
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

5-2022 

Learning transferable perturbations for image captioning Learning transferable perturbations for image captioning 

Hanjie WU 

Yongtuo LIU 

Hongmin CAI 

Shengfeng HE 
Singapore Management University, shengfenghe@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Databases and Information Systems Commons, and the Theory and Algorithms Commons 

Citation Citation 
WU, Hanjie; LIU, Yongtuo; CAI, Hongmin; and HE, Shengfeng. Learning transferable perturbations for 
image captioning. (2022). ACM Transactions on Multimedia Computing, Communications and 
Applications. 18, (2),. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8371 

This Journal Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8371&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8371&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8371&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


57

Learning Transferable Perturbations for Image Captioning

HANJIE WU, YONGTUO LIU, HONGMIN CAI, and SHENGFENG HE,

South China University of Technology, China

Present studies have discovered that state-of-the-art deep learning models can be attacked by small but well-

designed perturbations. Existing attack algorithms for the image captioning task is time-consuming, and their

generated adversarial examples cannot transfer well to other models. To generate adversarial examples faster

and stronger, we propose to learn the perturbations by a generative model that is governed by three novel

loss functions. Image feature distortion loss is designed to maximize the encoded image feature distance be-

tween original images and the corresponding adversarial examples at the image domain, and local-global

mismatching loss is introduced to separate the mapping encoding representation of the adversarial images

and the ground true captions from a local and global perspective in the common semantic space as far as

possible cross image and caption domain. Language diversity loss is to make the image captions generated

by the adversarial examples as different as possible from the correct image caption at the language domain.

Extensive experiments show that our proposed generative model can efficiently generate adversarial exam-

ples that successfully generalize to attack image captioning models trained on unseen large-scale datasets or

with different architectures, or even the image captioning commercial service.
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1 INTRODUCTION

Recently, neural network-based methods have achieved great performance on many tasks [26, 39].
However, researches [10, 30, 41] found that deep learning networks are easy to be attacked by
adversarial examples that consist of original images and hand-crafted perturbations. Adversarial
examples have no impact on human perceptions but cause the deep learning model to output
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Fig. 1. Our adversarial examples and the corresponding error output captions generated by the attacked

image captioning model.

error results. Previous works have paid attention to find adversarial examples against tasks such
as semantic segmentation [34], text classification [14], and speech recognition [38].

Notwithstanding the demonstrated success on these tasks, adversarial examples are rarely ex-
plored in image captioning. It is a task to generate a natural language caption that describes the
visual contents of a given image. It has many important applications [12], e.g., image indexing,
tagging flags on pictures uploaded to the social media, and helping blind people to understand
the world. The attack to image captioning model may mislead the user to perform improper be-
havior. Therefore, the robustness of an image captioning model is important. Different from the
classification task where their prediction is restricted to a limited number of classes, image cap-
tioning tasks generate grammatically correct and meaningfully correct captions but there are tons
of captions expressing the same meaning. If we consider each caption as one kind of class, then
there are large numbers of classes in the distribution of the captions in the image captioning task.
This makes it difficult to generate adversarial examples for the image captioning task. There are
few works [5, 37, 42] to generate adversarial examples for image captioning models. These three
methods both mainly focus on targeted attack that aims to output pre-specified captions. To find
adversarial examples, previous methods formulate the attack process as an traditional optimiza-
tion problem, which often needs a large number of iterations (around 1,000 times in these methods)
to generate each adversarial example. For each new image, the previous attack algorithms need to
iteratively solve the optimization problem. This makes them time- and computational-consuming
and not suitable for real-time attack. Besides, they only impose loss functions on the final predic-
tion in the single language domain without considering the property in the image domain, which
limits the generalization capability of generated adversarial examples.

In this article, unlike previous works, we address the non-targeted attack problem on image
captioning by formulating the process of crafting adversarial examples as a generative problem.
In particular, we design a generative model to produce adversarial perturbations, which are added
on the input image to fool image captioning models (see Figure 1). Additionally, we tailor three
novel loss functions to train the perturbation generator, which jointly consider both image and
language domains. These three losses are inspired by the basic structure of the image captioning
model. We found that the existing well-performing image captioning models are mostly composed
of two parts. One part consists of the convolutional neural network, and the other part consists
of the recurrent neural network. First, image feature distortion loss is proposed to maximize the
distance between original images and the generated corresponding adversarial examples in the
encoding image feature space. The extracted image features will be fed into the recurrent neural
network later, so larger distortion in the encoding image features will cause higher possibilities
to output an error caption. Second, we present a local-global mismatching loss to measure the

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 18, No. 2, Article 57. Publication date: February 2022.



Learning Transferable Perturbations for Image Captioning 57:3

matching degree across image and caption domains. We utilize this loss function to reduce the
matching degree between the adversarial image and the corresponding true caption to generate
adversarial examples. Although there exist some metrics such as BLEU [27], CIDEr [31], ROUGE_L
[20], METEOR [4], SPICE [1], and WMD [15] to measure the matching degree between images and
captions, they are not differentiable and cannot be directly used as the loss function at training
time. Therefore, to measure the matching degree across domains, we train two additional neural
networks to encode images and captions into a common semantic feature space. In this feature
space, the distance between the image and its corresponding caption is as close as possible, while
the distance of the same image and the irrelevant caption is as far as possible. Third, language
diversity loss is used to make the adversarial captions generated by the generated adversarial
image and the true caption of the original image as different as possible in the language domain.

