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Abstract—Due to domain shift, a large performance drop
is usually observed when a trained crowd counting model is
deployed in the wild. While existing domain-adaptive crowd
counting methods achieve promising results, they typically regard
each crowd image as a whole and reduce domain discrepancies
in a holistic manner, thus limiting further improvement of
domain adaptation performance. To this end, we propose to
untangle domain-invariant crowd and domain-specific background
from crowd images and design a fine-grained domain adaption
method for crowd counting. Specifically, to disentangle crowd
from background, we propose to learn crowd segmentation from
point-level crowd counting annotations in a weakly-supervised
manner. Based on the derived segmentation, we design a crowd-
aware domain adaptation mechanism consisting of two crowd-
aware adaptation modules, i.e., Crowd Region Transfer (CRT)
and Crowd Density Alignment (CDA). The CRT module is
designed to guide crowd features transfer across domains be-
yond background distractions. The CDA module dedicates to
regularising target-domain crowd density generation by its own
crowd density distribution. Our method outperforms previous
approaches consistently in the widely-used adaptation scenarios.

Index Terms—Crowd Counting, Domain Adaptation, Point-
derived Segmentation

I. INTRODUCTION

Crowd counting has drawn increasing attention because of
its fundamental role in social management [1], [2]. Due to
domain shift [3], performance usually degrades a lot when
trained crowd counting models are deployed in unseen crowd
scenes. To fill the performance gap, a direct solution is
to massively label abundant images in each crowd scene.
However, the labeling is quite onerous for crowd counting as
it requires labeling all human heads in each crowd image.

To avoid labeling burdensome, one promising way is to
introduce Unsupervised Domain Adaptation (UDA) to transfer
essential knowledge learned from a labeled source domain to
a related but unlabeled target domain [5]. Recently, several
methods are proposed to apply UDA for domain-adaptive
crowd counting, including pixel-level adaptation methods [6],
[7] and feature-level adaptation methods [8]–[11]. The feature-
level methods can achieve competitive performance and work
efficiently, thus dominating the existing literature.

*Shengfeng He is the corresponding author (shengfenghe7@gmail.com)

(a) Labeled Source Domain (b) Unlabeled Target Domain
SHPartASHPartB

Fig. 1: Crowd images from SHPartB (a) and SHPartA (b)
datasets [4] respectively. As can be seen, backgrounds vary
a lot across domains. For instance, backgrounds in SHPartB
are mainly ground whereas various backgrounds appear in
SHPartA including buildings, trees, sky, etc.

While achieving promising results, existing domain adapta-
tive crowd counting methods reduce domain discrepancies on
crowd and background simultaneously. The holistic manner in-
evitably degrades domain adaptation performance considering
that domain-specific background varies a lot across domains
(shown in Fig. 1) and background alignment across domains
challenges domain-invariant representation learning, which
further harms the discrimination of crowd and background
critical for crowd counting [12], [13].

To this end, we propose to treat crowd and background dif-
ferently while conducting domain adaptation. Note that crowd
counting only labels one point per human without segmen-
tation. To untangle crowd and background from point-level
annotations, we learn crowd segmentation from the sparse
point annotations in a weakly-supervised manner. Based on
the derived segmentation, we propose a Crowd-aware domain
Adaptation framework for Crowd Counting (CACC), which
consists of two crowd-aware adaptation modules, namely
Crowd Region Transfer (CRT) and Crowd Density Alignment
(CDA). Specifically, to guide crowd alignment across domains
beyond background distractions, we introduce the CRT module
to bridge domains by learning domain-invariant crowd fea-
tures. Besides, we introduce the CDA module to generate
segmentation-guided pseudo labels in the target domain to
regularize crowd density generation by target-domain’s own
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crowd density distribution, instead of by source-domain crowd
density distribution utilized in the previous methods [9]–[11].
The design considers that different domains usually have quite
different crowd density distributions, as shown in Fig. 1. It
inevitably degrades the adaptation performance to directly
utilize source-domain crowd density labels to regularize target-
domain crowd density distribution.

In summary, the contributions are organized as follows:

• We propose to treat crowd and background differently and
design a crowd-aware mechanism for domain adaptive
crowd counting.

• We propose a simple and effective schema to derive seg-
mentation from point-level crowd counting annotations.
Two crowd-aware domain adaptation modules are further
proposed, based on point-derived segmentation, to guide
crowd features transfer across domains beyond back-
ground distraction and regularize target-domain crowd
density generation.

• Our method outperforms previous approaches consis-
tently in the widely-used adaptation scenarios.

