP (data generating process) is a functional
of the density of interest. Examples include several auction models where the distribution of valuations is
derived from the bidding data.
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Appendix

A Relationship Between Fn and Fn
Consider a speci�cation of the SNP density estimator with unbounded support as in Fn,

f(x; �) = (H(J)(x)0�J)
2 + �0�(x) (34)

where H(J)(x) = (H1(x);H2(x); : : : ;HJ(x)) and Hj(x)�s are Hermite polynomials constructed recursively.
Now consider a truncated version of the density on a truncated compact support X based on (34),

f(x; �) =
(H(J)(x)0�J)

2 + �0�(x)R
X (H

(J)(x)0�J)2dx+ �0
R
X �(x)dx

:

Let B be a J � J matrix whose elements are bij�s where bii =
qR

X Hi(x)
2dx for i = 1; : : : ; J and bij = 0

for i 6= j. Recall that W
J
(x) = B�1H(J)(x), QW =

R
X W

J
(x)W

J
(x)0dx, and W J(x) = Q

�1=2
W

W
J
(x) =

Q
�1=2
W

B�1H(J)(x). Using those notations, we obtain

f(x; �) =
(H(J)(x)0�J)

2 + �0�(x)R
X (H

(J)(x)0�J)2dx+ �0
R
X �(x)dx

=
�0JH

(J)(x)H(J)(x)0�J + �0�(x)

�0J
R
X H

(J)(x)H(J)(x)0dx�J + �0
R
X �(x)dx

=
�0JBQ

1=2

W
Q
�1=2
W

B�1H(J)(x)H(J)(x)0B�1Q
�1=2
W

Q
1=2

W
B�J + �0�(x)

�0JB
R
X B

�1H(J)(x)H(J)(x)0B�1dxB�J + �0
R
X �(x)dx

=
�0JBQ

1=2

W
W J(x)W J(x)0Q

1=2

W
B�J + �0�(x)

�0JB
R
X W

J
(x)W

J
(x)0dxB�J + �0

R
X �(x)dx

=
�0JBQ

1=2

W
W J(x)W J(x)0Q

1=2

W
B�J + �0�(x)

�0JBQ
1=2

W
Q
1=2

W
B�J + �0

R
X �(x)dx

:

Now let e�J = Q1=2W
B�J and �0 = e�0= RX �(x)dx. Then, we simplify7

f(x; �) =
e�0JW J(x)W J(x)0e�J +e�0�(x)= RX �(x)dxe�0Je�J +e�0 =

�
W J(x)0e�J�2 +e�0�(x)=Z

X
�(x)dx (35)

by restricting e�0Je�J +e�0 = 1 such that e�J 2 �n. Note that (35) coincides with the speci�cation we consider
in Fn of (4). This illustrates why the proposed SNP estimator is a truncated version of the original SNP
estimator with unbounded support. It is also noted that the relationship between the (truncated) parameters
of the original density and the (truncated) parameters of the proposed speci�cation is explicit as e�J =
Q
1=2

W
B�J .

B Bound of the Truncated Hermite Series

Throughout the appendix, we use the following notation. C, C1, C2, . . . denote generic positive constants.
�min (A) and �max (A) denote the smallest and the largest eigenvalue of a matrix A, respectively. We use
dim(q) to denote the dimension of a vector q. We apply the Triangle Inequality or the Cauchy-Schwarz
Inequality without indicating them unless it is necessary.

7Throughout the Appendix, we will suppress the indicator function 1X (�) denoting the truncation in the truncated density
function to make notation simple.
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Lemma B.1 Suppose WK(x) is given by (5). Then, supx2X


WK(x)



 = �(K) = O(pK):
Proof. First we show that QW is nonsingular for su¢ ciently large K. By taking the support of X symmetric
around zero wlog8 , we have

R
X wiK(x)wjK(x)dx = 0 whenever i + j is odd. When i + j is even and i 6= j,

we have
R
X wiK(x)wjK(x)dx 6= 0 but

��R
X wiK(x)wjK(x)dx

�� < 1 by construction since ��RX Hi(x)Hj(x)dx�� <���qRX Hi(x)2dxqRX Hj(x)2dx��� from the Cauchy-Schwarz inequality noting
R
X 1(Hi(x) 6= Hj(x))dx > 0.

Now note that the determinant of a matrix A � [aij ] can be computed by writing down all permutations
of f1; 2; : : : ;dim(A)g, taking each permutation (ijk : : :) as the subscripts in a1ia2ja3k : : : and summing with
signs obtained by �p = (�1)i(p), where i(p) denotes number of permutation inversions in permutation p (Muir
(1960), p.16), and �p is the permutation symbol. Using this method, a close examination of QW reveals that
the determinant of QW with dim(QW ) = K is computed as for L � 2,

det(QW ) =

8><>:
K = 2 1

K = 2L 1 +
PL�1

l=1 al(K)�
PL

l=1 bl(K)

K = 2L� 1 1� b(K)

where al(K) and bl(K) is K � 2 products of positive values less than one and b(K) is K � 1 products of
positive values less than one. Hence whenever K is odd, det(QW ) is obviously greater than zero. NotingPL

l=1 bl(K) � L �
�
max
l�L

bl(K)

�
� K

2 (d)
K�2 ! 0 for some d < 1, we �nd that det(QW ) > 0 for su¢ ciently

large K when K is even. Thus we conclude that QW is nonsingular for su¢ ciently large K. Actually we
can make QW is nonsingular always by simply taking K odd. From QW�s positive-de�niteness (positive-
semide�nite by construction and nonsingular), it follows that �min (QW ) is bounded away from zero at least
for K odd or su¢ ciently large K. Finally note

sup
x2X



WK(x)


 = sup

x2X

q
W

K
(x)0Q�1

W
W

K
(x) � sup

x2X

q
��1min (QW )W

K
(x)0W

K
(x)

�

vuut��1min (QW ) sup
x2X

KX
j=1

w2jK(x) �
r
��1min (QW )K

� eH�2 = O �pK� .