Once the generative model is trained, each adversarial example can be generated by only one
forward pass instead of iterative optimization. Besides, different from previous optimization formu-
lation where adversarial examples are generated separately without considering other adversarial
examples, our generative model is trained in a dataset considering more general patterns. Together
with our proposed loss functions, our generative model can significantly improve the generaliza-
tion ability of adversarial examples. Extensive experimental results demonstrate the effectiveness
and generalization ability across different settings. Below, we summarize our contributions:

• We propose to formulate the attack process for image captioning as a generative problem
and design a generative model to efficiently and robustly generate adversarial examples.
• We tailor three novel loss functions from three different perspectives, i.e., image feature dis-

tortion loss, local-global mismatching loss, and language diversity loss. They jointly govern
the network in image and language domains, and the generative model learns more trans-
ferable adversarial examples due to these loss functions.
• Extensive experiments show that our proposed generative model can produce adversarial

examples that successfully generalize to the image captioning model trained on unseen large-
scale datasets, or other image captioning models with different architectures, or even the
image captioning commercial service.

2 RELATED WORK

2.1 Image Captioning

Image caption generation is a multimodal task in the fields of computer vision and natural lan-
guage processing. The general pipeline of image captioning is to extract the visual information
of the input image first and then use the visual information to generate the image caption by the
language model. Many network architectures and learning strategies [8, 9, 13, 29, 32, 35] have been
proposed to make the generated image caption more accurate and diverse. In general, an image
caption generation network consists of two parts: One part is an image visual feature extraction
network that usually consists of convolutional layers, and the other part is a natural language
caption generation network based on recurrent neural layers. At the same time, various evalua-
tion metrics [1, 4, 15, 20, 27, 31] are also proposed for measuring the accuracy and diversity of
the generated caption. Although the performance of image captioning tasks has reached a good
performance, only a few studies [5, 37, 42] have investigated the robustness of this task.

2.2 Adversarial Attacks

Adversarial attacks are to fool deep learning models through well-designed adversarial exam-
ples. Adversarial examples and original images are supposed to have visually similar perception
to humans but different meanings to deep learning models. In recent research, various methods
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have been proposed to generate adversarial examples for semantic segmentation tasks [34], text
classification tasks [14], and speech recognition tasks [38]. For example, Goodfellow et al. [10]
propose the fast gradient sign method (FGSM) to generate adversarial examples by adding the
perturbation in the direction of the sign of the gradient of loss function. It is a single-step attack
method. Kurakin et al. [19] improve FGSM by proposing an iterative FGSM unlike the previous
single-step attack. This iterative attack method is more effective than the single-step attack in the
white-box attack setting. Dong et al. [7] find the adversarial examples in the gradient direction that
increases the classification loss with momentum information in the optimization process. This is
a momentum-based Iterative FGSM. Xie et al. [33] propose that introducing the operation of input
randomization during the iterative attack can increase the robustness of the attack effect. Besides,
Baluja and Fischer [3] train an auto-encoder to take original images as input and output adversarial
examples that can make the classifier misclassify, and they optimize the parameters of the network
through the L2 norm and classification loss. As for Image captioning tasks, Chen et al. [5] utilize
L2 distance metric and captioning loss to craft adversarial examples that make image captioning
model output a caption containing specific words. Xu et al. [37] treat the attack problem as two
kinds of formulations: One is the structured output learning with latent variables, and the other is
the log marginal likelihood problem optimized by GEM algorithm. Zhang et al. [42] crafted pertur-
bation that is based on semantic embedding of the targeted caption. Different from their methods,
we propose a learning method to generate image adversarial examples by using neural networks
with three well-designed losses. Furthermore, our method focuses on non-targeted attacks.

3 PROPOSED METHOD

3.1 Problem Formulation

The attacked image captioning model is represented by the function I , which takes an image
X ∈ R3×H×W as input and outputs a caption C=(C1,C2, . . . ,CN ). X represents an original image
input and C is the caption generated from the image captioning model. We define an adversarial
example X ′ as the image that adds a certain amount of perturbations δ ∈ R3×H×W generated by
perturbations generatorG to the original imageX . We restrict the image distortion under a limited
upper ϵ in order not to affect human perception about the original image. The above formulations
can be described as following equations:

I (X ) = C, (1)

G (X ) = δ , I (X + δ ) = C ′, (2)

X ′ = X + δ , ��X ′ − X��∞ ≤ ϵ . (3)

Because the output of the image captioning task is a sentence that contains many sequential words,
we cannot simply measure the success of the attack from one label to another label like the classi-
fication task does. To measure the attack performance of the generated adversarial examples, we
will calculate the evaluation metrics such as BLEU according to the strength of reduction on these
metrics to measure the attack performance.