II. RELATED WORK

Domain-adaptive Crowd Counting. Recently, some methods
are proposed to solve domain-adaptive crowd counting. They
can be mainly grouped into three categories. (i) Pixel-level
adaptation methods [6]: [6] constructs a synthetic dataset GCC
and modifies CycleGAN [14] to conduct style transfer to
generate target-domain crowd images for supervised training.
(ii) Feature-level adaptation methods: Gao et al. [10] propose
to discriminate features across domains and constrain density
map generation by source-domain density labels. Han et al. [9]
constrain the feature extraction by a feature discriminator
and an auxiliary semantic task. Hossain et al. [8] reduce
the domain shift by minimizing the feature distances (i.e.,
Maximum Mean Discrepancy (MMD) [15]) across domains.
(iii) Others [16]–[19]: [16] introduce an extra head detector
for mutual training with the crowd counter. [17] present a
neuron linear transformation to optimize a small amount of
parameters based on a few target-domain training samples.
[18] introduce an external template encoding domain-specific
meta information for humans. [19] exploit a density iso-
morphism reconstruction objective derived from consecutive
frames in crowd videos. Methods in others can be regarded as
supplements with additional bounding box annotations [16],
extra target-domain annotations [17], an external template
encoding [18], or temporal consistency in videos [19].

While effective, they all conduct domain adaptation in a
holistic manner. However, domain alignment between crowd
and background inevitably incurs misalignment, leaving room
for improvement of previous methods.
Crowd Counting and Domain Adaptation. Due to limited
space, generic crowd counting and domain adaptation methods
are discussed in the Appendix.

III. METHOD

A. Problem Formulation
In domain adaptive crowd counting, we are given a labeled

source domain DS = {(xsi ,ysi )}
Ns
i=1 where xsi and ysi denote

the i-th crowd image and the corresponding annotation, i.e.,
coordinates of head positions. Besides, we have access to a
unlabeled target domain DT = {(xti)}

Nt
i=1. Our goal is to

improve counting performance in the unlabeled target domain
DT utilizing knowledge from both domains.

B. Framework Overview
As shown in Fig. 2, we propose a Crowd-aware domain

Adaptation framework for Crowd Counting (CACC), which
contains a crowd counter, a Point-derived Crowd Segmentation
(PCS) network, and two crowd-aware adaptation modules, i.e.,
Crowd Region Transfer (CRT) and Crowd Density Alignment
(CDA). Details of the basic crowd counter are in the Appendix.

C. Point-derived Crowd Segmentation
Point-derived Crowd Segmentation (PCS) is proposed to

disentangle crowd from background by point-level crowd
counting annotations in a weakly-supervised manner. The ra-
tionale behind this design is that although point annotations do
not specify segmentation, they still entail where crowd appears
and how crowd looks from a statistical perspective. This is
also studied in the context of Multiple Instance Learning
(MIL) [20] where a label is assigned to each bag of instances
instead of each instance. In our case, each patch cropped from
crowd images can be regarded as a bag of pixels where patch-
level labels can be defined as follows.

Specifically, we densely sample patches from crowd images
to construct crowd or background bags B = {b1,b2, ...,bN}.
Each patch bi in B contains a set of pixels Xi =
{x1, x2, ..., xhi×wi

}. Let yj be the label of each pixel xj which
indicates whether it is annotated in crowd counting. Following
the standard MIL assumption that a negative bag contains
only negative instances while a positive bag contains at least
one positive instance, we partition B into crowd bags BC and
background bags BB according to whether a bag contains at
least a crowd counting annotation or not:

BC = {bi ∈ B if yj = 1,∃ xj ∈ bi},
BB = {bi ∈ B if yj = 0,∀ xj ∈ bi}.

(1)

To learn segmentation from patch-level labels, we build a
learner F which classifies crowd and background patches.
Given each sample bi from BC or BB , F outputs an interme-
diate 2-channel map Mi = F(bi,Θ). Optimization objective
of classifier F is a standard cross entropy loss:

LF =
∑

bi∈BC

− log(S(A(M0
i )))

+
∑

bi∈BB

− log(S(A(M1
i ))),

(2)

where A(·) is a 2D aggregator (e.g., Avg2D), S(·) is the
softmax function. M0

i and M1
i represent the first and second

channel of Mi. The learning of F can activate pixel-wise
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Fig. 2: Overview of the proposed Crowd-aware domain Adaptation framework for Crowd Counting (CACC). To disentangle
crowd from background, we derive crowd segmentation from point-level crowd counting annotations, namely Point-derived
Crowd Segmentation (PCS), in a weakly-supervised manner. Based on the derived segmentation, we propose two crowd-aware
adaptation modules, i.e., Crowd Region Transfer (CRT) and Crowd Density Alignment (CDA). Crowd Region Transfer guides
crowd features alignment across domains beyond background distractions. Crowd Density Alignment samples pseudo head
positions from segmentation to generate segmentation-guided pseudo labels, which are utilized to regularize target-domain
crowd density generation by its own crowd density distribution.
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Fig. 3: Learning Point-derived Crowd Segmentation (PCS)
from point-level crowd counting annotations. 0 and 1 in
each side constitute a one-hot vector indicating the patch is
annotated as a crowd or background patch.

responses in Mi for better discrimination of crowd and back-
ground patches. After learning converges, we utilize Mi as
crowd and background segmentation. PCS is shown in Fig. 3.