C Proof of Lemma 2.1

De�ne Q0 = E [ln f0 (x)] and Q(�) = E [ln f (x; �)]. Then, by de�nition, �
�
K = argmax

�
Q(�). Consider

argmin
�

Q0 �Q(�) = argmax
�

Q(�)

which implies that among the parametric family ff (x; �) : � = (#1; : : : ; #K)g ; Q(��K) will have the minimum
distance to Q0 noting for all � 2 �n, Q(�) � Q0 from the information inequality (see Gallant (1987, p.484)).
First, we show that

Q0 �Q(�K) = O(K�s): (36)

8For any bounded support, we can make the support symmetric around zero by shifting the support.
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Using jln(1 + t)j � 2 jtj in a neighborhood of t = 0, consider

jQ0 �Q(�K)j � E

�����ln f0(X)

f(X; �K)

����� � E �2 ���� f0(X)f(X; �K)
� 1
����� (37)

= 2

Z
X

1

f(x; �K)
jf0(x)� f(x; �K)j f0(x)dx

= 2

Z
X

f0(x)

f(x; �K)

���hf0(x)e�x2=4 +WK(x)0�K

��� ���hf0(x)e�x2=4 �WK(x)0�K

��� dx
� 2 sup

x2X

p
f0(x)

f(x; �K)
sup
x2X

���hf0(x)e�x2=4 �WK(x)0�K

���E
24
���hf0(X)e�X2=4

���+ ��WK(X)0�K
��p

f0(X)

35
and by the triangular inequality. Note

E

24
���hf0(X)e�x2=4���p

f0(X)

35 �
vuutE "h2f0(X)e�x2=2

f0(X)

#
< 1 (38)

since 0 <
h2f0 (x)

f0(x)
< 1 for all x 2 X by construction and note

E

"��WK(X)0�K
��p

f0(X)

#
�

s
E

�
�0KW

K(X)WK(X)0�K
f0(X)

�
=
q
�0K�K = k�Kk < 1 (39)

since k�Kk2 < 1. From these we conclude that

jQ0 �Q(�K)j � C1 sup
x2X

p
f0(x)

f(x; �K)
sup
x2X

���hf0(x)e�x4=2 �WK(x)0�K

��� = O �K�s�
from (10) and since f0(x) is uniformly bounded from above and f(x; �K) is bounded away from zero. It
follows that

0 � Q(��K)�Q(�K) � Q(��K)�Q0 + C1K�s � C1K�s (40)

where the �rst inequality is by de�nition of ��K = argmax
�

Q(�), the second inequality is by (36), and the

last inequality is since Q(��K) � Q0 from the information inequality (see Gallant (1987, p.484)). Using the
second order Taylor expansion where e� lies between a given �o 2 �n with dim(�o) = K and ��K , we have

Q(��K)�Q(�o) = �
@Q

@�0
(��K)(�

o � ��K)�
1

2
(�o � ��K)0

@2Q

@�@�0
(e�)(�o � ��K) (41)

= �1
2
(�o � ��K)0

@2Q

@�@�0
(e�)(�o � ��K)

since @Q
@� (�

�
K) = 0 by F.O.C of (14). Consider

�1
2

@2Q(e�)
@�@�0

= E

2642
�
WK(X)0e��2WK(X)WK(X)0

f(X;e�)2 � W
K(X)WK(X)0

f(X;e�)
375 (42)

= E

" 
1� 2

�0�(X)=
R
X �(x)dx

f(X;e�)
!
WK(X)WK(X)0

f(X;e�)
#

= E

" 
1� 2

�0�(X)=
R
X �(x)dx

f(X;e�)
! 

f0(X)

f(X;e�)
!
WK(X)WK(X)0

f0(X)

#
:
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By construction, we can ensure 0 < 1� 2 �0�(x)=
R
X �(x)dx

f(x;�) < 1 for all x 2 X and all � 2 �n so that � 1
2
@2Q(�)
@�@�0

is positive-de�nite for all � 2 �n by choosing �0 arbitrary small. Now note���f0(x)� f(x;e�)��� � jf0(x)� f(x; �K)j+ ���f(x; �K)� f(x;e�)���
� O

�
�(K)K�s�+O ��(K)2� (k�o � ��Kk+ k��K � �Kk)

from (13) and hence (noting f0(x) is bounded away from zero and bounded from above)

f0(x)

f(x;e�) =
f0(x)

f(x;e�)� f0(x) + f0(x) � f0(x)

sup
x2X

���f(x;e�)� f0(x)���+ f0(x)
� f0(x)

O (�(K)K�s) +O (�(K)2) (k�o � ��Kk+ k��K � �Kk) + f0(x)
:

It follows that

�1
2

@2Q(e�)
@�@�0

� inf
x2X ;�2�n

�
1� 2

�0�(x)=
R
X �(x)dx

f(x; �)

�
inf
x2X

f0(x)

f(x;e�)E
�
WK(X)WK(X)0

f0(X)

�
� C1 inf

x2X

�
f0(x)

O (�(K)K�s) +O (�(K)2) (k�o � ��Kk+ k��K � �Kk) + f0(x)

�
E

�
WK(X)WK(X)0

f0(X)

�
:

Finally from E
h
WK(X)WK(X)0

f0(X)

i
=
R
X
WK(X)WK(X)0

f0(X)
f0(X)dx =

R
X W

K(X)WK(X)0dx = IK , we conclude

�min

 
�1
2

@2Q(e�)
@�@�0

!
� C1 inf

x2X

�
f0(x)

O (�(K)K�s) +O (�(K)2) (k�o � ��Kk+ k��K � �Kk) + f0(x)

�
: (43)

From this, putting �o = �K , we note

�min

 
�1
2

@2Q(e�)
@�@�0

!
� C1(1� o(1)) if k��K � �Kk = o

�
�(K)�2

�
�min

 
�1
2

@2Q(e�)
@�@�0

!
� C2

1

O (�(K)2) (k�K � ��Kk)
otherwise.

