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Abstract. With a cloud storage, users can store their data files on a
remote cloud server with a high quality on-demand cloud service and are
able to share their data with other users. Since cloud servers are not usu-
ally regarded as fully trusted and the cloud data can be shared amongst
users, the integrity checking of the remote files has become an impor-
tant issue. A number of remote data integrity checking protocols have
been proposed in the literature to allow public auditing of cloud data
by a third party auditor (TPA). However, user privacy is not taken into
account in most of the existing protocols. We believe that preserving the
anonymity (i.e., identity privacy) of the data owner is also very importa
nt in many applications. In this paper, we propose a new remote integrity
checking scheme which allows the cloud server to protect the identity
information of the data owner against the TPA. We also define a formal
security model to capture the requirement of user anonymity, and prove
the anonymity as well as the soundness of the proposed scheme.

Keywords: Data integrity · Identity privacy · Public auditing · Cloud
storage

1 Introduction

Cloud computing offers various kinds of computation and storage services to
end users via computer networks, and is becoming very popular nowadays. One
of the major services is cloud storage which allows users to store their data
files remotely and access the files anywhere any time. It has greatly reduced
the burden for local storage management and maintenance. Some commerical
products such as Google Drive and Dropbox have become very popular for both
individuals and enterprises.

However, after the data owners outsource their files to the cloud server and
delete the local copies, the server may not store the files correctly due to various
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reasons such as system crash or deliberately deleting some data blocks that are
seldom or never used in order to save the cost. Moreover, the server may try
to hide the accidents or misbehaviours to the end users. In order to detect or
prevent this kind of situations, we need to audit the integrity of remote files
either periodically or before downloading. Many protocols have been proposed
for auditing the file integrity and retrievability in remote storage, such as Proof
of Data Possession (PDP) [1] and Proof of Retrievability (PoR) [6,7]. These
protocols utilised spot-checking techniques such as homomorphic authenticators
to make the auditing more efficient.

Recently, some additional security and usability properties have been pro-
posed and formalised for Remote Integrity Checking (RIC) protocols [4,11,12],
including public auditing (i.e., the data auditing can be performed by a
third-party auditor), batch auditing, and privacy-preserving auditing (i.e., the
third-party auditor cannot learn any information about the file during the audit-
ing process). These properties are achieved by extending the previous work on
homomorphic authenticators and zero-knowledge proof systems.

Since users may frequently modify the files by inserting, updating and delet-
ing the file blocks, data dynamic operations have also been considered in some
recent RIC protocols. In [13,14], a Merkle Hash Tree (MHT) is employed to
achieve this goal where the structure of a file is represented using a MHT. Later,
a more efficient scheme was proposed by Yang and Jia in [15] where an index
table is maintained by a fixed TPA in order to keep track of the data changes.
Although Yang and Jia’s scheme is more efficient than the MHT approach pro-
posed in [14], the TPA must be fixed for a specific file, which can be considered
as a limitation of the scheme. Some RIC protocols [9] have also considered file
sharing among a group of users, where the technique of proxy-resign is used to
allow authenticators to be transferred from a leaving member to another staying
member in the group.

In this paper, we focus on another important and desirable property of RIC
protocols: identity privacy (i.e., anonymity) of the data owner against outsiders
and the TPA. Such a problem has been studied in [10] where a ring signature (i.e.,
authenticator) rather than an ordinary one is generated for each data block by
the data owner. Nevertheless, there is an issue in this protocol: in order to allow
data dynamic operations, a virtual index is used for each file block. Since the
cloud server maintains the virtual index table, it can always redirect the challenge
for a corrupted file block to an uncorrupted one in order to pass the verification.
Details of this issue will be shown in Appendix A. A similar problem has also
been considered in [8] where a group signature is used as the authenticator for
each block. However, the group manager is still able to reveal the identity of
signer and it is not easy to set up that kind of group.

Identity privacy is essential in many scenarios. For example, a group of users
may prefer anonymous file sharing for some reasons such as fear of retribution
for disclosure. Besides, censorship is usually required in local, organizational or
national level applications such as anonymous bidding. A group of bidders will
place their bids which are actually files on the cloud storage and the identity of
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bidders should be confidential during assessment. At the same time, the assess-
ment community would like to ensure the integrity of files periodically or before
they retrieve a file.