3.2 Method Framework

Figure 2 illustrates the whole architecture of our proposed method. It mainly consists of four parts:
a perturbations generatorG, two mapping encoders Mimaдe and Mcaption , and the target attacked
image captioning model I . TheG takes the image X as input and generates a perturbation δ . The δ
will be clipped to the limited upper bound of perturbations ϵ and then X + δ is fed into the image
captioning model I . We can get image encoding features and the final predicted caption from the
I . Our loss function designs are based on these information. The Mimaдe and Mcaption are fixed
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Fig. 2. Illustration of the proposed perturbations generating architecture. Our perturbations generator con-

siders input image to generate the attacking perturbation. We add the adversarial perturbation back to the

input image while applying a clip function to restrict the applied perturbations. Then, the generated adver-

sarial example is fed into a target image captioning model. Our perturbations generator is encouraged to

mislead output captions by the image feature distortion loss, local-global mismatching loss, and language

diversity loss that jointly consider the correlation between image and language domains. Notice that, due to

these loss items, the output caption of our adversarial examples is completely unrelated to the input image.

Meanwhile, the adversarial examples will not influence the human evaluation about the images.

pre-trained models when training the G, and the trained Mimaдe and Mcaption can map images
and captions to a common semantic space. In this space, the spatial distance between the image
and the corresponding captions is close, while the pair of mismatched images and captions are far
away. To train this multimodal problem, we tailor the image feature distortion loss, local-global
mismatching loss, and language diversity loss to optimize the perturbations generator.

3.3 Loss Functions

Image feature distortion loss is motivated by the general image captioning model architecture.
We observed that most of the current image captioning models will first use the basic convolu-

tional neural network (CNN) such as VGG and ResNet to extract visual features. These visual
encoding features of images will be subsequently fed into the recurrent neural network (RNN)

model for caption generation. If perturbing the image visual features of the input image, then the
perturbed visual encoding features can directly affect the output caption from the beginning of
the RNN model. This will greatly increase the possibility of error captions output. So, we design
this loss function to disturb the image encoding features. Specifically, the visual encoding features
of adversarial examples are as far as possible from the visual encoding features of the original im-
age. This is different from the previous attack methods on image captioning. Previous works use
the output logits predictions of the RNN network to generate adversarial examples, and previous
methods did not consider the intermediate visual encoding features. This loss function is described
as follows:

E (X ) = F , E (X ′) = F ′, (4)

Lf eatur e =

∑n
i=1 (Fi × F

′
i )√∑n

i=1 (Fi )2 ×
√∑n

i=1 (F
′
i )2

, (5)
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Fig. 3. Illustration of the local-global mismatching loss.

where E represents the CNN part of the image captioning model. F is the encoding image fea-
ture of original inputs, and F ′ is the encoding image feature of adversarial examples. Equation (5)
shows the way to measure the distance of these two encoding image features. We use the co-
sine similarity to measure the distance between them. The smaller the cosine similarity, the
larger the distance between the two encoding features. Our optimization goal is to minimize
Lf eatur e .

Local-global mismatching loss is used to measure the matching degree between images and
captions. It is inspired by other image-language tasks [28, 36]. We assume the common semantic
space between image and caption is a N -dimension space. First, we introduce the two mapping
encoders, as Figure 3 shows. The image mapping encoderMimaдe is a convolutional network that is
adapted from InceptionV3 network to extract image features, Mimaдe takes the image as input and

output the local image feature vectorA ∈ RN×H×W from the last layer output of InceptionV3 block2
and additional 1 × 1 convolutional layer, where N is the dimension of the common semantic space
and T = H ×W is the output size of feature map. The local image feature vector A represents the
high-level information of an image and has a large receptive field on the input image, which means
that Aj ∈ RN contained information of jth local part of the input image. Besides, Mimaдe also

outputs the global image feature A′ ∈ RN×1 by adding a fully connected layer. The A′ represents
the global characteristics of the entire image. Also, the caption mapping encoder Mcaption consists
of bi-directional long short-term memory units to transfer the caption to local caption features
B ∈ RN×L by stacking the encoded output feature of different steps, where the N is the dimension
number of image-caption common semantic space and L is the caption length of the image. The
Bj represents the information of jth word in a caption. The global caption features B′ ∈ RN×1 is
obtained by concatenating the final output of the LSTM unit in both directions. After getting the
local and global encoding features (A, A′, B, and B′) about image and caption, we can perform the
local mismatching operation. We calculate the local attention matrix between image and caption
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as follows:

S = σ (BTA), (6)

Di =

T−1∑
j=0

μ jAj , μ j =
exp (Si, j )∑T−1

k=0 exp (Si,k )
, (7)

where S ∈ RL×T . We first use row-wise softmax function and then use column-wise softmax func-
tion in actual operation. And σ is a row-wise softmax function to normalize the matrix by each
column. The equation of calculating μ in Equation (7) is the column-wise softmax function. Our
goal is to compute the dense attention for each image patch and word pair. To accelerate the
computation and reduce the memory consumption, we approximate this process by cascading the
row-wise and column-wise operations following Reference [36]. The element of the local attention
matrix Si, j means how much association about ith word of a caption and jth local part of a image.
Then, we calculate the Di is a ith word representation by summing up all local part encoding fea-
tures of images with different weights according to Equation (7). The weight μ is calculated by
normalizing the attention matrix. We can know D ∈ RN×L , and D is a new caption representa-
tion that is calculated based on the information of images and the image-caption local attention
matrix. Under non-attack circumstance, the two features B and D are similar or close, and we can
use Equation (8) to measure whether a caption matches an image in local image and local caption
part:

Llocal = −loд�
�

L−1∑
i=0

exp�
�

DT
i Bi

‖Di ‖ ‖Bi ‖
�
�
�
�
. (8)

Unlike the non-attack circumstance, our training target is to increase the mismatching degree by
continuously adding perturbations to the original image. The above loss function considers the
local information of the image and captions. Similarly, we have extracted the global features of the
image and captions. We can also increase mismatching degree of the global features to guide the
generation of adversarial perturbations by using Equation (9):

Lдlobal = −loд�
�

L−1∑
i=0

exp�
�

A
′T
i B

′
i

���A
′
i
���
���B
′
i
���
�
�
�
�
, (9)

Llocal−дlobal = −(Llocal + βLдlobal ), (10)

arg min
θ1,θ2

∑
xi ∈X

(Llocal + βLдlobal ). (11)

The image mapping encoder Mimaдe and the caption mapping encoder Mcaption is pre-trained by
the real image and caption pairs using Equation (11).

Language diversity loss is to make the adversarial captions generated by the generated ad-
versarial image and the true caption of the original image as different as possible in the language
domain. For the previous two loss functions, image feature distortion loss focuses on the image
domain and the local-global mismatching loss focuses on the cross image and language domain.
To obtain better optimization results in training and increase the performance of generating adver-
sarial examples, we use a language diversity loss to guide the generation of adversarial examples
on the language domain. Since the image captioning task is essentially a classification problem,
we increase the cross-entropy loss of the classification to expand the semantic distance of the
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adversarial captions and true captions in the language domain by Equation (12):

Llanдuaдe = −CrossEntropyLoss (C,C ′), (12)

arg min
θ

∑
xi ∈X

Lf eatur e + αLlocal−дlobal + γLlanдuaдe . (13)

In summary, our method is different from traditional attack algorithms in image captioning; tradi-
tional attack algorithms only consider increasing the dissimilarity between the adversarial caption
and the true caption. Our loss function considers not only increasing the dissimilarity from single
image domain by image feature distortion loss and single language domain by language diversity
loss, but also increasing the mismatching degree cross image and language domain by local-global
mismatching loss. In summary, we propose three loss functions to guide the training process of
our perturbations. The final loss function is presented in Equation (13).

4 EXPERIMENT

4.1 Implementation Details

In this section, we introduce the details of the experimental implementation. First, our perturba-
tions generator G uses an encoder-decoder structure based on Reference [3]. The encoder uses
the architecture of the Inception-ResNet model that is pretrained on ImageNet dataset [6]. The de-
coder is stacked with multiple deconvolution layers and non-linear activation functions. Mimaдe

is based on the Inception-v3 architecture, and Mcaption is based on bi-directional LSTM units. The
white-box attacked image captioning model I is Show-Attend-Tell model [35]. The value of maxi-
mum perturbations ϵ is set to 16. The dimension of common semantic space N is 256. Using ADAM
[16] optimization, the learning rate of the encoder is 0.0001, and the learning rate of the decoder
is 0.0005. α is 1.5, β is 1, and γ is 2 in the loss function; these hyper-parameters are selected from
grid search algorithm. Our perturbations generator is trained on Flickr8k [11]. The training set
has 6,000 images, and each image corresponds to 5 captions. We conduct quantitative analysis via
six common measure metrics (BLEU, CIDEr, ROUGE_L, METEOR, SPICE, and WMD) in the image
captioning task and the beam search size is equal to 2 when we calculate the evaluation metrics.
These metrics measure the matching degree between the image caption obtained from our gen-
erated adversarial example and the true image caption from different perspectives. In this attack
task, the low value of these metrics indicates that more image captions generated by our adver-
sarial examples fails to describe the image, and also the generated adversarial example is better
for the attack. We also calculate the image quality measure metrics (PSNR, SSIM) to evaluate the
distortion strength of the generated adversarial examples. The high values of PSNR and SSIM in-
dicate that the generated adversarial example is visually closer to the original image. And process
time is calculated for computing effectiveness.

4.2 Threat Models

In the white box setting, we utilize the attacked image captioning model trained on the Flickr8k
training set to train our perturbations generator. We evaluate the image captioning measure met-
rics in the Flickr8k testing set during testing. In this circumstance, the perturbations generator has
seen the attacked network architecture and distribution of testing dataset.