Thus, from Q(��K)�Q(�K) � �min
�
� 1
2
@2Q(e�)
@�@�0

�
k�K � ��Kk

2, it follows that

Q(��K)�Q(�K) � C1 k�K � ��Kk
2 if k��K � �Kk = o

�
�(K)�2

�
Q(��K)�Q(�K) � O

�
�(K)�2

�
k�K � ��Kk � O

�
�(K)�4

�
otherwise. (44)

However, the case of (44) contradicts to (40) if s > 2, which means (40) implies k��K � �Kk = o
�
�(K)�2

�
under s > 2 and hence

Q(��K)�Q(�K) � C1 k�K � ��Kk
2 . (45)

Together with (40), it implies C1K�s � Q(��K)�Q(�K) � C3 k�K � ��Kk
2 and hence under s > 2

k�K � ��Kk = O
�
K�s=2

�
(46)
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as claimed in Lemma 2.1. Finally note k�K � ��Kk = o
�
�(K)�2

�
as long as (46) holds under s > 2. Now

consider

sup
x2X

jf(x; �K)� f(x; ��K)j � sup
x2X




�WK(x)0�K
�2 � �WK(x)0��K

�2



� sup

x2X



WK(x)0�K �WK(x)0��K


 sup
x2X



WK(x)0�K +W
K(x)0��K




� sup

x2X



WK(x)


 k�K � ��Kk sup

x2X



WK(x)


 (k�Kk+ k��Kk) = O ��(K)2K�s=2

�
from the Cauchy-Schwarz inequality, (46), supx2X



WK(x)


 � �(K), and k�k2 < 1 for any � 2 �n. It

follows that

sup
x2X

jf0(x)� f�K(x)j � sup
x2X

jf0(x)� f(x; �K)j+ sup
x2X

jf(x; �K)� f(x; ��K)j

� O
�
�(K)K�s�+O ��(K)2K�s=2

�
= O

�
�(K)2K�s=2

�
.

D Uniform Law of Large Numbers

Now De�ne bQn(�) = 1
n

Pn
i=1 ln f(Xi; �) and Q(�) = E [ln f(X; �)] where � 2 �n de�ned in (4). We establish

a uniform convergence with rate as

sup
�2�n

��� bQn(�)�Q(�)��� = op �n�1=2+�=2+��
following Lemma 2 in Fenton and Gallant (1996a), which is a variant of results obtained in White and
Wooldrige (1991), Gallant and Souza (1991), De Jong (1993) among others.

Lemma D.1 (Lemma 2 in Fenton and Gallant (1996a)) Let f�ng be a sequence of compact subsets of
a metric space (�; �). Let fsni(�) : � 2 �; i = 1; : : : ; n; n = 1; : : :g be a sequence of real valued random
variables de�ned over a complete probability space (
;A; P ). Suppose that there are sequences of positive
numbers fdng and fMng such that for each �o in �n and for all � in �n(�o) = f� 2 �n : �(�; �o) < dng, we
have jsni(�)� sni(�o)j � 1

nMn�(�; �
o). Let Gn(�) be the smallest number of open balls of radius � necessary

to cover �n. If sup
�2�n

Pr fj
Pn

i=1 (sni(�)� E [sni(�)])j > �g � �n(�), then for all su¢ ciently small " > 0 and

all su¢ ciently large n,

Pr

(
sup
�2�n

�����
nX
i=1

(sni(�)� E [sni(�)])
����� > "Mndn

)
� Gn

�
"dn
3

�
�n

�
"Mndn
3

�
.

Now de�ne sni(�) = 1
n ln f (Xi; �). Then, we have

bQn(�) =Pn
i=1 sni(�) and Q(�) =

Pn
i=1E [sni(�)]. To

entertain Lemma (D.1), in what follows, three conditions of Lemma (D.1) are veri�ed.

Lemma D.2 Suppose Assumption 2.2 holds. Then, jsni(�)� sni(�o)j � C 1
n�(K(n))

2 k� � �ok.

Proof. Note if 0 < c � a � b, then jln a� ln bj � ja� bj =c. Since f(x; �) is bounded away from zero for all
� 2 �n and x 2 X , we have 0 < C � f(x; �) from which it follows that

jsni(�)� sni(�o)j � jf(Xi; �)� f(Xi; �o)j =nC.
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Consider

jf(Xi; �)� f(Xi; �o)j =
��WK(Xi)

0� +WK(Xi)
0�o
�� ��WK(Xi)

0� �WK(Xi)
0�o
��

� sup
x2X



WK(x)


 (k�k+ k�ok) sup

x2X



WK(x)


 k� � �ok � C1�(K)2 k� � �ok

since k�k < 1 for all � 2 �n and supx2X


WK(x)



 = �(K). It follows that
jsni(�)� sni(�o)j � jf(Xi; �)� f(Xi; �o)j =nC � C2�(K)2 k� � �ok =n.