Note that crowd counting annotates human head positions
only. A background bag BB in Eq. (1) may contain human
bodies. However, F in Eq. (2) is trained statistically with
natural tolerance to noisy labels. As shown in Fig. 2, we
can still derive high-quality crowd segmentation from noisy
labels. As human heads only exist in crowd bags BC , activated
crowd segmentation can thus focus more on human heads for
better classification. This is a blessing in disguise when head-
highlighted crowd segmentation is utilized to design crowd-
aware domain adaptation modules. This is because of the head-
centric labeling and recognition nature of crowd counting. We
will detail the benefits of head-highlighted crowd segmentation
in the following proposed modules.

In practice, only the source domain has crowd counting
annotations. We utilize density maps estimated by crowd
counter for training of F in the target domain. As discussed
above, F does not rely on accurate labels due to its statistical
nature. As shown in Fig. 4, segmentation results in the target
domain are still ensured high quality.

D. Crowd Region Transfer
Crowd Region Transfer (CRT) is designed to align crowd

features across domains beyond background distractions by
learning domain-invariant crowd feature representations.

Given a crowd image x, we denote crowd segmentation
from Point-derived Crowd Segmentation as Cseg . We have two
variants to design segmentation, i.e., soft crowd segmentation
CS
seg and hard crowd segmentation CH

seg . We directly utilize
Cseg as CS

seg . For CH
seg , we binarize CS

seg by:

T =
1

HW

∑
h,w

CS
seg(h,w), CH

seg = I(CS
seg > T ), (3)

where threshold T is set to the mean value of CS
seg , I(·)

represents the indication function.
Following [9]–[11], we utilize adversarial training to learn

domain-invariant features. Differently, we discard domain-
specific background features and focus on domain-invariant
crowd features. Optimization objective of CRT is:

LCRT = min
θG

max
θD

Exs∼DS logD(G(xs) ·CH/S
seg )

+ Ext∼DT log(1−D(G(xt) ·CH/S
seg )),

(4)

where G is the feature extractor of crowd counter. D is domain
classifier. D and G construct a two-player minimax game,
where D is trained to distinguish which domain the features
come from, while G aims to confuse D.

Note that soft crowd segmentation CS
seg from PCS is

head-highlighted. When utilized in Eq. 4, CS
seg enhances

head features alignment across domains, which is crucial for
crowd counting due to its head-centric recognition mechanism.
Effectiveness of CS

seg is shown in Table I.



Algorithm 1: Crowd-aware Domain Adaptation for
Crowd Counting.

Input: Labeled source domain DS .
Unlabeled target domain DT .
Batch size B.

Output: A domain adaptive crowd counter C(·, θ).
1 Supervised learning of C(·, θ) in DS .
2 Sample bags B in DS & DT and partition B into BC

and BB by Eq. (1).
3 Learning of F on BC and BB by Eq. (2).
4 Obtain crowd segmentation in DS and DT .
5 for i = 1 to max iter do
6 XS , YS ← Sample(DS , B/2)
7 XT ← Sample(DT , B/2)
8 Calculate Lden
9 Calculate LCRT by Eq. (4)

10 Generate segmentation-guided pseudo labels in DT
11 Calculate LCDA according to Eq. (6)
12 Optimize C(·, θ) by Eq. (7)

E. Crowd Density Alignment

Crowd Density Alignment (CDA) is designed to regularize
target-domain crowd density generation by its own crowd den-
sity distribution, instead of source-domain density distribution
utilized in all the previous methods.

Specifically, we use soft crowd segmentation CS
seg to gen-

erate probabilistic crowd distribution P by normalization:

P = CS
seg /

∑
h,w

CS
seg(h,w). (5)

P follows a discrete bivariate distribution where we iteratively
sample pseudo head positions P = {(wi, hi) | i∈ [1, n]}. After
sampling, we generate pseudo density labels as in the source
domain by convolving each pseudo head point with a Gaussian
kernel.

