
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2023

Taurus: Towards a Unified Force Representation and Universal Taurus: Towards a Unified Force Representation and Universal

Solver for Graph Layout Solver for Graph Layout

Mingliang XUE

Zhi WANG

Fahai ZHONG

Yong WANG
Singapore Management University, yongwang@smu.edu.sg

Mingliang XU

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Graphics and Human Computer

Interfaces Commons

Citation Citation
XUE, Mingliang; WANG, Zhi; ZHONG, Fahai; WANG, Yong; XU, Mingliang; DEUSSEN, Oliver; and WANG,
Yunhai. Taurus: Towards a Unified Force Representation and Universal Solver for Graph Layout. (2023).
IEEE Transactions on Visualization and Computer Graphics. 29, (1), 886-895.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7795

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7795&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7795&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7795&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7795&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Mingliang XUE, Zhi WANG, Fahai ZHONG, Yong WANG, Mingliang XU, Oliver DEUSSEN, and Yunhai WANG

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/7795

https://ink.library.smu.edu.sg/sis_research/7795

Taurus: Towards a Unified Force Representation and
Universal Solver for Graph Layout

Mingliang Xue, Zhi Wang, Fahai Zhong, Yong Wang
Oliver Deussen, and Yunhai Wang

Abstract—Over the past few decades, a large number of graph layout techniques have been proposed for visualizing graphs from
various domains. In this paper, we present a general framework, Taurus, for unifying popular techniques such as the spring-electrical
model, stress model, and maxent-stress model. It is based on a unified force representation, which formulates most existing
techniques as a combination of quotient-based forces that combine power functions of graph-theoretical and Euclidean distances. This
representation enables us to compare the strengths and weaknesses of existing techniques, while facilitating the development of new
methods. Based on this, we propose a new balanced stress model (BSM) that is able to layout graphs in superior quality. In addition,
we introduce a universal augmented stochastic gradient descent (SGD) optimizer that efficiently finds proper solutions for all layout
techniques. To demonstrate the power of our framework, we conduct a comprehensive evaluation of existing techniques on a large
number of synthetic and real graphs. We release an open-source package, which facilitates easy comparison of different graph layout
methods for any graph input as well as effectively creating customized graph layout techniques.

Index Terms—Graph Layout, Gradient Descent, Framework

1 INTRODUCTION

Graphs are commonly used for modeling complex data in many
domains such as social media, finance and biology. The most commonly
used graph visualization technique, node-link diagrams, depict nodes
as points in a plane and edges as lines connecting these points. In past
decades, various graph layout methods [25, 36] have been developed
for producing aesthetically-pleasing drawings, while maintaining the
underlying graph structures.

Rather than directly optimizing aesthetic criteria [34] (e.g., even
node distribution and minimal edge crossing), most methods simulate
one of two kinds of physical systems as a basis for layouting graphs:
the spring-electrical model or the stress model. The spring-electrical
model [8, 10] regards edges as springs that use attractive forces to pull
connected nodes close to each other, at the same time treating nodes as
electrically-charged particles that repel each other with repulsive forces.
Based on this model, many variants of force-directed placement (FDP)
algorithms have been developed for better revealing different structures
and features of graphs. For example, FM3 [18] and SFDP [20] use a
multilevel scheme for overcoming local minima, the extended models
of LinLog [31] and ForceAtlas2 [22] allow to better reveal clusters
and local structures, respectively. While the spring-electrical model
produces good layouts for many graphs, it does not encode the target
(data-space) edge lengths between every pair of nodes.

This is the focus of stress models [14,23,40], which assume a spring
between each pair of nodes with an ideal length equal to the graph-
theoretical distance among the nodes. By minimizing the stress energy
of the spring system, a layout is obtained. For efficiently solving such
models, which involve considerably more interactions between the
nodes, a few optimization strategies have been incorporated, such as
stress majorization [14], and stochastic gradient descent (SGD) [42].

• Mingliang Xue, Zhi Wang, Fahai Zhong, and Yunhai Wang are with the
Department of Computer Science, Shandong University, China. E-mail:
{xml95007, wangzizi2020, zhongfahai, cloudseawang}@gmail.com

• Yong Wang is with School of Computing and Information Systems, Singapore
Management University, Singapore. E-mail: yongwang@smu.edu.sg

• Oliver Deussen is with Computer and Information Science, University of
Konstanz, Konstanz, Germany. E-mail: oliver.deussen@uni-konstanz.de

• Yunhai Wang is the corresponding author

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

To alleviate the involved computational costs, sparse stress models [13,
27, 32] have been proposed, which only impose springs for a subset of
node pairs.

Because of the divergent mechanisms, these models have different
characteristics when creating graph layouts. For example, FDP
performs better in preserving neighborhood structures for many
graphs, while the stress model tends to maintain the overall structures,
especially for mesh-like graphs. However, it is still unclear why the
models have such differences and how they are connected conceptually.
Moreover, it is difficult to make a fair quantitative comparison because
different optimization strategies are used. This not only hinders
researchers to develop new methods but also poses a challenge for
practitioners to choose a proper method for visualizing their graphs.

In this paper, we present a general framework, we call Taurus,
Towards a Unified force Representation and Universal Solver for graph
layout, that offers a unified view for understanding and comparing
most of the popular graph layout algorithms. It relies on two novel
components: a unified force representation and a universal solver.
The uniform force representation allows us to show that all existing
methods can be formulated as a combination of quotient-based forces,
using a quotient between power functions of graph-theoretical and
Euclidian distances. This unified representation enables us to compare
the strengths and weaknesses of different methods. The universal solver
combines the advantage of SGD [30] in escaping local minima and
the effectiveness of the Barnes & Hut approximation [3] in reducing
computational cost, which allows us to solve different existing layout
methods with the same optimizer.

Moreover, our framework can also be used as a general platform
for developing new graph layout methods. In particular, we propose
a balanced stress model, which combines the advantages of spring-
electrical and stress models. Specifically, it exerts attractive and
repulsive forces to all node pairs, where the attractive force is reciprocal
and the repulsive force is proportional to the graph-theoretical distances.
In doing so, the model avoids extremely large repulsive and attractive
forces for nearby nodes, while pulling neighboring nodes close to each
other.

We implement Taurus as a graph visualization package in C++,
which allows users to define their own attractive and repulsive forces.
To demonstrate its effectiveness, we comprehensively evaluate it by
comparing various spring and stress layout methods on a large number
of synthesized graphs with different structures such as lattices, trees
and clusters. The evaluation includes two parts: verifying whether
Taurus can produce similar results to the original implementations of

existing methods, and examining how different methods behave on
graphs with different characteristics. The results show that our solver
enables all methods to perform as well as or even better than the original
implementations, while our proposed balanced stress model makes a
good trade-off in distance preservation and maintaining neighborhoods
as well as cluster structures. In addition, we show that our Taurus
allows users to flexibly customize the graph layout methods for meeting
specific requirements.

The main contributions of this paper can be summarized as follows:

• We propose a general framework for graph visualization based
on a novel quotient based force representation and an augmented
SGD optimizer, which offers a unified view for understanding
and comparing existing graph layout methods;

• We present a new graph layout method based on our framework
and conduct a systematic analysis and extensive evaluation for
our framework on different graph datasets through quantitative
comparisons; and

• We release a library with the proposed general framework that
enables rapid implementation and design of graph layout methods
for any graph input.

2 RELATED WORK

Related works can be categorized into three parts: graph layout
methods, graph layout solvers and graph layout packages.