Lemma D.3 Suppose Assumption 2.2 holds and �(K) = O
�
K�
�
. Then,

Pr

(�����
nX
i=1

(sni(�)� E [sni(�)])
����� > �

)
� 2 exp

 
�2�2

n
�
1
n2� lnK(n) +

1
nC
�2
!
:

Proof. We have 0 < C1 � f(x; �) < C2K
2� + �0

�(0)R
X �(x)dx

by construction and since f(x; �) is bounded

away from zero. Thus it follows that 1
nC3 < sni(�) <

1
n2� lnK + 1

nC4 for su¢ ciently large K. Hoe¤d-
ing�s (1963) inequality implies that Pr (jY1 + : : :+ Ynj � �) � 2 exp

�
�2�2=

Pn
i=1(bi � ai)2

�
for independent

random variables centered zero with ranges ai � Yi � bi. Applying this inequality, we have

Pr

(�����
nX
i=1

(sni(�)� E [sni(�)])
����� > �

)
� 2 exp

 
�2�2=n

�
1

n
2� lnK(n) +

1

n
C

�2!

Lemma D.4 (Lemma 6 in Fenton and Gallant(1996a)) The number of open balls of radius � required to
cover �n is bounded by 2K(n)(2=� + 1)K(n)�1.
Proof. Lemma 1 of Gallant and Souza (1991) shows that the number of radius-� balls needed to cover the
surface of a unit sphere in Rp is bounded by 2p(2=� + 1)p�1. Noting dim(�n) = K(n), the result follows
immediately.

Applying the results of Lemma D.2-D.4, �nally we obtain

Lemma D.5 Let K(n) = Cn� with � 2 (0; 1) and suppose Assumption 2.2 holds.
Then, sup�2�n

��� bQn(�)�Q(�)��� = op �n�1=2+�=2+�� :
Proof. Let Mn = C1O

�
K2�

�
= C2n

2��, dn = 1
C1
n�(2��1)��� , and �(�; �o) = k� � �ok. Then from Lemma

D.1, we have

Pr

(
sup
�2�n

�����
nX
i=1

(sni(�)� E [sni(�)])
����� > "n���

)

� 4C � n�(6C1
"
n(2��1)�+� + 1)n

��1 exp

 
�2
�
"n���

3

�2
=n

�
1

n
2� lnK(n) +

1

n
C2

�2!
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applying Lemma D.2, Lemma D.3, and Lemma D.4.
Note 4C �n�( 6C1" n

(2��1)�+�
+1)n

��1 is dominated by C3n�n((2��1)�+�)(n
��1) for su¢ ciently large n and

note n
�
1
n2� lnK(n) +

1
nC2

�2
is dominated by n

�
1
n2� lnK(n)

�2
. Thus, we simplify

Pr

(
sup
�2�n

�����
nX
i=1

(sni(�)� E [sni(�)])
����� > "n���

)

� C4 exp

�
ln
�
n�n((2��1)�+�)(n

��1)
�
� 2"

2

9
n2��2�+1= (2� lnK(n))

2

�
= C4 exp

�
� lnn+ ((2� � 1)�+ �) (n� � 1) lnn� 2"

2

9
n2��2�+1= (2� lnK(n))

2

�
for su¢ ciently large n. As long as 2� � 2� + 1 > �, 2"2

9 n
2��2�+1= (2� lnK(n))

2 dominates � lnn +
((2� � 1)�+ �) (n� � 1) lnn and hence we conclude

Pr

(
sup
�2�n

�����
nX
i=1

(sni(�)� E [sni(�)])
����� > "n���

)
= o(1)

provided that �+12 > � > �. By taking � = 1
2 +

1
2�� � (the best possible rate), we have

sup
�2�n

��� bQn(�)�Q(�)��� = sup
�2�n

�����
nX
i=1

(sni(�)� E [sni(�)])
����� = op(n� 1

2+
1
2�+�)

for all su¢ ciently small � > 0.

Lemma D.6 Suppose (i) Assumption 2.2 holds and (ii) �(K)
2K

n ! 0. Let �n = n
��� with �� � 1=2��=2��,

then
sup

k���ok�o(�n);�2�n

��� bQn(�)� bQn(�o)� (Q(�)�Q(�o))��� = op ��nn�1=2+�=2+��

Proof. Applying the mean value theorem for e� that lies between � and �o, we can rewritebQn(�)� bQn(�o)� (Q(�)�Q(�o)) (47)

= bQn(�)�Q(�)� � bQn(�o)�Q(�o)� =
0@@

� bQn(e�)�Q(e�)�
@�0

1A (� � �o) .
Now consider for any � 2 �n,

@ bQn(�)
@�

� @Q(�)
@�

= 2
1

n

nX
i=1

 
WK(Xi)W

K(Xi)
0�

f
�
Xi; �

� � E
"
WK(Xi)W

K(Xi)
0�

f
�
Xi; �

� #!
(48)

and de�ne Lni =
�
WK(Xi)W

K(Xi)
0�

f(Xi;�)
� E

�
WK(Xi)W

K(Xi)
0�

f(Xi;�)

��
. Noting Lni is a triangular array of i.i.d

random variables with mean zero, we bound (48) as follows. First consider

Var [Lni] � E [LniL
0
ni] = E

24 WK(Xi)
0�

f
�
Xi; �

� !2WK(Xi)W
K(Xi)

0

35 (49)

�E
"
WK(Xi)W

K(Xi)
0�

f
�
Xi; �

� #
E

"
WK(Xi)W

K(Xi)
0�

f
�
Xi; �

� #0
:
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The �rst term in the right hand side of (49) is bounded by

E

24 WK(Xi)
0�

f
�
Xi; �

� !2WK(Xi)W
K(Xi)

0

35
= E

" 
1�

�0�(Xi)=
R
X �(x)dx

f
�
Xi; �

� ! 
f0(Xi)

f
�
Xi; �

�! WK(Xi)W
K(Xi)

0

f0(Xi)

#

� sup
x2X ;�2�n

  
1�

�0�(x)=
R
X �(x)dx

f
�
x; �
� !

f0(x)

f
�
x; �
�!E �WK(Xi)W

K(Xi)
0

f0(Xi)

�

� sup
x2X ;�2�n

 
f0(x)

f
�
x; �
�!E �WK(Xi)W

K(Xi)
0

f0(Xi)