Following previous methods, we utilize adversarial training
to regularize target-domain crowd density generation. Differ-
ently, we exploit segmentation-guided pseudo density labels
as guidance, instead of source-domain density labels. The
optimization objective is:

LCDA = min
θG

max
θDm

EMSPL∼DSPL
logDm(MSPL))

+ Ext∼DT log(1−Dm(G(xt))),
(6)

where Dm denotes crowd density discriminator. MSPL and
DSPL represent segmentation-guided pseudo density maps and
the corresponding domain respectively. With the segmentation-
guided pseudo labels, our method can directly constrain the
target-domain crowd density generation by its own crowd
density distribution.

Note that the head-highlighted nature of soft crowd seg-
mentation CS

seg also benefits the generation of segmentation-
guided pseudo labels considering the head-centric labeling
mechanism of crowd counting.

TABLE I: Ablation studies on Crowd Region Transfer (CRT)
in the Synthetic-to-Real adaptation scenario.

Method GCC → SHPartB GCC → SHPartA
MAE RMSE MAE RMSE

Source only 19.5 28.9 169.2 255.9
CRT w/o PCS 16.4 26.8 134.8 213.6

CRT w/ BinarySeg. 15.6 24.1 125.3 204.9
CRT w/ Hard Seg. 15.0 23.8 122.5 203.2
CRT w/ Soft Seg. 14.7 23.5 117.4 201.6

Crowd Image PCS Seg. CDA Label Ground Truth
Fig. 4: Qualitative results of Point-derived Crowd Segmen-
tation (PCS Seg.) and segmentation-guided pseudo label for
Crowd Density Alignment (CDA label) in the target domains
of Synthetic-to-Real adaptation scenario.

F. Network Optimization

The training procedure of the proposed framework contains
three major components: Supervised Learning (SL) Lden,
Crowd Region Transfer (CRT) LCRT , and Crowd Density
Alignment (CDA) LCDA. With the above terms, the overall
optimization objective writes as:

Ltotal = Lden + λ1LCRT + λ2LCDA, (7)

where λ1 and λ2 are factors to balance the three items.
Detailed optimization procedure is shown in Algorithm 1.

IV. EXPERIMENTS

A. Datasets and Adaptation Scenarios
Datasets. Six datasets are used in our experiments, i.e., GCC
[6], ShanghaiTech PartA (SHPartA) [4], ShanghaiTech PartB
(SHPartB) [4], JHU-CROWD (JHUC) [21], MALL [22], and
UCSD [23]. Details are in the Appendix.
Adaptation Scenarios. (i) Synthetic-to-Real
(GCC→SHPartB, GCC→SHPartA). We employ the synthetic
GCC as source domain and the training set of SHPartB or
SHPartA as target domain. (ii) Fixed-to-Fickle (SHPartB
→ SHPartA). We utilize the training set of SHPartB (a
fixed crowd scene) as source domain and the training set
of SHPartA (various crowd scenes) as target domain. (iii)
Normal-to-BadWeather (SHPartA→JHUC). To simulate
weather condition changes, we utilize the training set of
SHPartA as source domain and the images with bad weather
conditions in the training set of JHUC as target domain.

B. Ablation Studies
We conduct ablation studies in Synthetic-to-Real adaptation

scenario to validate the effectiveness of the proposed modules,
i.e., PCS, CRT, and CDA.



TABLE II: Comparison with state-of-the-art methods in the Synthetic-to-Real adaptation scenario. “U” and “S” denote
unsupervised and semi-supervised domain adaptation methods, respectively. “Gain” denotes the relative gains of MSE/RMSE
in comparison to the performance before adaptation.

Synthetic → Real

Method Type GCC → SHPartB GCC → SHPartA
MAE ↓ RMSE ↓ Gain ↑ MAE ↓ RMSE ↓ Gains ↑

NLT [17] S 10.8 18.3 46.2%/37.3% 90.1 151.6 52.0%/45.7%
FSC [9] S 16.9 24.7 31.1%/26.7% 129.3 187.6 32.2%/37.0%

CycleGAN [14] U 25.4 39.7 -10.2%/-23.6% 143.3 204.3 10.4%/5.6%
SE CycleGAN [6] U 19.9 28.3 12.7%/7.5% 123.4 193.4 22.8%/10.6%

FADA [10] U 16.0 24.7 28.2%/17.3% – – –
ASNet [11] U 14.6 22.6 – – – –

Ours U 13.5 21.8 30.7%/24.5% 109.3 187.1 35.4%/26.8%

Oracle – 8.9 15.3 – 67.5 112.1 –

TABLE III: Ablation studies on Crowd Density Alignment
(CDA) in the Synthetic-to-Real adaptation scenario. CRT here
utilizes soft crowd segmentation (“CRT w/ Soft Seg.”).