In this paper, we propose a new RIC protocol with user anonymity. Differing
from the protocol in [10], we consider the user anonymity in file level instead
of data block level in order to save the storage and communication overheads.
In the current work, we only focus on static files and leave the support of data
dynamic operations as the future work.

Our Contribution. We formalise the notion of user anonymity for RIC pro-
tocols. In our RIC anonymity model, we consider the TPA as the adversary
who aims to discover the identity of the file owner during the RIC proof with
the cloud server. Then we construct an identity privacy-preserving RIC proto-
col based on the ring signature scheme proposed by Boneh et al. in [2], which
is a variant of BLS signature [3]. The protocol is very practical because of the
homomorphic property of the underlying signature scheme. Moreover, the proto-
col also supports batch verification such that the TPA can verify several proofs
simultaneously using one verification equation. We prove that the proposed pro-
tocol can ensure data integrity while preserving identity privacy. In addition,
this protocol can be also extended to support the privacy of audited files (which
is defined as IND-Privacy in [4]).

Paper Organisation. The rest of the paper is organised as follows. In Section 2,
we give the system model and security definition of the protocol. In Section 3,
we present our identity privacy preserving remote integrity check protocol. We
analyse the security of the proposed scheme in Section 4. We provide some
extensions in Section 5. We conclude the paper in Section 6. The details of an
attack on an existing scheme and the security proofs of the proposed scheme are
given in Appendices.

2 System Model and Security Definition

Fig. 1 is an overview of the system. The basic case is that d users stored d files
on the cloud server, and each of them owns one file. None of the users wants the
TPA to link their identity with the file. The system can be easily extended to a
more general setting where one user stores multiple files on the cloud server.

Users first form a group to preserve anonymity from the TPA. Then they
outsource their files to the cloud individually. From the file level point of view,
a file has one file tag, one glue value, some auxiliary information. From the
block level point of view, one authenticator is attached to each block. During
the auditing process, the file tags are public to the TPA but other information
is kept secret.

After that, this group of users delegate the auditing task for the outsourced
files to any TPA. Either periodically or at specific times, the TPA will challenge
the cloud server for the storage of the outsourced files. The cloud server will then
generate a short response for the challenge based on the information it has.
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Fig. 1. System Model

Now we are going to describe the formal definition of an RIC protocol as well
as the soundness and anonymity game.

2.1 Anonymous RIC Protocols

There are three types of parties in an anonymous RIC protocol: a group of
users, the cloud server, and the TPA. An anonymous RIC scheme consists of the
following algorithms:

– Setup: This algorithm takes a security parameter λ and generates the public
parameters mpk for the whole system.

– KeyGen: This algorithm takes as input mpk and generates the public and
private key pair (pki, ski) for each user.

– TokenGen: This algorithm takes as input a file F , and the owner’s private
key sk, to generate a file tag t, and the authenticator σ for each file block.

– GlueGen: This algorithm takes as input the public keys of all group users
{pki} and the owner’s private key sk to generate a glue value θ and auxiliary
information {b} for anonymous public auditing.

– Challenge: Given the file tag t, this algorithm generates the challenge chal
for cloud server.

– Response: Taking as input (F, t, {σ}, θ, {b}, chal,mpk), this algorithm out-
puts a proof P to prove the integrity of the file.

– Verify: Taking as input ({pki},mpk, t, chal, P ), this algorithm outputs true
or false to indicate whether the file is stored correctly.

2.2 RIC Anonymity

Since we want to ensure that the TPA cannot distinguish the identity of the real
file owner from other users in the group during multiple runs of the protocol,
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we fix the owner at the beginning of the adversarial game, and then allow the
adversary to ask multiple proof queries. The Anonymity for an RIC scheme is
defined via an Anonymity game between a challenger C (i.e. the cloud server or
prover) and an Adversary A (i.e. the TPA or verifier) as follows.

– Setup: The challenger C runs Setup and KeyGen to generate the public
parameters and the key pairs for a group of users U1, U2, ..., Ud and passes
all the public keys to the Adversary A. Also, C randomly chooses a user
b ∈ [1, d] to be the real signer.

– Phase 1: A can ask for tag queries. In each query, A can choose a file F
to be stored and C generates the file tag, the authenticators, the glue value
and the auxiliary information for the file. Only the file tag t is returned to
A. A can ask multiple tag queries for different files.