2.1 Graph Layout
Various graph layout methods have been proposed to visualize network
data as node-link diagrams. Among them, the most common methods
often use virtual physical models to represent the relationships between
objects. By referring to the taxonomy by Gansner et al. [13], we classify
such methods into three types: spring-electrical models, stress models
and hybrid models.
Spring-electrical models [8, 10] regard nodes as electrically-charged
particles that push nodes away from each other and edges as springs
that pull nodes close to each other, often referred to as repulsive and
attractive forces. A graph layout result is achieved when attractive
and repulsive forces strike a balance. For a complete review of the
graph layout methods developed from this model, please refer to
Kobourov [28] and Gouvêa et al. [16]. Here, we briefly review some
widely used models. Hu et al. [20] improve the repulsive force designed
by Fruchterman and Reingold [10] and use a repulsive force that decays
rapidly, avoiding edge-length distortion at the periphery of a layout.
Noack et al. [31] introduce the LinLog model that employed a constant
attractive force and set the repulsive force to the inverse of the distance.
As a result, this model can generate graph layouts with clearly-separated
node clusters. Kermarrec and Moin [26] further extend the LinLog
model for revealing cluster structures at different levels. Inspired by
these studies, the attractive and repulsive force of ForceAtlas2 [22] were
designed to be proportional and inversely proportional to the distance
between nodes, obtaining graph layouts with a good preservation of
local structures and cluster separation.
Stress models [14, 23] also use a spring analogy but assume that there
are springs connecting every pair of nodes in the graph. Spring forces
are defined to create a layout with distances of nodes as close as
possible to the graph-theoretical distances. Many variants of the stress
model aim to improve its efficiency through sparse approximations.
For example, progressive multidimensional scaling [5] and low-rank
stress majorization [27] have been used to approximate the shortest
path distances of all node pairs in a graph. The sparse stress model [32]
speeds up the stress model by aggregating the terms of the objective
function. Wang et al. [40] improved the stress model by imposing
constraints on edge vectors and edge lengths, further enhancing the
expressiveness of the stress model.
Hybrid models combine both models for overcoming their drawbacks.
For example, Hu and Koren [21] resolve the warping effect of spring-
electrical models by integrating attractive forces into the stress model.
To reduce the cost for computing graph-theoretical distances, the

Maxent-stress model (Maxent) [13] imposes stress constraints on pairs
of neighboring nodes and entropy-based constraints on the remaining
node pairs, the latter ones can be regarded as repulsive forces between
all node pairs.

Noack [31] shows that energy-based layout methods like LinLog can
be formulated as force representations. Similarly, Gansner et al. [13]
represent the repulsive force as an entropy term and incorporate it into
the stress-based energy model. However, there is still a lack of an
inherent representation for unifying existing layout methods. In this
work, we demonstrate that almost all methods from spring-electrical
and stress models can be formulated as a combination of our proposed
quotient-based forces. Moreover, we show that this unified view not
only facilitates the understanding and comparison of different methods
but also allows the development of new methods.

2.2 Graph Layout Solvers
Most graph layout methods need an optimization solver to create
desirable drawings. Solving a spring-electrical model has a time
complexity of O(n2) at each iteration, where n is the number of
nodes in the graph. To improve the computational efficiency of such
models, several multilevel methods [3, 11, 12, 18–20, 39] have been
proposed. Among them, the Barnes-Hut (BH) approximation [3] is
the most commonly-used acceleration method. It uses hyper nodes
to approximate repulsive forces, resulting in a time complexity of
O(n logn). The method has been used by different spring-electric
model algorithms, such as [20, 22]. Another method is to use random
vertex sampling (RVS) [17] to accelerate the computation of repulsive
forces. This method generates layouts similar to Barnes-Hut.

There are also many algorithms to optimize solutions for the stress
model. The earliest stress model [23] employs gradient descent to
find the optimal graph layout; however, it is often trapped into a local
minimum. Gansner et al. [14] adapt stress majorization to the stress
model, which is rooted in solving multidimensional scaling. Ensuring
a monotonic decrease of the stress, the method has advantages over the
original implementation. Recently, stochastic gradient descent (SGD),
a powerful optimization solver widely used in machine learning, has
also been applied to graph drawing [42]. It converges fast and achieves
layouts with a lower stress error. Ahmed et al. [1] further proposed a
SGD-based graph drawing approach (SGD)2 that can handle multiple
readability criteria of graph drawing simultaneously. We propose
an augmented SGD solver for finding optimal layouts at minimal
computation speed.

2.3 Graph Layout Packages
A number of open-source packages facilitate an easy implementation
of different graph layout techniques. For example, Graphviz [15],
Tulip [2] and OGDF [6] are C++ libraries that implement customized
graph data structures and many graph drawing techniques. Data-Driven
Documentation (D3) [4], the most popular web-based visualization
toolkit, incorporates some graph drawing techniques (e.g., the spring-
electrical model [10]). All packages allow users to directly use
different graph layout methods without implementing them from
scratch. Because of the underlying models, however, these packages
often expose different APIs and parameters for different methods,
resulting in cumbersome parameter tuning for the user and the need for
understanding different approaches. Building upon our unified force
representation and universal solver, our graph drawing package is much
more generic and easier to use. Different solutions can be compared
and the right method for the wanted layout can be selected.

3 PROPOSED FRAMEWORK

As mentioned above, our general framework aims to unify existing
graph layout methods. It consists of a quotient-based force model to
describe the relationship among nodes, and a universal optimization
solver to achieve optimal graph layouts. In this section, we first show
how the proposed framework originates from the observations of prior
graph layout approaches. Then, we present our quotient-based force
model as well as the guidelines for using it. Finally, we introduce our
proposed balanced stress model.

3.1 Revisiting Existing Graph Layout Methods
For a graph G(V,E) with V 2 representing the set of node pairs, graph
layout methods aim to map the graph nodes V to coordinates in 2D
or 3D space and often require a model to represent the relationship
between them. Depending on the underlying mechanism of building
the model, Hu et al. [13, 21] classified layout methods into two types:
spring-electrical models and stress models. They propose to use
hybrid models, which integrate spring-electrical and stress models.
Spring-electrical models often use force modeling, while stress and
hybrid models are built on energy modeling to specify the graph layout.
Since the force on an object is the negative derivative of the energy
with respect to the distance [41], we re-write all energy-based layout
methods into the form of a force modeling for establishing a unified
representation. In the following, we take one representative method of
each model type as an example.
Force-Directed Placement. As a typical instance of the spring-
electrical model, FDP [10] aims to meet the principles that connected
nodes should be drawn near each other and all nodes should not be
drawn too close to each other. It computes the position of each node xi
by exerting the attractive force Fa

i, j and repulsive forces Fr
i, j between

the node and its neighbours and all other nodes, respectively.

ei, j =
x j−xi

||xi−x j||
, (1)

Fa
i, j = ||xi−x j||2 ∗ ei, j, ∀{i, j} ∈ E, (2)

Fr
i, j =−

1
||xi−x j||

∗ ei, j, ∀{i, j} ∈V 2, (3)

where ei, j is a unit vector. By successively moving each node along the
resultant force Fi,

Fi = ∑
{i, j}∈E

Fa
i, j + ∑

{i, j}∈V 2

Fr
i, j,

the final layout is obtained when the force system reaches an
equilibrium. To meet given layout principles, the unit vector ei, j in
Eqs. 2 and 3 can also be computed in terms of some constraints [7]
(e.g., node non-overlapping and minimal edge crossing).
Stress Model. Unlike the spring-electric model, this model aims to
preserve predefined edge lengths in the visualization. It assumes that
there is a spring between every pair of nodes with an ideal spring length,
which is equal to their graph-theoretical distance being one unit. Hence,
it obtains an optimal layout by minimizing the energy function:

U = ∑
{i, j}∈V 2

(||xi−x j||−di j)
2

d2
i j

, (4)

where di j denotes the graph-theoretical distance between nodes i and
j. The original model is solved by using the gradient descent method
with the gradient:

∂U
∂xi

=− ∑
{i, j}∈V 2

2(||xi−x j||−di j)

d2
i j

∗ ei, j.