Method GCC → SHPartB GCC → SHPartA
MAE RMSE MAE RMSE

CRT 14.7 23.5 117.4 201.6
CRT + SL [10] 14.3 22.4 114.7 193.7

CRT + CDA 13.5 21.8 109.3 187.1

Effectiveness of PCS. We evaluate PCS by testing how
much the derived crowd segmentation covers annotated hu-
man heads. The percentages of coverage in Synthetic-to-Real
adaptation scenario are 98.5, 93.6, and 95.2 for GCC (source
domain), SHPartA (target domain), and SHPartB (target do-
main) datasets, respectively. This indicates that point-derived
crowd segmentation can cover almost all human heads in both
domains. Qualitative results of PCS are shown in Fig. 4.
Effectiveness of CRT. To evaluate the effective of CRT,
we introduce several comparison variants as follows. “Source
only” denotes crowd counter trained on source domain only.
“CRT w/o PCS” transfers features across domains in a holistic
manner. “CRT w/ Hard Seg.”, “CRT w/ Soft Seg.”, and “CRT
w/ BinarySeg.” denote CRT with hard crowd segmentation,
soft crowd segmentation, and binarizing Gaussian-blurred den-
sity maps [24].

As shown in Table I, compared to “Source Only”, “CRT w/o
PCS” can improve the adaptation performance to some extent.
“CRT w/ BinarySeg.”, “CRT w/ Hard Seg.”, and “CRT w/ Soft
Seg.” achieve lower counting errors compared to “CRT w/o
PCS” no matter what kind of crowd segmentation is leveraged.
This indicates background features alignment across domains
incurs an adverse effect during domain adaptation. “CRT w/
Soft Seg.” is better than “CRT w/ Hard Seg.”, which demon-
strates the effectiveness of enhanced head features brought by
head-highlighted soft crowd segmentation.
Effectiveness of CDA. As shown in Table VII, “CDA” out-
performs “SL” (Source-domain density Labels) [10] consis-
tently, which demonstrates the superiority of the segmentation-
guided density alignment mechanism. Qualitative results of
segmentation-guided pseudo labels are in Fig. 4.

TABLE IV: Comparisons with state-of-the-art methods
on some shared settings, i.e., SHPartA→SHPartB,
MALL→UCSD, and UCSD→MALL.

Method Type SHPartA → SHPartB MALL → UCSD UCSD → MALL
MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓

DACC [8] U – – 2.52 3.38 2.93 3.65
ASNet [11] U 13.59 23.15 – – 2.76 3.55

Ours U 12.84 21.92 2.39 3.26 2.68 3.50

C. Comparison to state-of-the-art methods
Synthetic-to-Real. As shown in Table II, our method can
achieve the lowest counting errors and the highest relative
gains compared to all the unsupervised counterparts. Although
we do not leverage extra annotations, our method can still
outperform FSC [9]. To be comparable with NLT [17], we
also introduce 10% labeled target data. The performance of
our method in terms of MAE/RMSE is enhanced to 10.2/17.5
(SHPartB) and 82.4/136.6 (SHPartA), respectively, which are
better than NLT [17].
Fixed-to-Fickle & Normal-to-BadWeather. The two adapta-
tion scenarios are discussed for the first time in the literature.
Due to limited space, we show the results in the Appendix.
Others. To conduct more comparisons with state-of-the-
art methods, we follow some other shared settings, i.e.,
SHPartA→SHPartB, MALL→UCSD, and UCSD→MALL.
As can be seen in Table IV, our method can outperform state-
of-the-art methods in different adaptation scenarios.

D. Qualitative Results

Qualitative results of the estimated density maps can be seen
in Fig. 5. Due to the domain shift problem, the “Source Only”
model simply detects some salient individuals in the crowd.
From “Source Only” to “Ours w/o PCS”, we can observe
that the “Ours w/o PCS” model can increase true positives
to some extent, but also incurs some false positives in the
background areas due to the misalignment between crowd and
background. Differently, our method can consistently estimates
more accurate crowd densities and suppresses the occurrence
of false positives thanks to the proposed crowd-aware domain
adaptation method.



Input Image Source Only Ours w/o PCS Ours Ground Truth
Fig. 5: Qualitative results of the estimated density maps in the Synthetic-to-Real adaptation scenario. Note that “Ours w/o
PCS” also means our method without the CRT and CDA modules as PCS is the base of them.