– Phase 2: A uses the file tag t of file F which appeared in Phase 1 to
generates the chal to ask for proof from C. Then, C generates the proof P
and sends P to A. In this phase, A can also ask multiple proof queries.

– Decision: A output b′ as the guess of b.

Define the advantage of adversary A as AdvA(λ) = |Pr[b′ = b] − 1/d|.
Definition 1. We say an RIC scheme has anonymity if for any polynomial-time
algorithm A, AdvA(λ) is a negligible function of the security parameter λ.

2.3 RIC Soundness

We say a protocol is sound if it is infeasible for the cloud server to modify the
content of a file without being detected by the TPA in the auditing. We define
the soundness games between a challenger C and an adversary A as follows:

– Setup: C runs Setup and KeyGen to generate the key pairs for a group
of users. C then chooses the first user as the real signer and passes all the
public keys to the Adversary.

– Phase 1: A makes multiple queries to C for TokenGen and GlueGen on
any file F . C generates the file tag t, authenticators σ, and the glue value θ
and auxiliary information {b} using the secret key of the first user, and then
returns (t, {σ}, θ, {b}) to A.

– Phase 2: A outputs a file F ′ and a file tag t′ such that t′ = t but F ′ �= F for
some (F, t) appeared in Phase 1 (i.e., at least one block of F is corrupted).
C then plays the role as the verifier and executes the RIC protocol with A
by sending a challenge chal which contains at least one corrupted block.

– Decision: C makes a decision which is either True or False after verifying
the proof P ′ generated by the adversary A.

Definition 2. We say a RIC protocol is ε-sound if Pr[C outputs True] ≤ ε.



382 Y. Feng et al.

3 The Proposed Scheme

3.1 Notation

Let G1, G2 and GT be three multiplicative cyclic groups of prime order p. Let
g1 and g2 be the generators of G1 and G2 respectively. The bilinear map e :
G1 × G2 → GT should have the following properties:

– Bilinear: We say that the map is bilinear if e(ua, hb) = e(u, h)ab for all
u ∈ G1, h ∈ G2, a, b ∈ Zp.

– Non-degenerate: The map does not send all pairs in G1 × G2 to the identity
in GT . As they are prime order groups, e(g1, g2) is a generator of GT .

– Computable: There is an efficient algorithm to compute e(u, h) for any u ∈
G1, h ∈ G2.

– Isomorphism: In addition, there should be a computable isomorphism ψ from
G2 to G1, with ψ(g2) = g1 and e(ψ(u), h) = e(ψ(h), u) for any u, h ∈ G2.

3.2 Our Anonymous RIC Scheme

We present the details of our anonymous RIC scheme.

Setup: Let (e, p,G1, G2, GT , g1, g2, ψ) be the bilinear map and associated
group parameters defined as above. Choose a cryptographic hash functions
H : {0, 1}∗ → G1. Choose another generator h ∈ G1. Choose two ran-
dom numbers α, τ ∈ Zp to generate the commitment keys: u = (u1, u2)
where u1 = (g1, gα

1 ), u2 = (gτ
1 , gτα

1 ). The public parameters are mpk =
(e, p,G1, G2, GT , g1, g2, ψ,H, h, u1, u2).

KeyGen: Each user Ui randomly chooses xi ∈ Zp and computes yi = gxi
2 .

Besides, each user generates a key pair (spki, sski) for a secure ring signature
scheme. The user Ui’s public key is (yi, spki), and the private key is (xi, sski).

TokenGen: The outsourced file F is first divided into n blocks, and the file
owner s chooses a random file name name from some sufficiently large domain
(e.g., Zp). Let t0 be “name||n”; the file tag t is t0 together with a ring signature on
t0 under the private key ssks and the public keys {spki}i�=s: t ← t0||Sigssks

(t0).
For each block mj , the signer computes: σj = (H (name||j) · hmj )1/xs .

GlueGen: For each user Ui �= Us, the signer chooses ai ∈ Zp, and computes
the auxiliary information: bi = gai

1 . Then the signer computes a glue value

θ = 1

/

ψ
(

∏n
i�=s yai

i

)1/xs

. Finally, the user sends {F, t, {σj}j∈[1,n], {bi}i∈[1,d], θ}
to the cloud server. We shows the computation and communication between
client and server in Fig. 2.