Since the negative gradient of the energy here is regarded as the acting
force, we write Eq. 4 as forms of attractive and reclusive forces:

Fa
i, j∈V 2 =

2||xi−x j||
d2

i j
∗ ei, j, Fr

i, j∈V 2 =−
2

di j
∗ ei, j. (5)

For escaping local minima, stress majorization [14], a widely used
method for MDS solutions, has been adapted for solving this model.
To reduce the computation cost, a few extended stress models choose a
subset of node pairs to compute the stress energy. For example, the low-
rank based stress model, Mars [27] and sparse stress model (SSM) [32]
both define the force range based on a set of pivot nodes, while SSM
further incorporates the edge information.

Table 1. Quotient based force functions and their corresponding
parameters of different layout methods: ω is the weight, α and β are the
exponents of the graph-theoretical distance and the Euclidean distance
between two nodes, respectively, and Ω is the force range. P is a set of
pivot nodes [27], k f a is defined as −(deg(i)+1)(deg(j)+1) [22] with the
node degree deg(i). V 2 refers to all node pairs, E to node pairs connected
by an edge, S to a k-ring neighborhood graph.

Method Attractive Force {ω1,α1,β1,Ω1} Repulsive Forces {ω2,α2,β2,Ω2}

FDP
[10]

∑(i, j)∈E ||xi−x j ||2ei j {1,2,0,E} ∑{i, j}∈V 2
−1

||xi−x j ||
ei j {-1,-1,0,V 2}

FA2
[22]

∑(i, j)∈E ||xi−x j ||ei j {1,2,0,E} ∑{i, j}∈V 2
k f a

||xi−x j ||
ei j {k f a,−1,0,V 2}

LinLog
[31]

∑(i, j)∈E 1∗ ei j {1,1,0,E} ∑{i, j}∈V 2
−1

||xi−x j ||
ei j {−1,−1,0,V 2}

SM [14] ∑{i, j}∈V 2
2||xi−x j ||

d2
i j

ei j {2,1,2,V 2} ∑{i, j}∈V 2
−2
di j

ei j {−2,0,1,V 2}

MARS
[27]

∑(i, j)∈P×V
2||xi−x j ||

di j
ei j {2,1,1,P×V} ∑(i, j)∈P×V −2ei j {−2,0,0,P×

V}

SSM
[32]

∑(i, j)∈P×V
∪E

2||xi−x j ||
d2
i j

ei j {2,1,2,P×
V ∪E}

∑(i, j)∈P×V
∪E

−2
di j

ei j {−2,0,1,P×
V ∪E}

Maxent
[13]

∑{i, j}∈S
2||xi−x j ||

d2
i j

ei j {2,1,2,S} (∑{i, j}∈S
−2
di j

+

∑{i, j}∈V 2
−αsgn(q)
||xi−x j ||q

)ei j

{−2,0,1,S},
{−αsgn(q),
−q,0,V 2}

Maxent-Stress Model. Instead of specifying springs for all node pairs,
the maxent-stress model [13] is a hybrid model that defines a stress
model constraint on a subset of node pairs (typically, the set of graph
edges E), while imposing an entropy-based constraint to the rest of the
node pairs. Hence, the energy function is defined as follows:

U =

∑

(i, j)∈S

(||xi−x j||−di j)
2

d2
i j

+α ∑
(i, j)/∈S

sgn(q)
||xi−x j||q

, if q 6= 0

∑
(i, j)∈S

(||xi−x j||−di j)
2

d2
i j

+α ∑
(i, j)/∈S

ln ||xi−x j||, if q = 0

where the default S is E but can also be the k-neighborhood graph,
α > 0 and q >−2. When q is not zero, the gradient of this model is:

∂U
∂xi

=−
(

∑
(i, j)∈S

2(||xi−x j||−di j)

d2
i j

−α ∑
(i, j)/∈S

sgn(q)
q||xi−x j||q+1

)
∗ ei, j,

otherwise the gradient is:

∂U
∂xi

=−
(

∑
(i, j)∈S

2(||xi−x j||−di j)

d2
i j

−α ∑
(i, j)/∈S

1
||xi−x j||

)
∗ ei, j.

We can see that its attractive force has the same form but is only exerted
to a subset of node pairs, while two repulsive forces are exerted in
different ranges (as defined by S)

Fa
i, j∈S =

2||xi−x j||
d2

i j
∗ ei, j, Fr1

(i, j)∈S =−
2

di j
∗ ei, j, (6)

Fr2
(i, j)/∈S =−α ∑

(i, j)/∈S

sgn(q)
q||xi−x j||q+1 ∗ ei, j. (7)

When q = 0, the second repulsive force is:

Fr2
(i, j)/∈S =−α ∑

(i, j)/∈S

1
||xi−x j||

∗ ei, j. (8)

Besides these three methods, Table 1 lists the attractive and repulsive
forces of a few other methods such as FA2 [22], Linlog [31], and
MARS [27].

Fig. 1. (a) Influence of the parameters {α,β} on the force. Each plot
shows the force magnitude as a function of the graph-theoretical distance
between two nodes in the graph and the pairwise Euclidian distance
in the layout for the given combination of α and β . The yellow color
represents a force magnitude close to zero and the orange color a large
force magnitude. The red and blue boxes cover the parameter settings
satisfying the criteria G1 and G2, respectively. (b) shows the resultant
forces for FDP, (c) for the stress model and (d) for the maxent stress
model.

3.2 Quotient based Force Function
After systematically comparing and analyzing various forces used in
different graph layout methods (see Table 1), in the following we
identify common components that appear in most methods, and further
propose a quotient-based representation to unify them. Given l forces,
the resultant force Fi exerted on a node i is:

Fi,k = ∑
(i, j)∈Ωk

ωk ∗
||xi−x j||αk

dβk
i j

∗ ek,i j, Fi =
l

∑
k

Fi,k (9)

where Ωk is the force range specifying the nodes that exert forces
towards node i, ωk is a weight with a sign deciding the force type
(attractive force vs. repulsive force), αk is the exponent of the graph-
theoretical distance, βk of the Euclidean distance between nodes j and i,
which decide the force magnitude. To illustrate how this representation
unifies existing graph layout methods, we formulate some popular
methods in this representation, see Table 1. Taking the maxent-stress
model as an example, its attractive and first repulsive force have the
same force range {i, j} ∈ S, and their corresponding {ω,α,β} are
{2,1,2} and {−2,0,1}, respectively. The range of the other repulsive
force Ω is {i, j} /∈ S, the parameters {ω,α,β} are {−qsgn(q),−q,0}.
Note that low-rank stress majorization (MARS) [5] and the sparse stress
model (SSM) [32] exert forces for ranges defined by the user specified
pivot nodes P.
Parameter Effect. A closer look at the examples in Table 1 tells us
that there should be at least two forces (l ≥ 2) with different signs
for weights ωk to ensure convergence. Common force ranges are E,
V 2 or the ones defined by the user-specified node sets P. In contrast,
there are many choices of {αk,βk}, each of them might create different
behaviors. In the following, we show how existing methods set these
parameters.