To test the transferability and robustness of our adversarial examples, we test our adversar-
ial examples generated by our model trained on Flickr8k to attack the Show-Attend-Tell image
captioning model trained on the Flickr30k [40] and the MSCOCO [21] dataset. We call this a semi-
white box attack, because the network architecture of the attacked model used for testing is known
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Learning Transferable Perturbations for Image Captioning 57:9

Table 1. Quantitative Analysis of our Generated Adversarial Examples

in White Box, Semi-white Box Settings

No Attack
White Box

Attack
Semi-White Box

Attack
Flickr8K Flickr30K MSCOCO Flickr8K Flickr30K MSCOCO

BLEU-1 0.641 0.637 0.737 0.548 0.547 0.595

BLEU-2 0.460 0.458 0.570 0.340 0.362 0.402

BLEU-3 0.325 0.324 0.430 0.215 0.240 0.273

BLEU-4 0.225 0.228 0.324 0.138 0.167 0.190

CIDEr 0.559 0.472 1.021 0.256 0.224 0.535

ROUGE_L 0.482 0.456 0.543 0.392 0.396 0.435

METEOR 0.225 0.213 0.266 0.178 0.185 0.207

SPICE 0.155 0.139 0.191 0.088 0.094 0.109

WMD 0.162 0.144 0.222 0.094 0.096 0.127

during training the perturbations generator, but the training data (MSCOCO, Flickr30k) of the test
model is not visible.

We further verify the performance of our adversarial examples in the black box setting. The
black-box model we used is SCST [29], in which the image captioning model is trained using re-
inforcement learning. Specifically, we use four different network architectures (FC [32], Topdown
[2], Att2in2 [24], and Transformer-based [17, 25]). For the transformer-based method, we use two
pre-trained models trained with bottom-up features [2] and VilLBERT features [22, 23], respec-
tively, to test the model. We use open source code implementation1 of these models to test our
adversarial examples, and these black-box models are trained on the MSCOCO dataset. In this
case, both the network architecture and training data of the test model are not seen when training
our model.

4.3 Attacks in White, Semi-white, and Black Box Settings

We test the performance and robustness of the adversarial examples in different settings. The test
results are shown in Tables 1 and 2. No attack indicates the evaluation performance on the caption-
ing model using the clear image testset. We can see that all the evaluation metrics have dropped
significantly both in the white box attack and the semi-white box attack. The results in the semi-
white box setting show that our adversarial examples can successfully fool the captioning model
that fits other data distributions. Among them, the CIDEr has a larger decline in different settings
(such as from 1.021 to 0.535 on MSCOCO). The reason is that the CIDEr measures the captions by
representing sentences as TF-IDF vectors and then uses the weighted average of the cosine simi-
larity between the vectors to calculate the scores. Our method also increases the distance between
adversarial captions and true captions in the common semantic space during training. When it
turns to the black box attack, the network structure of the captioning model is different from the
training, but the attack is still successful to make the model performance worse. The results show
that our generated adversarial examples have good transferability. They also show that the current
image captioning methods are not robust enough.

4.4 Ablation Study

We conduct experiments to prove the effectiveness of our designed loss functions and evaluate
the influence of different perturbation levels on the attack performance. Table 3 shows the value
of different measure metrics on different loss functions in the white box setting. We notice that
even using only one of the three loss functions for training the network can achieve fair attack

1https://github.com/ruotianluo/self-critical.pytorch.
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Table 2. Quantitative Analysis of our Generated Adversarial

Examples in Black Box Setting

No Attack
[MSCOCO]

SCST Model
(FC)

SCST Model
(Topdown)

SCST Model
(Att2in2)

Transformer-based
Model

(Bottomup feature)

Transformer-based
Model

(ViLBERT feature)

BLEU-1 0.746 0.783 0.777 0.793 0.766
BLEU-2 0.574 0.618 0.613 0.637 0.609
BLEU-3 0.426 0.469 0.465 0.493 0.473
BLEU-4 0.313 0.349 0.347 0.374 0.367
CIDEr 1.044 1.172 1.157 1.232 1.165

ROUGE_L 0.539 0.563 0.560 0.575 0.568
METEOR 0.253 0.270 0.267 0.282 0.282

SPICE 0.185 0.204 0.200 0.220 0.212
WMD 0.251 0.239 0.236 0.258 0.262

Black Box Attack
[MSCOCO]

SCST Model
(FC)

SCST Model
(Topdown)

SCST Model
(Att2in2)

Transformer-based
Model

(Bottomup feature)

Transformer-based
Model

(ViLBERT feature)

BLEU-1 0.637 0.667 0.664 0.653 0.666

BLEU-2 0.450 0.481 0.481 0.473 0.490

BLEU-3 0.313 0.337 0.340 0.336 0.357

BLEU-4 0.219 0.238 0.241 0.241 0.263

CIDEr 0.663 0.735 0.732 0.708 0.777

ROUGE_L 0.464 0.481 0.481 0.475 0.487

METEOR 0.198 0.208 0.206 0.204 0.223

SPICE 0.127 0.142 0.138 0.137 0.152

WMD 0.145 0.160 0.157 0.158 0.180

Table 3. The Ablation Study of Different Loss Functions in Semi-white Box

Setting with Flickr30K Testing Set

Loss function a b c a+b+c

BLEU-1 0.579 0.563 0.558 0.547

BLEU-2 0.386 0.378 0.372 0.362

BLEU-3 0.256 0.255 0.251 0.240

BLEU-4 0.169 0.172 0.171 0.167

CIDEr 0.350 0.273 0.268 0.224

ROUGE_L 0.422 0.424 0.412 0.396

METEOR 0.195 0.197 0.191 0.185

SPICE 0.115 0.114 0.112 0.0937

WMD 0.123 0.123 0.118 0.0959

a: only using image feature distortion loss function. b: only using local-global

mismatching loss function. c: only using language diversity loss function. a+b+c:

using both above loss functions.