�
= C1IK

since f
�
x; �
�
is bounded away from zero uniformly over X and � 2 �n and since f0(x) is bounded away

from above. Next consider, for the second term

E

"
WK(Xi)W

K(Xi)
0�

f
�
Xi; �

� #
E

"
WK(Xi)W

K(Xi)
0�

f
�
Xi; �

� #0
= E

"
WK(Xi)W

K(Xi)
0

f
�
Xi; �

� #
��
0
E

"
WK(Xi)W

K(Xi)
0

f
�
Xi; �

� #

�
 

sup
x2X ;�2�n

 
f0(x)

f
�
x; �
�!!2E �WK(Xi)W

K(Xi)
0

f0(Xi)

�
��
0
E

�
WK(Xi)W

K(Xi)
0

f0(Xi)

�
� C2��

0

since supx2X ;�2�n

�
f0(x)

f(x;�)

�
<1 as before. Now note

E

 




 1p
n

nX
i=1

Lni







!

�
p
tr (Var [Lni]) �

r
C1tr (IK) + C2tr

�
��
0�

=

q
C1K + C2



�

2 = O(pK)
uniformly over � 2 �n since



�

2 < 1 for any � 2 �n by construction. It follows that
sup
�2�n






@ bQn(�)@�
� @Q(�)

@�






 = 2 1pn sup
�2�n






 1p
n

nX
i=1

Lni






 = Op
 r

K

n

!

from the Markov inequality. Thus, noting Op
�q

K
n

�
= op

�
n�1=2+�=2+�

�
for K = n� and su¢ ciently small

�, we have

sup
k���ok�o(�n);�2�n




 bQn(�)� bQn(�o)� (Q(�)�Q(�o))



� sup

�2�n








@
� bQn(�)�Q(�)�

@�







 sup
k���ok�o(�n);�2�n

k� � �ok = op
�
�nn

�1=2+�=2+�
�

from (47) applying the Cauchy-Schwarz inequality.
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E Proof of Lemma 2.2

First, from (43) and k��K � �Kk = O
�
K�s=2� with s > 2, we note that

�min

 
�1
2

@2Q(e�)
@�@�0

!
� C1 inf

x2X

�
f0(x)

O (�(K)K�s) +O (�(K)2) (k� � ��Kk) + f0(x)

�

where e� lies between � and ��K and hence from (41),

Q(��K)�Q(�) � C1 k� � ��Kk
2 if k� � ��Kk = o

�
�(K)�2

�
(50)

Q(��K)�Q(�) � C2�(K)
�2 k� � ��Kk otherwise.

Denote � = 1=2� �=2� � and �0n = o(n��). We derive the convergence rate in two cases: one is when �0n
has the equal or a smaller order than o

�
�(K)�4

�
and the other case is when �0n has a larger order than

o
�
�(K)�4

�
.

1) When �0n has equal or smaller order than o
�
�(K)�4

�
, which holds under � < 1

5 :
Now let �0n =

p
2�0n. For any c such that C1c

2 > 1, it follows

Pr
�


b�K � ��K


 � c�0n� � Pr

0@ sup
k����Kk�c�0n;�2�n

bQn(�) � bQn(��K)
1A (51)

� Pr

�
sup
�2�n

��� bQn(�)�Q(�)��� > �0n�

+Pr

0@� sup
�2�n

��� bQn(�)�Q(�)��� � �0n� \
8<: sup
k����Kk�c�0n;�2�n

bQn(�) � bQn(��K)
9=;
1A

� Pr

�
sup
�2�n

��� bQn(�)�Q(�)��� > �0n�+ Pr
0@ sup
k����Kk�c�0n;�2�n

Q(�) � Q(��K)� 2�0n

1A = P1 + P2:

Now note P1 ! 0 from (16). Now we show P2 ! 0. This holds since Q(�) has its maximum at ��K . To be
precise, note

Q(��K)�Q(�) � C1 k� � ��Kk
2 � 2C1c2�0n if k� � ��Kk = o

�
�(K)�2

�
Q(��K)�Q(�) � C2�(K)

�2 k� � ��Kk � C3�(K)�4 otherwise

and hence

sup
k����Kk�c�0n;�2�n

Q(�)�Q(��K) � �2C1c2�0n if k� � ��Kk = o
�
�(K)�2

�
sup

k����Kk�c�0n;�2�n

Q(�)�Q(��K) < �C3�(K)�4 otherwise.

Therefore, as long as C1c2 > 1 and �(K)4�0n ! 0, we have P2 ! 0. �(K)4�0n ! 0 holds under � < 1
5 .

Thus, we have proved



b�K � ��K


 = op(n��=2). Now we re�ne the convergence rate by exploiting the local
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curvature of bQn(�) around ��K . Let �1n = n���0n = o �n�(�+�=2)� and �1n = p�1n = o �n�(�=2+�=4)�. For
any c such that C1c2 > 1, we have

Pr
�


b�K � ��K


 � c�1n� � Pr

0@ sup
�0n�k����Kk�c�1n;�2�n

bQn(�) � bQn(��K)
1A (52)

� Pr

0@ sup
�0n�k����Kk�c�1n;�2�n

��� bQn(�)� bQn(��K)� (Q(�)�Q(��K))��� > �1n
1A

+Pr

0BBBBBB@

8<: sup
�0n�k����Kk�c�1n;�2�n

��� bQn(�)� bQn(��K)� (Q(�)�Q(��K))��� � �1n
9=;

\

8<: sup
�0n�k����Kk�c�1n;�2�n

bQn(�) � bQn(��K)
9=;