To investigate the effect of {αk,βk}, we depict the force magnitude
between two nodes i and j as a function of their pairwise Euclidean
distance ||xi− x j|| and the graph-theoretical distance di j. Fig. 1(a)
shows the force magnitudes under different combinations of a few
commonly used α and β values {−1,0,1}. From the plots, we can see
that there are three kinds of the relationship:

1. If αβ is zero, the force magnitude is purely determined by ||xi−
x j|| or di j;

2. If αβ is smaller than zero , the factors di j and ||xi−x j|| have the
same positive or negative effect on the force magnitude; and

3. If αβ is larger than zero, the factors di j and ||xi−x j|| have the
opposite effect on the force magnitude.

Case 1 corresponds to the forces defined in FDP (see Eqs. 2 and 3)
and the repulsive forces used in the stress model (see Eq. 5). In contrast,
there is only one example (see the attractive force in Eq. 5) for Case 3
in Table 1 and no example for Case 2. In the following, we provide the
guidelines for selecting proper α and β .

3.3 Guidelines for the Selection of Exponents
To faithfully maintain the relationship between nodes, we generalize a
core principle of the FDP method about connected nodes to all node
pairs. In FDP connected nodes should always be closer to each other
than to other nodes.

• Nodes with small graph-theoretical distances should be drawn
closer to each other than nodes with large distances.

For simplicity, we divide all k forces within the graph into attractive and
repulsive forces. To meet the above principle, two nodes with a larger
graph-theoretical distance should be exerted a larger repulsive force
(β < 0) and a smaller attractive force (β > 0). To prevent the layout
from diverging to infinity or collapsing into a point, for two nodes with
fixed graph-theoretical distances, the repulsive force should decrease
as the Euclidian distance between the two nodes increases (α < 0), and
the attractive force should decrease as the Euclidian distance between
two nodes decreases (α > 0). For yielding a clustering (dispersing)
effect, we can also use a constant repulsive (attractive) force with a
large attractive (repulsive) force by setting α = 0 (β = 0). Therefore,
we identify the following two guidelines for choosing α and β :

• G1: For the attractive force, the exponent parameters are
suggested to satisfy: α ≥ 0,β ≥ 0; and

• G2: For the repulsive force, the exponent parameters are
suggested to satisfy: α ≤ 0,β ≤ 0.

The examples in Fig. 1 enclosed by the red box correspond to
parameters meeting G1 and blue box to parameters meeting G2.

Looking again at Table 1, we see that the attractive forces of all
methods satisfy G1, whereas the repulsive force of some existing
graph layout methods violate G2. For example, the repulsive forces of
SM [14], MARS [27] and SSM [32] is −2

di j
are not in the blue box, but in

the red box of Fig. 1. Since their magnitude decreases with increasing
graph-theoretical distance, the repulsive force might not be able to repel
node pairs with large graph-theoretical distances far from each other,
resulting in false neighborhoods.
Reflections. To explore how different choices of α and β influence
the final layout, we compute the resultant force for the two nodes with
varying di j and Euclidean distance ||xi−x j||. Figs. 1 (b,c,d) show the
results for three methods: FDP, stress model and maxent-stress model,
where a positive value indicates that the attractive force is larger than
the repulsive force and vice versa for a negative value.

In Fig. 1(b), we can see that FDP exerts large repulsive forces on
nodes with small Euclidean distance, but only applies attractive forces
to connected nodes. In other words, it treats all nodes with di j being
larger than 1 equally, resulting in a poor overall distance preservation.

Fig. 1(c) allows two observations about SM: i) the resultant force is
close to zero in most places (see the yellow region), except the ones for
nodes with small graph-theoretical distances; and ii) the force exerted
on nearby nodes with large graph-theoretical distances is close to zero
(see top-left corner). In other words, the original stress model might
not be able to efficiently preserve local neighborhood structures and
large graph-theoretical distances.

For the maxent-stress model, we set S and q to E and zero and show
the resultant forces for two nodes in Fig. 1(d). When di j is larger than
one, its resultant force is equal to the one of FDP, as shown in Fig. 1(b),
otherwise it is the same as the one of the stress model shown in Fig. 1(c).
Hence, we conclude that this model can be regarded as the combination
of the spring-electrical and the stress model.

3.4 A Balanced Stress Model (BSM)
The above considerations and the possibility to formulate different
methods with a unified formula help us to formulate a balanced stress
model that would have an “ideal” behavior. It is surprisingly simple
and in contrast to many methods we would consider to be “ad hoc” in
their selection of weights and exponents its behavior is directly derived
from the nature of the underlying problem.

As mentioned in Section 3.3, it is desirable to exert large repulsive
force to the node pairs with large graph-theoretical distances di j , a fact
that the stress model does not satisfy. To address this issue, we propose
the following model:

Fi = ∑
i, j∈V 2

(
||xi−x j||

di j
−

di j

||xi−x j||
)∗ ei j, (10)

where the second term can be taken as a weighted repulsive force
from the graph-theoretical distance as used in FDP (see Eq. 3), its
reciprocal corresponds to the term of the attractive force. Doing so,
nodes with large graph-theoretical distances are repelled far from each
other. On the other hand, a model after Eq. (10) is able to effectively
preserve graph-theoretical distances, since the resultant force is zero
when the graph-theoretical distance between two nodes is equal to their
Euclidean distance. To our understanding, this is a meaningful setup
that builds on the intuition that a layout should reflect graph-theoretical
distances as good as possible in its projected distances.

As shown in Fig. 2 (a), the resultant forces exerted on two nodes
forms a skew-symmetric matrix and all forces are zero at the diagonal
of the matrix. For us, an ideal behavior.

Fig. 2. (a) Resultant force for two nodes with varying graph-theoretical
and Euclidian distances generated by our balanced SM. (b) Layouts
generated by SM and balanced SM (c) on the graph cluster_2000.
Our method clearly separates different clusters. (d,e) The boxplots
summarize the value ranges (same for all boxplots in this paper) of the
stress error (d) in terms of different graph distances and neighborhood
preservation (e) degrees for different ring sizes.

Figs. 2(b,c) compare SM with our balanced model BSM using
cluster_2000. BSM clearly reveals the cluster structures, while SM
shows much less separation. To further investigate the differences
between the methods, we calculate the stress error for different graph-
theoretical distances and the neighborhood preservation degrees of
different ring sizes. As shown in Figs. 2(d,e), BSM performs slightly
worse than SM for smaller graph-theoretical distances and similar
or even better for large distances, whereas it outperforms SM in
neighborhood preservation no matter what the ring size is. These
results are consistent with our reflections about SM in Section 3.3 and
hence we speculate that our BSM performs better in balancing distance
preservation and neighborhood preservation.

4 AUGMENTED SGD SOLVER

Before we evaluate the balanced stress model in Section 5, we outline
our second contribution that allows us to compare all the mentioned
models. Recently, Zheng et al. [42] adapt the stochastic gradient descent
technique, a powerful optimization solver widely used for training deep
neural networks, to solve the stress model. They show that SGD can
reach lower stress errors faster than stress majorization [14], while
not requiring a good initialization. However, the method is originally
designed for minimizing energy functions and thus has not been used
for solving force-based layout methods.