performances. At the same time, the combination of the three loss functions from the image fea-
ture space, the common image caption semantic space, and language space makes the network
generate stronger adversarial examples. In Table 4, we show the attack effect with the maxi-
mum perturbations ranging from 0 to 32 in the black box setting. It can be seen that when the
perturbation level is relatively small (such as 8 and 12), the generated adversarial examples also
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Table 4. The Attack Performance of Different Levels of Perturbation

under Black Box Setting with MSCOCO Testing Set

Perturbation Level 0 8 12 16 20 32

BLEU-1 0.737 0.712 0.674 0.595 0.538 0.433
BLEU-2 0.570 0.540 0.465 0.402 0.338 0.217
BLEU-3 0.430 0.400 0.358 0.273 0.216 0.112
BLEU-4 0.324 0.297 0.260 0.190 0.143 0.064
CIDEr 1.021 0.925 0.792 0.535 0.375 0.104

ROUGE_L 0.543 0.523 0.494 0.435 0.394 0.323
METEOR 0.266 0.243 0.221 0.207 0.148 0.097

SPICE 0.190 0.174 0.152 0.110 0.082 0.031
WMD 0.222 0.199 0.174 0.127 0.098 0.050

Fig. 4. Visual comparison of original images and adversarial examples with their corresponding output

captions.

can cause performance degradation on the model. When the perturbation level becomes larger
(such as 32), some metrics (such as SPICE and WMD) even drop to close to 0.

4.5 Visualization of Our Adversarial Examples

To better demonstrate our attack performance, we select some pairs of images and captions in
each attack setting. The result is shown in Figure 4. The adversarial examples we generated will
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Fig. 5. Visualization of our generated perturbations that attack the captioning model successfully. For better

visualization, we enlarge the perturbations level.

not affect human judgment visually. The generated perturbations does not cover the main objects
in the original image, and people can still correctly identify the content of our adversarial exam-
ples. However, the output adversarial captions are inconsistent with the images. Specifically, the
perturbations we generate are able to not only change the main object of the image (from a dog to a

young girl in the first column, from a motorcycle to a vase in the third column), but also change the
action of the image object (from doing a trick to climbing a wall in the second column). Although
we did not specify the output caption when training the perturbations generator, we maximize
the features distance of the intermediate layer and the distance between images and captions in
the common semantic space, making the learned perturbations fool the model. From Figure 5, We
visualize the perturbations generated by our trained perturbations generator. Since we limit the
maximum size of the perturbations to 16, which is tiny, we multiply the generated perturbations
image by a constant to amplify the perturbations to better observe the generated perturbation pat-
tern. We can see that our method adds perturbations in different key areas for different images.
And it will not or only generate a small amount of perturbations in the areas that have little effect
on the caption generation. The previous method generally adds perturbations to the whole areas
of each image during iteration. Our method reduces the generation of unnecessary perturbations.
For example, we observe that the generated perturbations are mainly distributed in the foreground
object, which is decisive factor of image caption generation, while almost no perturbation is added
to the sky or the ground.

4.6 Comparisons with Previous Methods

Three previous works [5, 37, 42] are related to this task. Since References [37, 42] mainly fo-
cus on the targeted attack, which is different from our task, we compare the Show-and-fool [5]
method only in here. Meanwhile, we compare four general non-targeted attack methods: fast

gradient sign method (FGSM) [10], iterative fast gradient sign method (I-FGSM) [19],
momentum-based iterative fast gradient sign method (MI-FGSM) [7], and MI-FGSM with

randomization-based input (Mi-FGSM-DIV) [33]. For the fairness of comparisons, we limit
the maximum perturbations of the adversarial examples generated by these methods to less than
16 like our method does. We test the transferability performance in black box setting. Besides,
we generate random perturbation with the same perturbation upper limitation to compare the
effect of our method. The experimental results are shown in Table 5. It can be seen that random
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Table 5. Comparisons between our Method and other Methods

Metrics No Attack Random Noise
Show-and-fool

[5]
FGSM
[10]

I-FGSM
[19]

MI-FGSM
[7]

MI-FGSM-DIV
[33]