1CCCCCCA
� Pr

0@ sup
�0n�k����Kk�c�1n;�2�n

��� bQn(�)� bQn(��K)� (Q(�)�Q(��K))��� > �1n
1A

+Pr

0@ sup
�0n�k����Kk�c�1n;�2�n

Q(�) � Q(��K)� �1n

1A = P3 + P4

where9 P3 ! 0 from Lemma D.6 and P4 ! 0 similarly with P2 noting

sup
�0n�k����Kk�c�1n;�2�n

Q(�)�Q(��K) � �C1c2�1n

by (50) and since k� � ��Kk = o
�
�(K)�2

�
for any � such that �0n � k� � ��Kk � c�1n under � < 1

5 . This

show that



b�K � ��K


 = op(n�(�=2+�=4)). Repeating this re�nement for in�nite number of times, we obtain


b�K � ��K


 = op(n�(�=2+�=4+�=8+:::)) = op(n��) = op(n�1=2+�=2+�)

9Note
sup

�0n�k����Kk�c�1n;�2�n

��� bQn(�)� bQn(��K)� (Q(�)�Q(��K))��� � �1n
implies, for any � such that �0n �



� � ��K

 � c�1n,
��1n � sup

�0n�k����Kk�c�1n;�2�n
(Q(�)�Q(��K)) � bQn(�)� bQn(��K)

� �1n + sup
�0n�k����Kk�c�1n;�2�n

(Q(�)�Q(��K))

and hence we obtain

sup
�0n�k����Kk�c�1n;�2�n

bQn(�)� bQn(��K) � �1n + sup
�0n�k����Kk�c�1n;�2�n

(Q(�)�Q(��K))

Therefore,

Pr

0@ sup
�0n�k����Kk�c�1n;�2�n

bQn(�)� bQn(��K) > 0
1A � Pr

0@ sup
�0n�k����Kk�c�1n;�2�n

Q(�) � Q(��K)� �1n

1A ;
from which we have obtained the third inequality.
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under � < 1
5 .

2) Now we consider when �0n has larger order than o
�
�(K)�4

�
(which holds under � � 1

5 ):
Let e�0n = o ��(K)�2�n� for � > 0. Then, from (51), we have

Pr
�


b�K � ��K


 � ce�0n�

� Pr

�
sup
�2�n

��� bQn(�)�Q(�)��� > �0n�+ Pr
0@ sup
k����Kk�ce�0n;�2�n

Q(�) � Q(��K)� 2�0n

1A = P1 + P2:

Again note P1 ! 0 from (16). Now we show P2 ! 0. Note from (50),

sup
k����Kk�ce�0n;�2�n

Q(�)�Q(��K) � �C2�(K)�2 k� � ��Kk � �o
�
�(K)�4

�
n�

since k� � ��Kk > o
�
�(K)�2

�
for any � such that k� � ��Kk � ce�0n. It follows that P2 ! 0 as long as

�(K)4n���0n ! 0, which holds under

� >
5

2
�� 1

2
+ � (53)

and hence the convergence rate will be op (�0n) = op
�
n��+�

�
. Now we re�ne the convergence rate by

exploiting the local curvature of bQn(�) around ��K again. Let e�1n = n��e�0n = o
�
n�((���)+�)

�
and e�1n =pe�1n = o �n�((���)=2+�=2)�. Then, from (52), we have

Pr
�


b�K � ��K


 � ce�1n� (54)

� Pr

0@ supe�0n�k����Kk�ce�1n;�2�n

��� bQn(�)� bQn(��K)� (Q(�)�Q(��K))��� > e�1n
1A

+Pr

0@ sup
�0n�k����Kk�c�1n;�2�n

Q(�) � Q(��K)� e�1n
1A = P3 + P41

where P3 ! 0 from Lemma D.6. Now we show P41 ! 0 similarly with P2. Here again we need to consider
two cases:
2-1)When e�1n has equal or smaller order than o ��(K)�2�, which holds under � � 1

2 �
3
2�� � and hence

from � > � and (53) it requires 1=5 � � < 1=4. Under this case, note

supe�0n�k����Kk�ce�1n;�2�n

Q(�)�Q(��K) � �C1 k� � ��Kk
2 � �C1c2e�21n = �C1c2e�1n if k� � ��Kk = o ��(K)�2�

supe�0n�k����Kk�ce�1n;�2�n

Q(�)�Q(��K) � �C2�(K)�2 k� � ��Kk � �C2�(K)�4 otherwise

by (50) and hence P41 ! 0 as long as C1c2 > 1 and �(K)4e�1n = �(K)4e�1nn��e�0n = �(K)2o �n��n�� ! 0,
which holds under � � 1

2 �
3
2� � �. Repeating this re�nement for in�nite number of times (noting that for

any � such that e�1n � k� � ��Kk, we have k� � ��Kk = o ��(K)�2�), we obtain


b�K � ��K


 = op(n�
�
lim
L!1

(
PL

l=1
�

2l
+
(���)
L )

�
) = op(n

��)
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and hence the e¤ect of �0n�s having larger order than o
�
�(K)�4

�
disappear ( (���)L goes to zero as L goes

to in�nity)). This makes sense because the iterated convergence rate improvement using the local curvature
will dominate the convergence rate from the uniform convergence.
2-2) When e�1n has bigger order than o ��(K)�2�, which holds under � > 1

2 �
3
2�� � and 1=3 > � � 1=4:

In this case, we let e�1n = e�0nn�
 for some 
 > 0 and hence we require � > 
. From (54), we note

Pr
�


b�K � ��K


 � ce�1n�

� Pr

0@ supe�0n�k����Kk�ce�1n;�2�n

��� bQn(�)� bQn(��K)� (Q(�)�Q(��K))��� > e�1n
1A

+Pr

0@ supe�0n�k����Kk�ce�1n;�2�n

Q(�) � Q(��K)� e�1n
1A = P3 + P42:

We have seen that P3 goes to zero since e�1n = n��e�0n and by Lemma D.6. Now we verify P42 goes to
zero. From (50), to have P42 ! 0, we require that �(K)�2e�1n have a bigger order than e�1n and hence we
need 
 < 1

2 �
3�
2 � �. Now we improve the convergence rate again using the local curvature by de�ninge�2n = n��e�1n = o �n�((���+
)+�)� and e�2n = pe�2n = o �n�((���+
)=2+�=2)�. Then, similarly with before,

at the end, we will obtain



b�K � ��K


 = op(n��) as long as e�2n has equal or smaller order than o ��(K)�2�.