Since energy is the negative integral of a force, we can formulate
each of the quotient-based force models (see Eq. 9) as the following
energy:

Uk =

∑

(i, j)∈Ωk

ωk

αk +1
∗
||xi−x j||αk+1

dβk
i j

αk 6=−1

∑
(i, j)∈Ωk

ωk
ln ||xi−x j||

dβk
i j

otherwise.
(11)

To minimize this energy, SGD repeatedly randomly picks a pair of
nodes xi and x j for moving it along the force direction at a time:

r =
ωk

2
∗
||xi−x j||αk

dβk
i j

∗ ek,i j (12)

xi = xi−ηsr, x j = x j +ηsr, (13)

where ηs is the step size. With a carefully chosen step size, this method
quickly converges to a reasonable layout. Unlike Zheng et al. [42],
our SGD solver updates each node with two steps, since the gradient
of the stress model in Eq. 4 is separated into attractive and repulsive
forces. This facilitates us to apply SGD to solve force-based methods.
However, directly applying SGD to FDP-based methods might be too

Algorithm 1 Pseudocode for our augmented SGD solver
1: Input: graph G = (V,E),
2: X = RandomMatrix(|V |,2)
3: for i = 1 to iters do
4: for k = 1 to l do
5: if ωk < 0 and βk = 0 then
6: solve_BH_forces(X,αk,βk,Ωk)
7: else
8: solve_SGD_forces(X,αk,βk,Ωk)
9: end if

10: end for
11: end for
12: return X

expensive because of its O(n2) time complexity. To alleviate this
issue, we suggest to combine it with the Barnes-Hut (BH) [3] method,
which approximates the repulsive force between nodes by using a
quadtree structure with a time complexity of O(n logn). Note that
this approximation only holds for forces with parameters ωk < 0 and
βk = 0. With this augmented SGD(ASGD) solver, we first compute the
repulsive force using the BH solver to move nodes and then use the SGD
solver to update nodes at each iteration, as outlined in Algorithm 1.

Fig. 3(a) shows the convergence curves of different solvers for
computing the FDP layout of the btree9 graph. Our solver performs
similarly to the SGD solver, while both converge to smaller energy
values than the BH solver. On the other hand, our solver is faster at
each iteration and its overall time is lower than the SGD solver (see
Section 5). Moreover, it is surprising that our solver even produces
better layouts than the SGD solver. As shown in Figs. 3(b,c,d), only our
solver is able to maintain the tree structure of the data. We speculate
that this is due to the separation of attractive and repulsive forces for
node movement.

Fig. 3. Comparing three solvers (BH, SGD, and our augmented SGD) for
the FDP method to layout the btree9 graph. (a) The plots of U(X) versus
the number of iterations showing the convergence of the three solvers.
Our augmented SGD solver performs similarly to SGD. (b,c,d) The layout
results generated by three solvers, the one produced by our augmented
SGD solver preserves the tree structure well.

5 EVALUATION

We implemented our framework in C++ and warped it into an open-
source library1. To customize a graph layout method, users only need to
configure and assemble different forces together in terms of the design
guidelines from Section 3.3. Based on this library, we evaluate Taurus
from four perspectives. First, we validate our augmented SGD solver
by comparing it with BH and SGD on a set of graphs. Second, we check
to what extent the implementations of existing graph layout methods
under Taurus generate similar results as the original ones. Third, we
compare our proposed balanced stress model with the existing graph
layout methods. Last, we present a usage scenario to illustrate the
flexibility of Taurus for supporting the customization of graph layouts.
All the experiments were done on a Windows desktop computer with
an Intel Core i7-9700K processor with 32GB memory.

5.1 Experimental Design

Methods. To evaluate the capability of Taurus in expressing existing
graph layout techniques, we selected five well-known methods as
baselines: force-directed placement (FDP) [10], LinLog [31], stress
model (SM) [14], Maxent [13], and FM3 [18]. They are chosen by
considering two factors: First, they cover three major categories of
existing graph layout methods (spring-electrical models: FDP, LinLog
and FM3; stress models: SM; hybrid models: Maxent), as introduced in
Section 2.1. Second, they have widely-used implementations. Four of
these methods have C++ implementations: FDP, FM3 and SM within
the OGDF [6] package, and Maxent within the graphviz [9] package.
For LinLog, we use the author’s Java implementation [31]. We re-
implement these graph layout methods under Taurus, and compared
our results with the existing implementations.
Datasets. To evaluate our general framework, we generated three types
of commonly-used graph datasets (i.e., grids, binary trees, and clustered
graphs) and 15 real graphs of different applications.

• Grids are graphs with a regular tiling. The ideal layout results
will be a uniform grid consisting of squares of a uniform size.
Grids can be used to assess whether a graph layout method is able
to preserve the regular graph structures. We generate both 2D and
3D grids of different sizes.

• Binary trees have been widely used to evaluate graph layout
methods [13, 27]. Binary trees are often symmetric. Using
them, we can evaluate whether a method is able to preserve the
symmetric structures of a graph.

1https://github.com/Ideas-Laboratory/Taurus

• Clustered graphs refer to networks with clear community struc-
tures, which can be used to evaluate whether a graph layout
method preserves such structures in the layout. We use the
Stochastic Block model [24] implemented in the graph-tool [33]
to generate such graphs. The number of communities in the
generated graphs ranges from five to fifteen.

• Real graphs are networks publicly available on the Internet used
by prior studies [29,35,43]. They come from different fields such
as biology, social sciences and environmental structures, and have
different sizes.

We generated fifteen example graphs for each of the three types of
synthetic graphs and collected fifteen real graphs. To ensure that our
solver can efficiently find optimal solutions for our layout methods, we
did not test large graphs but used exemplars with 100 to 5000 nodes
and 128 to 19016 edges. Parameters. There are three parameters of
the augmented SGD solver, which influence the graph layout quality
and speed, i.e., the maximum number of iterations, the step size η ,
and the decay rate of the Barnes-Hut algorithm λ . For η , we follow
the suggestion of Zhang et al. [42] that gradually decreases from 1
to 0.01, while setting the maximum number of iterations to 200. For
SM and BSM, we found that usually 30 iterations are enough for
convergence. To remove the influence of the initialization, we use the
same randomized initial layout for all methods on each graph.
Measures. Seven measures are used to evaluate the similarity of
different implementations for the same graph layout method and
to compare their performances. These measures were chosen to
evaluate the capability for different graph structure preservation or
graph readability.

• Normalized stress error (SE) [13] is used to measure the overall
preservation of the graph-theoretical distances in the graph
layouts. A small value indicates that graph-theoretical distances
between nodes are well maintained.

• Neighborhood preservation (NP) checks whether the neighbor-
hood around each node in the graph structure is also the neigh-
borhood in the layout. We use the neig hborhood preservation
measure introduced in [37], and define the neighborhood nodes
of a graph node as the nodes with a maximum of two edges from
it. A larger value of NP is preferred.

• Crosslessness (CL) quantifies the number of non-crossing edge
pairs in a graph layout [34]. A larger score indicates fewer edge
crossings.

• Minimum Angle (MA) measures the average deviation of the min-
imum angle from the ideal angle for each node in a layout. [34] A
small value is preferred.

• Runtime measures the average time for computing a layout. We
assess the average runtime of each graph layout method on one
graph by calculating the average over 5 runs.

• Cluster Extraction (CE) [38] delineates the average distance of
nodes within the same cluster. A small value of this measure
indicates compact clusters, which is helpful for identifying graph
communities and is thus preferred.

• Cluster Distance (CD) [38] measures the separation of different
clusters in the layout. We calculate the minimum distance
between nodes of two different clusters here. A large value
indicates different clusters are well separated and is thus preferred.