V. CONCLUSION

In this paper, we propose to treat crowd and background
differently and design a Crowd-aware domain Adaptation
framework for Crowd Counting (CACC). Specifically, we
learn crowd segmentation from pixel-level crowd counting
annotations. Based on the derived segments, we design two
crowd-aware adaptation modules, i.e., Crowd Region Transfer
(CRT) and Crowd Density Alignment (CDA). Extensive ex-
periments in multiple cross-domain scenarios demonstrate the
superiority of the proposed method.

REFERENCES

[1] Teng Li, Huan Chang, Meng Wang, Bingbing Ni, Richang Hong, and
Shuicheng Yan, “Crowded scene analysis: A survey,” IEEE transactions
on circuits and systems for video technology, vol. 25, no. 3, pp. 367–386,
2014.

[2] Guangshuai Gao, Junyu Gao, Qingjie Liu, Qi Wang, and Yunhong Wang,
“Cnn-based density estimation and crowd counting: A survey,” arXiv
preprint arXiv:2003.12783, 2020.

[3] Antonio Torralba and Alexei A Efros, “Unbiased look at dataset bias,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2011.

[4] Yingying Zhang, Desen Zhou, Siqin Chen, Shenghua Gao, and Yi Ma,
“Single-image crowd counting via multi-column convolutional neural
network,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 589–597.

[5] Sinno Jialin Pan and Qiang Yang, “A survey on transfer learning,” IEEE
Transactions on knowledge and data engineering, vol. 22, no. 10, pp.
1345–1359, 2009.

[6] Qi Wang, Junyu Gao, Wei Lin, and Yuan Yuan, “Learning from synthetic
data for crowd counting in the wild,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019.

[7] Junyu Gao, Tao Han, Yuan Yuan, and Qi Wang, “Domain-adaptive crowd
counting via high-quality image translation and density reconstruction,”
IEEE Transactions on Neural Networks and Learning Systems, 2021.

[8] Mohammad Asiful Hossain, Mahesh Kumar Krishna Reddy, Kevin
Cannons, Zhan Xu, and Yang Wang, “Domain adaptation in crowd
counting,” in IEEE Conference on Computer and Robot Vision, 2020.

[9] Tao Han, Junyu Gao, Yuan Yuan, and Qi Wang, “Focus on semantic con-
sistency for cross-domain crowd understanding,” in IEEE International
Conference on Acoustics, Speech and Signal Processing, 2020.

[10] Junyu Gao, Qi Wang, et al., “Feature-aware adaptation and density
alignment for crowd counting in video surveillance,” IEEE Transactions
on Cybernetics, 2020.

[11] Zhikang Zou, Xiaoye Qu, Pan Zhou, Shuangjie Xu, Xiaoqing Ye,
Wenhao Wu, and Jin Ye, “Coarse to fine: Domain adaptive crowd
counting via adversarial scoring network,” in Proceedings of the ACM
International Conference on Multimedia, 2021, pp. 2185–2194.

[12] Haoran Wang, Tong Shen, Wei Zhang, Ling-Yu Duan, and Tao Mei,
“Classes matter: A fine-grained adversarial approach to cross-domain
semantic segmentation,” in European Conference on Computer Vision,
2020.

[13] Sinan Wang, Xinyang Chen, Yunbo Wang, Mingsheng Long, and Jian-
min Wang, “Progressive adversarial networks for fine-grained domain
adaptation,” in CVPR, 2020.

[14] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros, “Unpaired
image-to-image translation using cycle-consistent adversarial networks,”
in Proceedings of the IEEE International Conference on Computer
Vision, 2017.

[15] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan,
“Deep transfer learning with joint adaptation networks,” in International
Conference on Machine Learning, 2017.

[16] Yuting Liu, Zheng Wang, Miaojing Shi, Shin’ichi Satoh, Qijun Zhao, and
Hongyu Yang, “Towards unsupervised crowd counting via regression-
detection bi-knowledge transfer,” in Proceedings of the 28th ACM
International Conference on Multimedia, 2020.

[17] Qi Wang, Tao Han, Junyu Gao, and Yuan Yuan, “Neuron linear
transformation: modeling the domain shift for crowd counting,” IEEE
Transactions on Neural Networks and Learning Systems, 2021.

[18] Qiangqiang Wu, Jia Wan, and Antoni B Chan, “Dynamic momentum
adaptation for zero-shot cross-domain crowd counting,” in Proceedings
of the ACM International Conference on Multimedia, 2021, pp. 658–666.

[19] Yuhang He, Zhiheng Ma, Xing Wei, Xiaopeng Hong, Wei Ke, and
Yihong Gong, “Error-aware density isomorphism reconstruction for
unsupervised cross-domain crowd counting,” in AAAI, 2021.