The tricky case is again when e�2n has a bigger order than o ��(K)�2�, which happens when ��
 > 1
2�

3
2���

but applying the same trick, at the end, we will obtain the same convergence rate of



b�K � ��K


 = op(n��)

as long as 1=3 > �. Combining these results, we conclude that under � < 1=3, we have


b�K � ��K


 = op(n��) = op(n�1=2+�=2+�).
This result is intuitive in the sense that ignoring �, we obtain o

�
� (K)

�2
�
= o(n��) = n�1=3 at � = 1=3

and hence if � � 1=3, there is no room to improve the convergence rate using the local curvature.

F Proof of Lemma 3.1

Note
1

n
 � 1
X
i2Nx

ci(
) ln f(xi)

=
1

n
 � 1
X
i odd

(1 + 
) ln f(xi) +
1

n
 � 1
X
i even

(1� 
) ln f(xi) +Op

 
1

n� 1

n�1X
i=1

Pr(i =2 Nx)
!

=
1

2
(1 + 
)Ef [ln f(xi)] + op(1) +

1

2
(1� 
)Ef [ln f(xi)] + op(1) + op(1) = Ef [ln f(xi)] + op(1)

by the law of large numbers under Condition (i) and by Condition (iii). Similarly we have

1

n
 � 1
X
i2Nx

ci(
) ln g(xi+1) = Ef [ln g(xi+1)] + op(1),
1

n
 � 1
X
i2Ny

ci(
) ln g(yi) = Eg [ln g(yi)] + op(1)

1

n
 � 1
X
i2Ny

ci(
) ln f(yi+1) = Eg [ln f(yi+1)] + op(1)
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and thus eI
 �!
p
I noting I(f; g) can be expressed as I(f; g) = Ef [ln f(xi)� ln g(xi+1)]+Eg [ln g(yi)� ln f(yi+1)].

Condition (iv) implies bI
 � eI
 �!
p
0. From these, we conclude bI
 �!

p
I.

G Convergence Rate of the Log Density

Lemma G.1 Suppose Assumption 2.2 holds, �(K)2K
n ! 0, and bf is the SNP density estimator from the

sample fxigni=1. Then,

1

n

nX
i=1

�
ln bf(xi)� ln f0(xi)� = op �n�1+�+2��+O(K�s):

Now consider an additional sample fvignvi=1 where the true density of vi is also f0. fvig
nv
i=1 can be a subsample

of fxigni=1 or partly contains some of fxigni=1 or totally independent with fxigni=1. Provided that nv = �n

for some positive constant �, we have

1

nv

nvX
i=1

�
ln bf(vi)� ln f0(vi)� = O ��(K)2� op �n�1+�+2��+O(K�s)

Thus, under � � 1
4 � � and s �

1
2� ,

1

n

nX
i=1

�
ln bf(xi)� ln f0(xi)� = op r 1

n

!
and

1

nv

nvX
i=1

�
ln bf(vi)� ln f0(vi)� = op r 1

n

!
.

Proof. Applying the second order Taylor expansion where e� lies between ��K and b�K , we have
1

n

nX
i=1

�
ln bf(xi)� ln f�K(xi)� (55)

=
1

n

nX
i=1

@f(xi;b�K)
@�0

f(xi;b�K) (b�K � ��K)� 12(��K � b�K)0 1n
nX
i=1

@2f(xi;e�)
@�@�0

f(xi;e�) (��K � b�K)
+
1

2
(��K � b�K)0 1n

nX
i=1

@f(xi;e�)
@�

@f(xi;e�)
@�0

f(xi;e�)2 (��K � b�K):
First, consider 1

n

Pn
i=1

@f(xi;
b�K )

@�0

f(xi;b�K) (b�K � ��K) = 0 since 1
n

Pn
i=1

@f(xi;
b�K )

@�

f(xi;b�K) = 0 from the F.O.C of (6). Next, note

�1
2

1

n

nX
i=1

@2f(xi;e�)
@�@�0

f(xi;e�) + 12 1n
nX
i=1

@f(xi;e�)
@�

@f(xi;e�)
@�0

f(xi;e�)2 (56)

= � 1
n

nX
i=1

WK(xi)W
K(xi)

0

f(xi;e�) + 2
1

n

nX
i=1

(WK(xi)
0e�)2WK(xi)W

K(xi)
0

f(xi;e�)2
=

 
1� 2

�0�(xi)=
R
X �(x)dx

f(xi;e�)
! 

f0(xi)

f(xi;e�)
!
WK(xi)W

K(xi)
0

f0(xi)

� sup
x2X ;�2�n

�
1� 2

�0�(x)=
R
X �(x)dx

f(x; �)

�
sup
x2X

 
f0(x)

f(x;e�)
!
1

n

nX
i=1

WK(xi)W
K(xi)

0

f0(xi)
� C 1

n

nX
i=1

WK(xi)W
K(xi)

0

f0(xi)
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similarly with (42) noting 0 < supx2X ;�2�n

�
1� 2 �0�(x)=

R
X �(x)dx

f(x;�)

�
< 1 for su¢ ciently small �0 and noting

supx2X

�
f0(x)

f(x;e�)
�
< 1. This implies that the eigenvalues of (56) are bounded from above, since by Newey