Since CE and CD both require the cluster information, we only apply
them to the clustered graphs.

To consistently compare different methods, we evaluate the relative
difference of the measure M between the target implementation Mt and
the reference implementation Mr:

δM =
Mt −Mr

Mr
, (14)

https://github.com/Ideas-Laboratory/Taurus

Fig. 4. (a) The boxplots of the runtime for different solvers, in which black
lines represent the median value. (b) the plots of runtime versus number
of nodes for each dataset. (c,d,e,f) The boxplots of four measures SE(c),
NP(d), CL(e) and MA(f) for the layouts generated by using ASGD vs. BH
and SGD. A large value is better in all boxplots.

where a value around zero indicates a specific implementation is
similar to the reference implementation. Among all measures, positive
differences of NP, CL and CD indicate a better performance of the
target implementation, while negative differences of SE, MA, CE and
runtime mean that the reference implementation performs better. To
consistently show larger values as being better, we take the final value
for SE, MA, CE and runtime as 1−δM.

5.2 Comparison between Different Solvers
Since our ASGD is equivalent to SGD for stress model based methods,
we only compare its efficiency with SGD and BH for spring based
methods. Here, we choose the classic FDP method as an example
method for comparison in terms of runtime and layout quality. To
ensure a fair comparison, we use the same convergence condition for
three solvers, while running each solver for a graph five times and
calculating the average measures. For all measures, we apply Eq. 14 to
normalize the results by taking the implementation based on our ASGD
as Mt and the two others as the references.

Due to space limits, we only show the summarized runtime and four
measures in Fig. 4, the complete scores of all measures can be found
in the supplemental material, as well as runtimes and visualizations
for additional ten large graphs. The boxplots in Fig. 4(a) provide a
statistical summary of the runtime of three methods on all tested graphs,
where our ASGD is faster than SGD by 40 percent and slightly slower
than BH. To learn how fast these solvers are, we plot the relationship
between runtime and the number of graph nodes in Fig. 4(b). We
can see that all solvers perform similarly for graphs with a number of
nodes being smaller than 1500, while ASGD and BH have significant
advantages over SGD for large graphs. With increasing number of
graph nodes, the runtime of SGD increases quadratically, while the
runtime of ASGD and BH increases logarithmically. For the largest
graph with 5000 nodes, ASGD and BH are six times faster than SGD
(1.8s vs. 10.5s).

Figs. 4(c-f) provide a summary of four layout quality measures in
terms of relative differences. For SE and NP, ASGD demonstrates
significant benefits over SGD and BH, where the median of the relative
increase is at least 8%, while it is similar for the other measures. In
all, ASGD is significantly faster than SGD and similar to BH, while
generating the best layout.

5.3 Comparison between Different Implementations
To demonstrate the effectiveness of our quotient-based representation
and ASGD solver, we compare the implementation of each layout

Fig. 5. Relative differences of the measures SE(a), NP(b), CL(c), MA(d)
and runtime(e) for the layouts of all tested graphs and CD(f) and CE(g)
for the clustered graphs by our implementation vs. existing ones. A larger
value for all measures is better.

Fig. 6. Comparison of layout results on the same data generated by
the same methods using the existing implementation (left) and our
implementation (right). (a,b) Results generated by FDP; (c,d) results
generated by Maxent.

method under our framework as Mt with its original or existing
implementation as Mr and compute δM in terms of the above measures.
Quantitative Results. The boxplots in Fig. 5 summarize the relative
differences of seven measures computed from all tested datasets. For
SE, the median values of the relative differences on all methods are
either around zero (i.e., SM, Maxent, LinLog and FM3 with a difference
less than 3%), or larger than zero (FDP with a difference around 15%)
as shown in Fig. 5(a). Similarly, the median value of the relative
differences of NP on SM is around zero, the ones of Maxent, LinLog
and FM3 are larger than zero.

These results indicate that our implementation enables FDP to better
preserve stress and neighborhood, while showing similar performances
for the other methods. We have similar observations for the two
readability measures in Figs. 5(c,d). Our implementations result in
less edge crossing (CL) and smaller minimum angle (MA) for Maxent,
FDP LinLog, and FM3, while maintaining the quality of SM.

Furthermore, it largely reduces the runtime of SM, Maxent, FDP
and LinLog by around 75%, 45%, 75% and 90%, respectively (see
Fig. 5(e)). For FM3, it leads to a slightly longer runtime (less than 5%)
for most graphs. We speculate that the reason or this is the fact that our
ASGD solver is not inherently designed for solving multi-level graph
layout whereas the BH method is. Note that the SM implementation
in the OGDF library is solved by stress majorization rather than SGD,
FDP in the OGDF library is the exact implementation, while the other
methods in the existing implementations are based on BH methods.

Figs. 5(f,g) show the results of the measures CD and CE for clustered
graphs. We can see that the relative differences of all methods
are positive or close to zero for CE and CD, indicating that our
implementation has a higher capability in revealing cluster structures.

Fig. 7. Six measures over all datasets for six layout methods. A large value is better for all measures.

Fig. 8. Bxplots summarizing the NP measure of each type of graphs for
six different layout methods. A larger value is better.

Qualitative Results. The above analysis shows that our implementa-
tion produces similar results as the baseline for stress model and LinLog,
while largely improving the layout results for FDP and Maxent. Fig. 6
compares the results produced by different implementations of FDP
and Maxent on four typical graphs.

Our FDP implementation is able to effectively maintain the grid
structure for the graph shown in Fig. 6(a), whereas the grid is highly
deformed with folds by the baseline implementation. We have similar
observations for the tree structure shown in Fig. 6(b), our result on the
right has fewer edge crossings and reveals a clearer hierarchy of clusters
than the original one on the left. These results are consistent with the
ones shown in Fig. 3, demonstrating the efficiency of our solver.

Figs. 6(c,d) show results generated by two implementations of
Maxent. Our result is significantly better in terms of cluster preservation
and reveals all different communities (Fig. 6(c)), while the original
mixes clusters. This also holds for the collaboration network (Fig. 6(d)).
Compared to the baseline, our result distributes all local clusters in 2D
plane evenly with fewer edge crossing, while maintaining the overall
structure. Yet, the baseline implementation better reveals the multi-ring
structures, but has strong node overlaps and edge crossings.

Overall, the results of all methods implemented in Taurus are similar
to or even better than the original implementations, with a largely
reduced runtime. In particular, our versions of FDP and Maxent largely
improve layout quality.

5.4 Comparison between Different Methods
Here, we compare our proposed layout method BSM with five
existing methods (SM, FDP, Maxent, LinLog and FM3). To show
the effectiveness of this model, we implemented all these methods by
Taurus with the same solver and use the same initial layout for each
tested graph.
Quantitative Results. Fig. 7 summarizes the values of six measures
overall tested graphs using boxplots. For the complete results presented
in table, please refer to the supplemental material In terms of the
stress error, BSM is slightly worse than SM but outperforms the
other methods, while LinLog is the worst. In contrast, BSM is better
than SM and Maxent in neighborhood preservation, close to FDP
and FM3, worse than LinLog. Regarding readability measures, BSM
performs similarly to the other methods but is worse than LinLog for
CL. Similarly, BSM is worse than LinLog and similar as FDP and FM3

with regard to CE and CD on clustered graphs. This is reasonable, since
LinLog is designed for revealing clusters, while BSM is for distance
preservation.