[20] Oded Maron and Tomás Lozano-Pérez, “A framework for multiple-
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VI. APPENDIX

A. More Related Work

1) Crowd Counting: Early works for crowd counting are
mainly based on hand-crafted features (e.g., SIFT, Fourier
Analysis, HOG) to estimate crowd counts by either regres-
sion [22], [25], [26] or object detection [27]–[29]. Various
CNN-based methods have advanced the performance of crowd
counting. Most of them are dedicated to handle various
challenges of crowd counting in an supervised manner, e.g.,
large scale variations [4], [30]–[37], hand-crafted gaussian
kernels [38]–[40], uncertainty [41], [42], enhancing crowd
features [43]–[46], extra constraints [47]–[49], etc. Besides the
supervised methods, several approaches focus on relieving the
labeling burdensome. They can be broadly categorized into
semi-supervised methods [24], [50]–[54], weakly-supervised
methods [55], [56], self-supervised methods [57], [58] and
unsupervised methods [59], [60].

These generic crowd counters can achieve promising perfor-
mance in public datasets, whereas they do not focus on solving
the domain shift problem, which hurts their generalization
performance in real-world application scenarios.

2) Domain Adaptation: Lots of domain adaptation meth-
ods dedicate to reducing domain discrepancies by learning
domain-invariant feature representations. Methods along this



TABLE V: Architecture of crowd counter.

VGG16 Backbone
Conv1: [K(3,3)-C64-S1-R]

...
Conv10: [K(3,3)-C512-S1-R]

Deconvolution Block
Conv11: [K(3,3)-C64-S1-R]; Deconv1: [K(2,2)-C64-S2-R]
Conv12: [K(3,3)-C32-S1-R]; Deconv2: [K(2,2)-C32-S2-R]
Conv13: [K(3,3)-C16-S1-R]; Deconv3: [K(2,2)-C16-S2-R]

Density Regression Layer
Conv14: [K(3,3)-C16-S1-R]
Conv15: [K(3,3)-C1-S1-R]

TABLE VI: Architecture of Point-derived Crowd Segmenta-
tion (PCS) network.

Feature Extractor
Conv1: [K(3,3)-C16-S1-R]; Conv2: [K(3,3)-C16-S1-R]

MaxPool1: [K(2,2)-C16-S2]
Conv3: [K(3,3)-C32-S1-R]; Conv4: [K(3,3)-C32-S1-R]

MaxPool2: [K(2,2)-C32-S2]
Conv5: [K(3,3)-C32-S1-R]; Conv6: [K(3,3)-C32-S1-R]

MaxPool3: [K(2,2)-C32-S2]
Conv7: [K(3,3)-C2-S1-R]

2DAvgPool & Softmax

line can be generally categorized into two types: criterion-
based methods [15], [61]–[66] and adversarial learning-based
methods [67]–[77]. The former aligns feature distributions
between different domains by minimizing some statistics,
such as Maximum Mean Discrepancy [15], Correlation Align-
ment [62], Wasserstein distance [65], and HoMM [66]. The
latter introduces a domain discriminator to classify feature
representations, while adversarially confuses the discriminator
by constructing a minimax game with the feature extractor.
These methods have been widely studied and achieved su-
perior performance in image classification [67], [78]–[80],
semantic segmentation [81]–[87], object detection [88]–[94].

However, domain adaptation for crowd counting is less
studied, and existing generic methods cannot easily adapt to
crowd counting due to its special labeling mechanism and
diverse backgrounds in crowd scenes.

B. More Network Details

1) Architecture of Crowd Counter: Most crowd counting
networks employ density maps as the intermediate output for
better supervision. They are typically generated by convolving
each annotated head point with a Gaussian kernel [4]:

D(z) =

N∑
k=1

δ(z− zk) ∗Gσk
(z), (8)

where z and zk denote each pixel and the k-th annotated point
(total N points) in a crowd image x. Gσk

is a 2D Gaussian
kernel with a bandwidth σk. Following previous works [6], [9],
[10], we employ a simple and universal crowd counter without
specialized techniques to verify the general effectiveness of the

TABLE VII: More ablation studies on Crowd Density Align-
ment (CDA) in the Synthetic-to-Real adaptation scenario.

Method GCC → SHPartB GCC → SHPartA
MAE RMSE MAE RMSE

Source only 19.5 28.9 169.2 255.9
SL [10] 18.6 28.2 165.4 248.5

CDA 16.9 26.7 160.5 239.6

proposed domain adaptation method. Specifically, we extract
the first ten convolutional layers of VGG16 [95] with three
maxpooling layers as the backbone network. After the back-
bone network, we introduce several deconvolutional layers to
generate high-resolution density maps. Detailed network archi-
tecture of crowd counter is in Table V. For example, “K(3,3)-
C64-S1-R” represents the Convolution or Deconvolution layer
with kernel size of 3× 3, 64 output channels, stride size of 1,
and ReLU activation function.