(1997) (noting E
h
WK(xi)W

K(xi)
0

f0(xi)

i
=
R
x2X W

K(x)WK(x)0dx = IK), we have




 1n
nX
i=1

WK(xi)W
K(xi)

0

f0(xi)
� IK






 = Op
 
�(K)

r
K

n

!
(57)

which implies the probability that the largest eigenvalue of 1n
Pn

i=1
WK(xi)W

K(xi)
0

f0(xi)
is smaller than 3/2 goes

to one. Therefore, from (55), we conclude that����� 1n
nX
i=1

�
ln bf(xi)� ln f�K(xi)�

����� (58)

�



��K � b�K


2 �max

 
�1
2

1

n

nX
i=1

@2f(xi;e�)
@�@�0

f(xi;e�) + 12 1n
nX
i=1

@f(xi;e�)
@�

@f(xi;e�)
@�0

f(xi;e�)2
!

� Op

�


��K � b�K


2� = op �n�1+�+2��
by Lemma 2.2. Using the notation in Appendix D, consider����� 1n

nX
i=1

(ln f�K(xi)� ln f0(xi))
����� (59)

=

����� bQn(��K)�Q(��K) +Q(��K)�Q(�K) +Q(��K)� bQn(�K)� 1
n

nX
i=1

ln f0(xi)�
1

n

nX
i=1

ln fK(xi)

!�����
�

��� bQn(��K)�Q(��K)� � bQn(�K)�Q(�K)����+ jQ(��K)�Q(�K)j+
����� 1n

nX
i=1

ln f0(xi)�
1

n

nX
i=1

ln fK(xi)

����� :
Now note

��� bQn(��K)�Q(��K)� � bQn(�K)�Q(�K)���� = op �n�1=2+�=2+��O �K�s=2� by Lemma 2.1 and Lemma
D.6 and note jQ(��K)�Q(�K)j = O (K�s) by (40). Similarly with (37), using jln(1 + t)j � 2 jtj in a neigh-
borhood of t = 0, we also bound the last term as����� 1n

nX
i=1

ln f0(xi)�
1

n

nX
i=1

ln fK(xi)

����� (60)

� 1

n

nX
i=1

����ln f0(xi)fK(xi)

���� � 1

n

nX
i=1

2

����f0(xi)� f(xi; �K)f(xi; �K)

����
=

1

n

nX
i=1

2

���� 1

f(xi; �K)

���� ���hf0(xi)e�x2i =4 +WK(xi)
0�K

��� ���hf0(xi)e�x2i =4 �WK(xi)
0�K

���
� sup

x2X
2

�����
p
f0(x)

f(x; �K)

����� supx2X

���hf0(x)e�x2=4 �WK(x)0�K

��� 1
n

nX
i=1

 �����hf0(xi)e�x
2
i =4p

f0(xi)

�����+
�����WK(xi)

0�Kp
f0(xi)

�����
!
:

Note supx2X 2

����pf0(x)f(x;�K)

���� < 1 and supx2X
���hf0(x)e�x2=4 �WK(x)0�K

��� = O(K�s). The Markov inequality

gives 1
n

Pn
i=1

�����hf0 (xi)e�x2i =4p
f0(x)

����� = Op(1) from (38). Finally recall 1
n

Pn
i=1

�����WK(xi)
0�Kp

f0(xi)

����� = Op(1) by the
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Markov inequality from (39). Thus, we conclude����� 1n
nX
i=1

ln f0(xi)�
1

n

nX
i=1

ln fK(xi)

����� = O(K�s)

and hence from (59), it follows that����� 1n
nX
i=1

(ln f�K(xi)� ln f0(xi))
����� = op �n�1=2+�=2+��O �K�s=2

�
+O(K�s). (61)

Thus, from (58) and (61), we have����� 1n
nX
i=1

�
ln bf(xi)� ln f0(xi)�

����� �
����� 1n

nX
i=1

�
ln bf(xi)� ln f�K(xi)�

�����+
����� 1n

nX
i=1

(ln f�K(xi)� ln f0(xi))
�����

= op
�
n�1+�+2�

�
+ op

�
n�1=2+�=2+�

�
O
�
K�s=2

�
+O(K�s) +O(K�s) = op

�
n�1+�+2�

�
+O(K�s)

which implies for K = O (n�) ;

1

n

nX
i=1

�
ln bf(xi)� ln f0(xi)� = op r 1

n

!

with � � 1
2 � 2� and s >

1
2� . Now we derive the bound for

1
nv

nvP
i=1

�
ln bf(vi)� ln f0(vi)�. First, we bound

1
nv

nvP
i=1

�
ln bf(vi)� ln f�K(vi)�. Applying the second order Taylor expansion where e� lies between ��K and b�K ,

we have

1

nv

nvX
i=1

�
ln bf(vi)� ln f�K(vi)�

=
1

nv

nvX
i=1

@f(vi;b�K)
@�0

f(vi;b�K) (b�K � ��K)� 12(��K � b�K)0 1n
nX
i=1

 
@2f(vi;e�)
@�@�0

f(vi;e�) �
@f(vi;e�)
@�

@f(vi;e�)
@�0

f(vi;e�)2
!
(��K � b�K):

De�ne ��K = argmax
�2�n;f2Fn

1
nv

Pnv
i=1 ln f (vi; �) and hence

1
nv

Pnv
i=1

@f(vi;
��K )

@�

f(vi;��K)
= 0, assuming K(nv) = K(n) for

su¢ ciently large n, which can be justi�ed since nv = �n for some positive constant �. Consider

1

nv

nvX
i=1

@f(vi;b�K)
@�

f(vi;b�K) =
1

nv

nvX
i=1

@f(vi;b�K)
@�

f(vi;b�K) � 1
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where the second inequality is obtained since f(�; �) is bounded away from zero uniformly over X and
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