While LinLog performs the worst in terms of the stress error, it is
the best for preserving neighborhoods. This is interesting, since we
often assume that LinLog is good in revealing clusters and FDP and
FM3 performs well in neighborhood preservation. After examining the
statistics of each type of graph in Fig. 8, we found that FM3 works
well for all graphs and LinLog performs poorly on grids but works
well for other graphs, whereas SM and our BSM perform best for such
graphs. For tree structured graphs, BSM performs better than SM but
worse than the others, because maintaining the overall distance is not
helpful here. In contrast, BSM performs similar or even better than
FDP and FM3 on clustered and real graphs, although it is designed for
preserving graph-theoretical distances. For each of the other measures,
the distribution of the results does not show any significant dependency
on the data type.

In summary, BSM achieves a balanced capability in preserving
overall distances (SE), neighborhoods (NP) and clusters (CE and CD),
especially for clustered and real graphs. In addition, it maintains similar
graph readability values as the other methods and therefore matches
our design goal.
Qualitative Results. Fig. 9 shows the visual results of four typical
example graphs. The dataset in the first row of Fig. 9 is a graph with
a 3D-like grid, where only BSM and SM preserve the grid structure,
while the other methods heavily deform it.

BSM is able to clearly visualize the major branches and the
symmetry of tree graph shown in the second row of Fig. 9. Other
methods (except SM) do not preserve the symmetry but show more
minor branches. For this graph, Maxent, FDP and LinLog have a
higher score in neighborhood preservation, whereas they do not show
major branches. Hence, we speculate that BSM might perform even
better in visualizing large tree structures than these methods. Although
LinLog allows to inherently reveal cluster structures, its results are
too tight to explore any details. FDP and Maxent alleviate this issue,
but might create overlaps between clusters. In contrast, BSM better
balances intra- and inter-cluster separation well, where the maroon
and yellow green clusters are at the center and are surrounded by the
other clusters. This makes sense, since these two clusters have the most
inter-cluster connections with the others in the ground truth data. In
contrast, FM3 does not reflect this ground truth. For the real graphs, the
results of BSM are similar to or even slightly better than SM in terms
of preserving radial graph structures and local clusters, while both of
them perform better than the others.

Overall, the visual results by BSM align well with the observations
in Section 5.4: BSM is able to visualize the structures of different types
of graphs well.

5.5 Usage Scenario
Lastly, we present a usage scenario to showcase how Taurus can
facilitate graph visualizations in a unified manner. Suppose Bob, a
data scientist who often needs to explore networks in his daily work
and has a basic understanding of different graph layout techniques.
He wants to visualize a network that he wants to explore the potential
clusters. With Taurus, he can easily try different graph layout methods
within the same framework.

First, he uses Taurus to quickly implement BSM by simply
configuring the four parameters {Ω,ω,α,β} for attractive forces with

Fig. 9. BSM results of four graphs (top down: grid_1000, btree_513, cluster_4463, and US_powergrid) with different structures in comparison to
baseline methods (SM, FDP, LinLog, Maxent and FM3) implemented by Taurus.

Fig. 10. Utilizing Taurus to obtain good graph layout results. By entering
the corresponding parameters, the user quickly gets layout results for (a)
BSM, (b) LinLog and (c) a customized layout method.

{V 2,1,1,1} and for repulsive forces with {V 2,−1,−1,−1}. The
layout result (Fig. 10 (a)) shows that the network seems to have a
clustering structure. To display clusters more clearly, Bob updates
the parameters to {E,1,0,0} and {V 2,−1,−1,0} for attractive and
repulsive forces, i.e. applying the LinLog method. He obtains a more
compact clustering result as shown in Fig. 10 (b). However, the clusters
in this graph layout are too tight to examine the relationship between
nodes within the same cluster. To achieve the optimal graph layout,
Bob further adjusts α and β of the attractive force to 2.5 and -1.5, and
finds that the result in Fig. 10 (c) shows the detail of each cluster more
clearly, making it easier for Bob to know which clusters contain more
nodes. With Taurus, Bob can easily customize graph layout methods to
explore different graph structures, which facilitates him to perform a
deeper analysis.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a general framework, Taurus, to unify popular
graph layout methods. It consists of two major components: a unified
quotient-based force representation to model repulsive and attractive
forces of different graph layout techniques, and a universal augmented
stochastic gradient descent (ASGD) solver to find the optimal graph
layout results. We systematically analyze our general framework and
provide guidelines for designing effective graph layout methods. We
also release a graph layout library based on Taurus that facilitates
convenient implementation of graph visualizations in a unified manner.

In the future, we would like to extend Taurus along the following
directions. First, apart from the current open-source package in
C++, we plan to extend Taurus to other programming languages
like Python and JavaScript. Second, Taurus provides a clear design
space for graph layout techniques, but it might require users to try
multiple different parameters for a specific graph analysis task (see
Section 5.5). Therefore, we like to explore automated parameter
tuning methods for automatically fining proper parameters to generate
desired visualizations. Third, it will be interesting to further extend
our framework to unify graph layout techniques with special model
designs (e.g., tsNET [29] and DRGragh [43]). Last, we would like to
conduct a large user study to compare the different layout methods in
terms of layout principles and then use the findings to further improve
our framework.

ACKNOWLEDGMENTS

This work was supported by the grants of the National Key Research
and Development Program of China (2018AAA0101100), and NSFC
(62132017, 62141217). Oliver Deussen was funded by the German
Research Foundation (DFG) - Project-ID 2,51654672 - TRR 161.

REFERENCES

[1] R. Ahmed, F. De Luca, S. Devkota, S. Kobourov, and M. Li. Multicriteria
scalable graph drawing via stochastic gradient descent, (SGD)2. IEEE
Transactions on Visualization and Computer Graphics, 28(6):2388–2399,
2022. doi: 10.1109/TVCG.2022.3155564

[2] D. Auber, D. Archambault, R. Bourqui, M. Delest, J. Dubois, A. Lambert,
P. Mary, M. Mathiaut, G. Melançon, B. Pinaud, B. Renoust, and J. Vallet.
TULIP 5. In Encyclopedia of Social Network Analysis and Mining, pp.
1–28. Springer, 2017. doi: 10.1007/978-1-4614-7163-9_315-1

[3] J. Barnes and P. Hut. A hierarchical o (n log n) force-calculation algorithm.
Nature, 324(6096):446–449, 1986. doi: 10.1038/324446a0

[4] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2301–2309,
2011. doi: 10.1109/tvcg.2011.185

[5] U. Brandes and C. Pich. Eigensolver methods for progressive
multidimensional scaling of large data. In International Symposium on
Graph Drawing, pp. 42–53. Springer, 2006. doi: 10.1007/978-3-540
-70904-6_6

[6] M. Chimani, C. Gutwenger, M. Jünger, G. W. Klau, K. Klein, and
P. Mutzel. The open graph drawing framework OGDF. Handbook of
Graph Drawing and Visualization, 2011:543–569, 2013.

[7] T. Dwyer. Scalable, versatile and simple constrained graph layout.
Computer Graphics Forum, 28(3):991–998, 2009. doi: 10.1111/j.1467
-8659.2009.01449.x

[8] P. Eades. A heuristic for graph drawing. Congressus Numerantium,
42:149–160, 1984.