To measure distance between ground truth and estimated
density map, we adopt the widely-used pixel-wise Euclidean
loss which can be formulated as:

Lden(x) =
1

2M

∥∥Dest(x)−DGT (x)
∥∥2
2

(9)

where M is the number of pixels in the input image x. Dest(x)
and DGT (x) represent the estimated and ground truth density
maps, respectively.

2) Architecture of Point-derived Crowd Segmentation:
Detailed network architecture of the Point-derived Crowd
Segmentation (PCS) network is in Table VI.

C. More Experiment Details

1) Implementation Details: In all experiments, we set the
batch size as 2, i.e., one image per domain. We adopt random
cropping and horizontal flipping for data augmentation. Adam
optimizer [96] is utilized to optimize the networks with the
learning rate of the crowd counter and all classifiers initialized
as 10−4 and 10−5, respectively. λ1 and λ2 in Eq. (6) are set
to 1 and 0.3, respectively via cross validation. Following [6],
scene regularization is utilized to select synthetic images from
GCC to facilitate adaptation. We adopt three domain classifiers
for multi-scale features extracted after each pooling layer in
G(·) of Eq. (4). The training and evaluation are achieved on
2 NVIDIA GTX 2080Ti GPU. Evaluation metrics are MAE
and RMSE [4].

2) Datasets: Six datasets are utilized in our experiments.
(i) GCC [6] is a synthetic dataset containing 15,212 images
with resolution of 1080 × 1920, which are rendered by
GTA5 and captured by 400 surveillance cameras in a fictional
city. (ii) SHPartA [4] is randomly crawled from the Internet
with various crowd scenes containing 482 images, in which
300 images for training and 182 images for testing. (iii)
SHPartB [4] is collected from the busy streets of metropolitan
areas in Shanghai consisting of 716 images, in which 400
images for training and the remaining for testing. Compared
to SHPartA, SHPartB has relatively fixed camera perspectives



TABLE VIII: Results of the Fixed-to-Fickle adaptation.

Fixed → Fickle (SHPartB → SHPartA)

Method MAE ↓ RMSE ↓ Gain ↑

Source only 194.0 298.4 –
CRT w/o PCS 153.2 247.5 21.0%/17.1%

CRT 123.3 204.6 36.4%/31.4%
CRT + CDA (Ours) 115.6 199.5 40.4%/33.1%

Oracle 67.5 112.1 –

TABLE IX: Results of the Normal-to-BadWeather adaptation.

Normal → BadWeather (SHPartA → JHUC)

Method MAE ↓ RMSE ↓ Gain ↑

Source only 208.5 535.6 –
CRT w/o PCS 173.6 437.2 16.7%/18.3%
CRT w/ PCS 159.5 394.7 23.5%/26.3%

CRT w/ PCS + CDA (full) 153.2 384.0 26.5%/28.3%

Oracle 80.4 215.3 –

and crowd scenes. (iv) JHU-CROWD (JHUC) [21] is a large-
scale dataset proposed recently, which contains 4,372 images.
Images are collected under a variety of scenes and environ-
mental conditions, and annotations include head positions,
approximate sizes, blur-level, occlusion-level, weather-labels,
etc. (v) MALL [22] is captured in a shopping mall by a fixed

surveillance camera. The dataset consists of 2,000 frames in
which the first 800 frames for training and the remaining for
testing. (vi) UCSD [23] is collected by a fixed video camera
besides a pedestrian walkway. The datasets contains 2,000
frames in which the training set captures 601 to 1,400 and
the testing set owns the remaining. Region-of-interest (ROI)
and perspective map are provided.

3) More Quantitative Results: Effectiveness of CDA. To
further verify the effectiveness of Crowd Density Alignment
(CDA), we conduct more ablation studies without based on
the proposed Crowd Region Transfer (CFA). The comparison
results are in Table VII. We can see that “CDA” outper-
forms “SL”, which demonstrates consistent superiority of the
proposed segmentation- guided density alignment mechanism.

Fixed-to-Fickle & Normal-to-BadWeather. The two adapta-
tion scenarios are discussed for the first time in the literature.
However, they are also very important adaptation scenarios
considering various crowd scenes and weather conditions in
real-world applications. Results of different variants of our
method in the two scenarios are summarized in Table VIII.
As can be seen, the proposed PCS, CRT, and CDA modules
can progressively improve the counting accuracies in both
adaptation scenarios, which confirms the effectiveness of the
proposed crowd-aware domain adaptation mechanism in mul-
tiple real-world adaptation scenarios.
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