Our

BLEU1 0.783 0.779 0.708 0.707 0.724 0.713 0.706 0.667

BLEU2 0.618 0.613 0.528 0.526 0.546 0.534 0.525 0.481

BLEU3 0.469 0.463 0.382 0.380 0.399 0.387 0.380 0.337

BLEU4 0.349 0.344 0.276 0.272 0.288 0.277 0.272 0.238

CIDEr 1.172 1.155 0.887 0.878 0.942 0.907 0.876 0.735

ROUGE_L 0.563 0.560 0.511 0.508 0.521 0.512 0.507 0.481

METEOR 0.270 0.268 0.230 0.230 0.239 0.233 0.229 0.208

SPICE 0.204 0.203 0.162 0.163 0.173 0.168 0.163 0.142

WMD 0.239 0.236 0.186 0.185 0.197 0.191 0.185 0.160

PSNR - 28.50 25.82 26.53 27.83 27.80 27.37 26.43
SSIM 1 0.866 0.763 0.831 0.856 0.853 0.842 0.833

Time - - 44s 0.1 s 3.5 s 3.5 s 3.6 s 0.5 s

perturbations cause little drop on image captioning evaluation metrics. This shows that randomly
generated perturbations is difficult to attack image captioning models. The performance of our
method is better than other methods. We observe that the transferability attack effect of the pre-
vious method is only slightly better than the random perturbation, and the adversarial examples
generated by our method makes the model perform the worst, which means better attack perfor-
mance. Although Show-and-fool optimizes the logits output of the caption directly, it only opti-
mizes a single image for each attack that it is extremely easy to overfit. Like Show-and-fool, these
iterative attack methods (I-FGSM, MI-FGSM, MI-FGSM-DIV) in the general method are also prone
to overfitting, which causes the transferability of these methods to be worse than the single-step
method (FGSM) in black box setting. On the contrary, our method uses our tailored loss functions
to train the network, and the training data is not a single image. More general perturbation pat-
tern can be learned from a large amount of data. Also, we use evaluation metrics (PSNR and SSIM)
to evaluate the image quality of our adversarial examples. The results show that the adversarial
examples generated by our method do not drop much in PSNR and SSIM metrics and are better
than the previous Show-and-fool method. It reveals that our adversarial examples are closer to the
visual perception of the original images. Finally, we also test the time of generating one image.
Our method is faster than Show-and-fool and other iterative methods (I-FGSM, MI-FGSM, MI-
FGSM-DIV), because we generate adversarial examples by one forward pass, while the method of
Show-and-fool requires around 1,000 iterations for each image. Our method needs to be processed
by a neural network, so it is a bit slower than the single-step attack method (FGSM), but the time is
in the same order of magnitude. This shows that our method can efficiently generate high-quality
adversarial examples.

4.7 Attacks on Commercial Image Captioning System

We use the commercial image captioning interface provided by Tencent AI Lab2 to test the per-
formance of our generated adversarial examples in a black box cross-lingual setting. It is hard to
attack, because we neither know the architecture of the model nor the distribution of the dataset.
As can be seen from Figure 6, we find that the adversarial example fools the commercial captioning
service to recognize the dog as the human. It is interesting that our adversarial examples can fool
the model trained in a different language.

2https://ai.qq.com/product/visionimgidy.shtml#express.
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Fig. 6. An illustration of clear original image and our adversarial example on the commercial image cap-

tioning service. The output caption of original image in English: A puppy standing on the grass. The output

caption of adversarial example in English: A man standing on the path in the woods.

Table 6. Human Evaluation of Our Method

Question 1 Question 2 Question 3

Ground True Caption 69 Original Image 70 Yes 220

Adversarial Caption 1 Adversarial Image 68 No 20

Question 1: Given an image, select the sentence caption that best matches the image (single choice question).

Question 2: Given a sentence caption, select images that match the sentence description (multiple choice

question). Question 3: Given a generated adversarial caption, judge whether the caption is grammatically

correct and clearly expressed (single choice question).

4.8 Human Evaluation

We conduct a user study experiment and set up three types of questions. The results are shown in
Table 6. Question 1 is given an image and selects the sentence caption that best matches the image.
Question 1 is the single choice question. Question 2 is given a sentence caption and selects images
that match the sentence description. Question 2 is the multiple choice question. We collect the
questionnaire data from 70 users. Question 3 is given a generated adversarial caption; the users
need to judge whether the sentence is grammatically correct and clearly expressed. Question 3
is the single choice question. For Question 3, We randomly select six captions generated by our
adversarial examples and collect data from 40 users. From Table 6, we can see that the adversarial
caption generated by our adversarial example is very inconsistent with the original image content.
As a result, in Question 1, almost no user chooses the adversarial caption we generated. However,
the perturbations that our method adds to the original image when generating the adversarial
examples is very small and will not affect the perception of user for the image content. Therefore,
nearly all users believe that the image content of the adversarial example we generated is consistent
to the original image caption. With regard to the captions generated from our adversarial examples,
220 of the collected data are considered by users to be grammatically correct and clearly expressed.
Besides, 20 data are considered to be considered unreasonable, and these user-judged unreasonable
adversarial captions are mainly focused on one sentence (a group of birds are sitting on a bed ). Some
users think that “the bird standing on the bed” is illogical, so they think the sentence is not clear.
But this sentence is grammatically correct and clearly expressed for us. This sentence produces an
illogical combination of objects and actions, because it was generated by our adversarial example.
This also reflects the validity of our method.
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Table 7. Attack Performance with Different Beam Search Size