[9] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull.
Graphviz—open source graph drawing tools. In International Symposium
on Graph Drawing, pp. 483–484. Springer, Feb. 2001. doi: 10.1007/3-540
-45848-4_57

[10] T. M. Fruchterman and E. M. Reingold. Graph drawing by force-directed
placement. Software: Practice and Experience, 21(11):1129–1164, 1991.
doi: 10.1007/978-3-658-21742-6_49

[11] P. Gajer, M. T. Goodrich, and S. G. Kobourov. A multi-dimensional
approach to force-directed layouts of large graphs. Computational
Geometry, 29(1):3–18, 2004. doi: 10.1016/j.comgeo.2004.03.014

[12] P. Gajer and S. G. Kobourov. Grip: Graph drawing with intelligent
placement. In International Symposium on Graph Drawing, pp. 222–228.
Springer, May 2000. doi: 10.1142/9789812796608_0011

[13] E. R. Gansner, Y. Hu, and S. North. A maxent-stress model for graph
layout. IEEE Transactions on Visualization and Computer Graphics,
19(6):927–940, 2012. doi: 10.1109/TVCG.2012.299

[14] E. R. Gansner, Y. Koren, and S. North. Graph drawing by stress
majorization. In International Symposium on Graph Drawing, pp. 239–
250. Springer, 2004. doi: 10.1007/978-3-540-31843-9-25

[15] E. R. Gansner and S. C. North. An open graph visualization system and its
applications to software engineering. Software: Practice and Experience,
30(11):1203–1233, 2000.

[16] A. M. Gouvêa, T. S. da Silva, E. E. Macau, and M. G. Quiles. Force-
directed algorithms as a tool to support community detection. The
European Physical Journal Special Topics, 230(14):2745–2763, 2021.
doi: 10.1140/epjs/s11734-021-00167-0

[17] R. Gove. A random sampling o (n) force-calculation algorithm for graph
layouts. Computer Graphics Forum, 38(3):739–751, 2019. doi: 10.1111/
cgf.13724

[18] S. Hachul and M. Jünger. Drawing large graphs with a potential-field-based
multilevel algorithm. In International Symposium on Graph Drawing, pp.
285–295. Springer, 2004. doi: 10.1007/978-3-540-31843-9_29

[19] S. Hachul and M. Jünger. Large-graph layout with the fast multipole
multilevel method. Spring, V (December), pp. 1–27, 2005.

[20] Y. Hu. Efficient high-quality force-directed graph drawing. Mathematica
Journal, 10(1):37–71, 2005.

[21] Y. Hu and Y. Koren. Extending the spring-electrical model to overcome
warping effects. In IEEE Pacific Visualization Symposium, pp. 129–136.
IEEE, May 2009. doi: 10.1109/PACIFICVIS.2009.4906847

[22] M. Jacomy, T. Venturini, S. Heymann, and M. Bastian. Forceatlas2,
a continuous graph layout algorithm for handy network visualization
designed for the gephi software. PLOS ONE, 9(6):e98679, 2014. doi: 10.
1371/journal.pone.0098679

[23] T. Kamada, S. Kawai, et al. An algorithm for drawing general undirected
graphs. Information Processing Letters, 31(1):7–15, 1989. doi: 10.1142/
9789814434478_0005

[24] B. Karrer and M. E. Newman. Stochastic blockmodels and community
structure in networks. Physical Review E, 83(1):016107, 2011. doi: 10.
1103/PhysRevE.83.016107

[25] M. Kaufmann and D. Wagner. Drawing graphs: methods and models.
Springer, 2003.

[26] A.-M. Kermarrec and A. Moin. FlexGD: A flexible force-directed model
for graph drawing. In IEEE Pacific Visualization Symposium, pp. 217–224.
IEEE, 2013. doi: 10.1109/PacificVis.2013.6596148

[27] M. Khoury, Y. Hu, S. Krishnan, and C. Scheidegger. Drawing large graphs
by low-rank stress majorization. Computer Graphics Forum, 31(3pt1):975–
984, 2012. doi: 10.1111/j.1467-8659.2012.03090.x

[28] S. G. Kobourov. Force-directed drawing algorithms. 2004.
[29] J. F. Kruiger, P. E. Rauber, R. M. Martins, A. Kerren, S. Kobourov,

and A. C. Telea. Graph layouts by t-SNE. Computer Graphics Forum,
36(3):283–294, 2017. doi: 10.1111/cgf.13187

[30] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,
521(7553):436–444, 2015. doi: 10.1038/nature14539

[31] A. Noack. An energy model for visual graph clustering. In International
symposium on graph drawing, pp. 425–436. Springer, 2003. doi: 10.
1007/978-3-540-24595-7_40

[32] M. Ortmann, M. Klimenta, and U. Brandes. A sparse stress model. In
International Symposium on Graph Drawing and Network Visualization,
pp. 18–32. Springer, 2016. doi: 10.1007/978-3-319-50106-2_2

[33] T. P. Peixoto. The graph-tool python library. figshare, 2014. doi: 10.
6084/m9.figshare.1164194

[34] H. C. Purchase. Metrics for graph drawing aesthetics. Journal of Visual
Languages & Computing, 13(5):501–516, 2002. doi: 10.1006/jvlc.2002.
0232

[35] R. A. Rossi and N. K. Ahmed. The network data repository with interactive
graph analytics and visualization. Twenty-Ninth AAAI Conference on
Artificial Intelligence, 29(1):4292–4293, 2015. doi: 10.1609/aaai.v29i1.
9277

[36] R. Tamassia. Handbook of Graph Drawing and Visualization. CRC press,
2013.

[37] L. Van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal
of Machine Learning Research, 9(86):2579–2605, 2008.

[38] F. Van Ham and B. Rogowitz. Perceptual organization in user-generated
graph layouts. IEEE Transactions on Visualization and Computer
Graphics, 14(6):1333–1339, 2008. doi: 10.1109/TVCG.2008.155

[39] C. Walshaw. A multilevel algorithm for force-directed graph drawing.
In International Symposium on Graph Drawing, pp. 171–182. Springer,
2000. doi: 10.1142/9789812773296_0012

[40] Y. Wang, Y. Wang, Y. Sun, L. Zhu, K. Lu, C.-W. Fu, M. Sedlmair,
O. Deussen, and B. Chen. Revisiting stress majorization as a unified
framework for interactive constrained graph visualization. IEEE
Transactions on Visualization and Computer Graphics, 24(1):489–499,
2017. doi: 10.1109/TVCG.2017.2745919

[41] H. D. Young, R. A. Freedman, T. Sandin, and A. L. Ford. University
Physics, vol. 9. Addison-Wesley Reading, MA, 1996.

[42] J. X. Zheng, S. Pawar, and D. F. Goodman. Graph drawing by stochastic
gradient descent. IEEE Transactions on Visualization and Computer
Graphics, 25(9):2738–2748, 2018. doi: 10.1109/TVCG.2018.2859997

[43] M. Zhu, W. Chen, Y. Hu, Y. Hou, L. Liu, and K. Zhang. Drgraph: An
efficient graph layout algorithm for large-scale graphs by dimensionality
reduction. IEEE Transactions on Visualization and Computer Graphics,
27(2):1666–1676, 2020. doi: 10.1109/TVCG.2020.3030447

	Taurus: Towards a Unified Force Representation and Universal Solver for Graph Layout
	Citation
	Author

	Introduction
	Related Work
	Graph Layout
	Graph Layout Solvers
	Graph Layout Packages

	Proposed Framework
	Revisiting Existing Graph Layout Methods
	Quotient based Force Function
	Guidelines for the Selection of Exponents
	A Balanced Stress Model (BSM)

	Augmented SGD Solver
	Evaluation
	Experimental Design
	Comparison between Different Solvers
	Comparison between Different Implementations
	Comparison between Different Methods
	Usage Scenario

	Conclusion and Future Work