Challenge: The TPA first retrieves the file tag t and verifies the ring signature
Sigssks

(t0) based on the user public keys of all the users in the ring. The TPA
quits by emitting False if the verification fails. Otherwise, the TPA recovers
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Client Communication Cloud Server

1. Divide F into n block.
Choose name ∈ Zp.
Let t0 = name||n,
t ← t0||Sigssks(t0).

2. For each block mj , compute:
σj = (H(name||j) · hmj )1/xs

3. For user ui �= us,
choose ai ∈ Zp,
compute: bi = gai

1

4. Compute a glue value:

θ = 1

/
ψ

(∏n
i�=s yai

i

)1/xs

5. Outsource the file to Cloud.
{F, t, {σ}, {b}, θ}

−−−−−−−−−−−−−−→
6. Delegate the auditing to TPA.

Fig. 2. Storing a file

name, n. Then the TPA picks c elements in set [1, n], where n is the total number
of file blocks, to indicate the blocks that will be checked. J denotes the subset of
[1, n] that contains all the chosen indices. For j ∈ J , the TPA randomly chooses
cj ∈ Zp. Finally the TPA sends {(j, cj)}j∈J to the cloud server as a challenge.

Response: Upon receiving the challenge {(j, cj)}j∈J , the cloud server com-
putes μ =

∑

j∈J cjmj , and Σs =
∏

j∈J σ
cj
j · θ , Σi = bi for all i �= s . Given

(μ, {Σ}), the TPA can use the following equation to check the integrity of the
file e

(

∏

j∈J H(name||j)cj · hμ, g2

)

=
∏d

i=1 e (Σi, yi) .

However, if we run the above protocol for multiple times, the values of μ and
Σs will change depending on the challenge, while other Σi will remain static,
which will reveal the identity of the file owner. To address this issue, we make
use of the Groth-Sahai Proof System [5] to hide all the {Σ} while convincing the
TPA they are correct. So in the modified Response algorithm, using the system
public key u as the commitment key, the cloud server computes commitments
as: c = (c1, c2, ..., cd), where

c1 = (c11, c12) = (gr11+r12τ
1 , g

α(r11+r12τ)
1 Σ1) = (ur11

11 ur12
12 , ur11

21 ur12
22 Σ1)

c2 = (c21, c22) = (gr21+r22τ
1 , g

α(r21+r22τ)
1 Σ2) = (ur21

11 ur22
12 , ur21

21 ur22
22 Σ2)

...

cd = (cd1, cd2) = (grd1+rd2τ
1 , g

α(rd1+rd2τ)
1 Σd) = (urd1

11 urd2
12 , urd1

21 urd2
22 Σd)

where rij(i ∈ [1, d], j ∈ {1, 2}) is randomly selected from Zp.
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The proof becomes: π = (π1, π2) where π1 = (1, yr11
1 yr21

2 ...yrd1
d ) and π2 =

(1, yr12
1 yr22

2 ...yrd2
d ). Finally, (μ, c,π) are sent to TPA instead of (μ, {Σ}).

Verify: First, we define the � operator as x�y = F (x1, y1)F (x2, y2)...F (xn, yn),
where

F (xi, yi) =
(

e(xi1, yi1) e(xi1, yi2)
e(xi2, yi1) e(xi2, yi2)

)

for (xi1, xi2) ∈ G2
1, (yi1, yi2) ∈ G2

2, i ∈ [1, n].
To do the verification, TPA first performs the transformation on the original

verification equation as follows.

– Transform Left Hand Side: l = (l1, l2) where l11 = (1, 1) and l12 = (1, L),
where L = e

(

∏

j∈J H(name||j)cj · hμ, g2

)

.
– Transform Public Keys: k = (k1, k2, ..., kd) where k1 = (1, y1) and k2 =

(1, y2) ... kd = (1, yd)

The verifier then performs the verification via the following equation: l(u �
π) = c � k. Please note that here we use the Hadamard product of the matrix.
We show the computations and message flows between TPA and cloud server in
Fig. 3. The correctness of both the non-anonymous and anonymous verification
equations are proved in Appendix B.