No Attack [MSCOCO]

Beam Size BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr ROUGE_L METEOR SPICE WMD

1 0.722 0.551 0.406 0.298 0.973 0.531 0.251 0.185 0.208
2 0.737 0.570 0.430 0.324 1.021 0.543 0.266 0.190 0.222
3 0.735 0.568 0.431 0.327 1.027 0.542 0.258 0.189 0.225

4 0.733 0.566 0.428 0.326 1.019 0.541 0.263 0.188 0.223

Semi-white Box Attack [MSCOCO]

Beam Size BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr ROUGE_L METEOR SPICE WMD

1 0.594 0.399 0.263 0.177 0.522 0.433 0.179 0.110 0.122
2 0.595 0.402 0.273 0.190 0.535 0.435 0.207 0.110 0.127
3 0.600 0.411 0.284 0.201 0.563 0.440 0.182 0.114 0.133
4 0.600 0.412 0.285 0.203 0.564 0.439 0.181 0.113 0.134

4.9 More Experiments on Attack Performance

We conduct more experiments to further explore the impact of different factors on the attack
performance. First, we explore the effect of beam search size. Beam search is a search algorithm
used in the test phase for image captioning tasks. In previous experiments, we set the default beam
search size to 2. Table 7 shows the performance of the image captioning model under different
beam search sizes on no attack and semi-white box attack conditions. The results show that when
the beam search size is 2, most evaluation metrics reach the maximum value under no attack
condition. When the beam search size is increased to 3 or 4 under semi-white box attack, although
the model evaluation metrics are slightly improved, it is still far below the minimum value of the
model evaluation metrics under no attack. The results show that the beam search algorithm cannot
defend our adversarial examples.

Next, we use different network defense mechanisms when testing the attack adversarial exam-
ples. Since there is currently no research on network defense for image captioning tasks, here,
we take several classic network defense methods applied to image classification tasks in our ex-
periment. They include Gaussian filter, which represents the traditional denoising method, Xie’s
method [33], which is to perform multiple random resize and padding operations on the image
before input to the network, and an adversarial training strategy [18], which uses the generated
adversarial examples as parts of training examples. Table 8 shows the impact of the above three de-
fense strategies on the performance of the image captioning model under no attack and semi-white
box attack condition. In no attack condition, all three defense methods have a certain negative im-
pact on the performance of the image captioning model. Among them, the use of Gaussian filter
has a greater negative impact on the model. Under the semi-white box attack, Gaussian filter does
not remove attack effect from the perturbations in the adversarial examples, and the image cap-
tioning model is even worse. Xie’s method resists a part of the adversarial examples and makes
the model perform better. The reason is that during the resize and pad operations, the integrity
of the perturbations added to the image is destroyed, making some adversarial examples invalid.
Although Xie’s method makes the model perform more robustly, it still has a certain gap from the
original performance of the image captioning model without attack. The best defense method is
adversarial training. We add the generated adversarial examples to the training set for training the
image captioning model, allowing the model learn to correctly describe adversarial examples. The
performance of the model after adversarial training is close to that without attack.
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Table 8. Attack Performance under Different Defenses

No Attack [MSCOCO]

No Defence Gaussian Filter Xie Method [33] Adversarial Training [18]

BLEU-1 0.737 0.700 0.734 0.726
BLEU-2 0.570 0.528 0.566 0.556
BLEU-3 0.430 0.390 0.427 0.421
BLEU-4 0.324 0.289 0.321 0.312
CIDEr 1.021 0.887 1.008 0.992

ROUGE_L 0.543 0.514 0.540 0.532
METEOR 0.266 0.237 0.255 0.251

SPICE 0.190 0.170 0.187 0.183
WMD 0.222 0.194 0.218 0.215

Semi-white Box Attack [MSCOCO]

No Defence Gaussian Filter Xie Method [33] Adversarial Training [18]

BLEU-1 0.595 0.588 0.656 0.705

BLEU-2 0.402 0.397 0.472 0.534

BLEU-3 0.273 0.267 0.335 0.409

BLEU-4 0.190 0.182 0.241 0.295

CIDEr 0.535 0.508 0.714 0.886

ROUGE_L 0.435 0.432 0.477 0.519

METEOR 0.207 0.176 0.208 0.247

SPICE 0.110 0.107 0.140 0.168

WMD 0.127 0.122 0.160 0.201

5 CONCLUSION

In this article, we propose three loss functions to train a generative network to produce adversarial
examples for the image captioning task. Our method is not only better in attacking performance
than previous methods, but also faster and more general. The adversarial examples generated by
our method are more transferable, and we test the transferability under white, semi-white, black,
commercial-services settings. Results on three datasets (Flickr8K, Flickr30K, and MSCOCO) and
the attacked captioning models with different architectures show the effectiveness of our method.
Our adversarial examples evaluate the performance of existing image captioning models from
another perspective. In addition, our generated adversarial examples can augment the dataset to
train more robust image captioning model. In the future, we can apply our method of generating
adversarial examples to evaluate other cross-domain tasks of visual and natural language.
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