4 Security Analysis

4.1 Anonymity of the Protocol

External Diffie-Hellman (XDH) Assumption: Groth-Sahai proof system
in [5] is under the assumption SXDH, where the DDH problem is hard in both
G1 and G2. But we need to have isomorphism to generate the glue value, so
we will just assume DDH is hard in G1. Let gk = (λ, p,G1, G2, GT , e, g1, g2),
define a bilinear map e : G1 × G2 → GT and isomorphism from G2 to G1, with
ψ(g2) = g1. The XDH assumption holds if we have

|Pr[A(gk, ψ, gx
1 , gy

1 , gxy
1 ) = 1] − Pr[A(gk, ψ, gx

1 , gy
1 , gz

1) = 1]| ≤ ε

where x, y, z ← Z∗
p .

Theorem 1. Our new anonymous RIC protocol has identity privacy if XDH
assumption holds.

4.2 Soundness of the Protocol

Co-CDH Problem: Given (G1, G2, g1, g2, h = ga
1 , u = gb

2), Compute gab
1 . Sim-

ilar to [2], we can solve the Co-CDH problem by solving two instances of the
following problem: given (G1, G2, g1, g2, u = ga

2 , h = gab
1 ), compute gb

1. We will
use this version of the Co-CDH problem to prove the soundness of our protocol.

Theorem 2. The proposed RIC scheme is negl(λ)-sound, where negl(λ) is a
negligible function of the security parameter λ, if the Co-CDH problem is hard.

The proofs of the theorems are presented in Appendix C and D.
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TPA Communication Cloud Server

1. Retrieve the file tag t.
Verify the signature,
and recover name, n.

2. Pick c elements in [1, n]
to form a subset J .
For each j ∈ J ,
choose cj ∈ Zp.

3. Send Challenge to Cloud.
{(j, cj)}j∈J

−−−−−−−−−−−−−−→
1. Compute: μ =

∑
j∈J cjmj

2. Compute:
Σs =

∏
j∈J σ

cj
j · θ

and Σi = bi for all i �= s.

3. Commit {Σ} to c:
ci = (ci1, ci2)
= (uri1

11 uri2
12 , uri1

21 uri2
22 Σi)

where rij(i ∈ [1, d], j ∈ {1, 2})
is randomly selected from Zp.

4. Compute the Proof:
π = (π1, π2).
π1 = (1, yr11

1 yr21
2 ...y

rd1
d )

π2 = (1, yr12
1 yr22

2 ...y
rd2
d )

{μ, c, π}
←−−−−−−−−−−−−−− 5. Send Response to TPA.

4. Transform left hand side:
l = (l1, l2).
l11 = (1, 1), l12 = (1, L),
while L = e

(∏
j∈J H(name||j)cj · hµ, g2

)
.

5. Transform Public Keys:
k = (k1, k2, ..., kd),
where ki = (1, yi).

6. Verify the proof with
commitment key u:
l(u � π) = c � k.

Fig. 3. Auditing
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5 Extension

5.1 Batch Auditing

Our scheme can be easily extended to support batch auditing, which can audit
multiple files for the group at the same time and save the pairing computations.
For example, for non-anonymous auditing, given two challenges for different
files {(j, cj)}j∈J and {(j′, c′

j)}j′∈J ′ , the cloud server can calculate (μ, {Σ} and
(μ′, {Σ′}), and verification equation becomes

e

⎛

⎝

(

∏

j∈J

H(name||j)cj

)

·
⎛

⎝

∏

j′∈J′
H(name′||j′)c′

j

⎞

⎠ · hμ+μ′
, g2

⎞

⎠ =

d
∏

i=1

e
(

Σi · Σ′
i, yi

)

.

For anonymous auditing, the equation for the verification is still

l(u � π) = c � k .

As a result, the response from the cloud server still contains three parts
(μ + μ′, c,π) where the commitment c will hide Σi · Σ′

i instead of Σi.
It is also worth noting that during TPA verification, L inside l will be

changed to
⎛

⎝

∏

j∈J

H(name||j)cj

⎞

⎠ ·
⎛

⎝

∏

j′∈J ′
H(name′||j′)c′

j

⎞

⎠ · hμ+μ′
.

5.2 IND-Privacy

We have addressed the identity privacy of users, and we can also extend the
scheme to provide the privacy of the audited files, which is defined as IND-
Privacy in [4]. With IND-Privacy, the TPA is not able to distinguish which file
is being audited. The Groth-Sahai proof system [5] is also used in [4] to achieve
this goal.

The non-anonymous verification equation of our RIC scheme

e

⎛

⎝

∏

j∈J

H(name||j)cj · hμ, g2

⎞

⎠ =
d

∏

i=1

e (Σi, yi)

can be expressed as

e

⎛

⎝

∏

j∈J

H(name||j)cj , g2

⎞

⎠ =
d

∏

i=1

e (Σi, yi) · e(hμ, g−1
2 ) .

Similar to [4], we can hide hμ as well as all the {Σ} in the commitment to achieve
both Anonymity and IND-Privacy. The equation is still in the form of

l(u � π) = c � k ,

where c and k will have extra components, and l,π need to be changed accord-
ingly.
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5.3 Data Dynamics

There is no ideal solution for supporting data dynamics at the moment. However,
if the TPA is fixed, then we can make the TPA keep the index tables for the
files to keep track of all the data dynamic operations as [15] did. The cloud users
have to communicate with TPA after they update the files on cloud server.

Another solution for achieving data dynamic operations is to replace the
index information i of a data block m in the computation of the authenti-
cator, and use the Merkle Hash Tree (MHT) for the block sequence enforce-
ment. This approach has been used in [14]. The authenticator will become
σj = (H (mj) · hmj )1/xs , and every time before auditing, the root stored on
the cloud server and signed by the user will be verified first using some auxiliary
information that allows reconstruction the MHT. The rest of our scheme remains
unchanged.

6 Conclusion

In this paper, we introduced a new security notion – RIC Anonymity for RIC
protocols. We also proposed a new RIC protocol that can preserve the identity
privacy of the file owner when the TPA audits the files stored on the cloud server.
We proved the soundness and the anonymity of the proposed protocol, and also
showed that the protocol can support batch verifications of multiple RIC proofs,
IND-Privacy, and data dynamic operations.
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A A Security Issue in Oruta

Recently, a new public auditing protocol was proposed by Wang et al. in [10]
to achieve the desirable features like public auditing, group anonymity and data
dynamics, which is described in the Literature Review. Nevertheless, we review
the protocol in [10] and show that there is a security issue in the protocol:
a dishonest cloud server can delete some data blocks in a file without being
caught by the third-party auditor. The reason is that the cloud server maintains
an index hash table in order to achieve data dynamics. During auditing process,
the cloud server answers to the identifier query for challenged indices, which will
be used in the verification, but the integrity of the identifier is not ensured.

A.1 Reviewing the Protocol

Similar to most of the protocols (e.g, [11,14,15], the protocol Oruta [10] is based
on the homomorphic authenticators and spot-checking techniques. However, it
uses a ring signature [2] as the authenticator to achieve anonymity for each block.
As it is a variant of BLS signature [3], the ring signature still can be aggregated.
Besides, it uses the index hash table to support data dynamic operations. We
describe the five algorithms inside Oruta.

Setup. Let G1, G2 and GT be three multiplicative cyclic groups of prime order
p, and g1 and g2 be the generators of G1 and G2, respectively. Let e : G1×G2 →
GT be a bilinear map, and ψ : G2 → G1 be a computable isomorphism with
ψ(g2) = g1. Let H1 : {0, 1}∗ → G1,H2 : {0, 1}∗ → Zq, and h : G1 → Zp
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denote three cryptographic hash functions. The global system parameters are
(e, ψ, p, q,G1, G2, GT , g1, g2,H1,H2, h).

An outsourced data file M is divided into n blocks, and each block mj is
divided into k elements in Zp. Then, the data component M can be viewed as
an n × k matrix. Also, let d denote the number of users in the group where the
file is shared and they want to preserve identity privacy from TPA.

KeyGen. Each user ui randomly chooses xi ∈ Zp and computes wi = gxi
2 . Thus,

the user ui’s public key is wi, and the private key is xi. Besides, the user who
firstly creates the file should generate a public aggregate key pak = {η1, ..., ηk},
where each ηl (1 ≤ l ≤ k) is a random elements of G1.

SignGen. Given all members’ public keys {w1, ..., wd}, a block mj = {mj,1, ...,
mj,k}, the identifier of the block idj , a public aggregate key pak = {η1, ..., ηk}
and the private key of the signer xs, the user us generates a ring signature for
this block as follows.

1. The signer first aggregates block mj with the public aggregate key pak, and
computes βj = H1(idj)

∏k
l=1 η

mj,l

l ∈ G1.
2. Then the signer randomly chooses aj,i ∈ Zp and sets σj,i = g

aj,i

1 for all
i �= s. And for i = s, he/she computes σj,i = ( βj

ψ(
∏

i�=s w
aj,i
i )

)1/xs . Therefore,

the authenticator which is actually a ring signature of block mj is σj =
{σj,1, ..., σj,d}.

After the owner outsourced the file to the cloud server, any group members can
send the auditing request to a third-party auditor (TPA). With the challenge
and response process, the TPA checks the integrity of files without revealing the
identity of the owner.

ProofGen. TPA generates the challenge in the following way:

1. The TPA picks c elements in set [1, n], where n is the total number of blocks,
to indicate the blocks that will be checked. Let J denote the indices of the
chosen blocks.

2. For j ∈ J , the TPA randomly chooses yj ∈ Zq. Then the TPA sends
{(j, yj)}j∈J to the cloud server as a challenge message.

After receiving {(j, yj)}j∈J , the cloud server generates the proof as follows:

1. For l ∈ [1, k], the cloud server randomly chooses rl ∈ Zq, and computes
λl = ηrl

l ∈ G1, and μl =
∑

j∈J yjmj,l + rlh(λl) ∈ Zp.
2. For i ∈ [1, d], the cloud server computes φi =

∏

j∈J σ
yj

j,i.

Then the cloud server sends the proof {{λl}l∈[1,k], {μl}l∈[1,k], {φi}i∈[1,d],
{idj}j∈J} to TPA.
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ProofVeriy. After receiving the proof, and given the public aggregate key pak =
{η1, ..., ηk} and all the public keys {w1, ..., wd} of the group members, the TPA
verifies the proof by checking:

e(
∏

j∈J

H1(idj)yj ·
k

∏

l=1

ημl

l , g2)
?= (

d
∏

i=1

e(φi, wi)) · e(
k

∏

i=1

λ
h(λl)
l , g2)

If this equation holds, the TPA sends a positive audit report back to the request
user and vice versa.

Remarks. Instead of using the index of the block as its identifier (e.g. the
index of block mj is j), this scheme utilises index hash tables. An identifier
from this table is described as idj = {vj , rj}, where vj is the virtual index of
block mj , and rj = H2(mj ||vj) is generated using a collision-resistance hash
function H2 : {0, 1}∗ ∈ Zq. Here q is a prime that is much smaller than p. If
vi < vj , then block mi is in front of mj in the file. The initial virtual index
of block mj is set as vj = j · δ, where δ indicates the number of data block
that can be inserted into mj and mj+1. For example, if m′

j is inserted, then
v′

j = (vj−1 + vj)/2, r′
j = H2(m′

j ||v′
j) is inserted into the index hash table; if

mj is deleted, then the corresponding entry is removed from the table. During
the computation of the authenticators and the challenge/response process, the
identifiers are used instead of the indices. However, the TPA does not know
about this table, so the identifier needs to be returned by the cloud server.

A.2 On the Security of the Protocol

As the basic requirements of an auditing protocol, Yang and Jia [15] pointed
out that three kinds of attack must be prevented: Replace, Forge and Replay.
In the first attack, the adversary may choose another pair of uncorrupted data
block and data tag to replace the challenged pair to generate a valid proof. In
the second attack, the adversary may try to forge a data tag for a (modified)
data block. Lastly, in the replay attack, the adversary may try to generate a
valid proof based on previous proofs or other information without retrieving the
data blocks and data tags honestly. Below we show that the Oruta scheme [10]
is vulnerable to the first type of attack.

For simplicity, let’s consider the case where the TPA challenges for only one
block mj , and sends (j, yj) to the cloud. If mj is deliberately deleted by the
cloud server but not the user, the server can still use mj+1, σj+1 to generate a
valid proof as follows.

1. For l ∈ [1, k], the cloud server randomly chooses rl ∈ Zq, and computes
λl = ηrl

l ∈ G1.
2. For l ∈ [1, k], the cloud server also computes μl = yjmj+1,l + rlh(λl) ∈ Zp.
3. For i ∈ [1, d], the cloud server computes φi = σ

yj

j+1,i.
Then the cloud server sends the proof {{λ}, {μ}, {φ}, {idj+1} to the TPA.
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The TPA verifies the proof by checking: e(H1(idj+1)yj · ∏k
l=1 ημl

l , g2)
?=

(
∏d

i=1 e(φi, wi)) · e(
∏k

i=1 λ
h(λl)
l , g2). Actually, this is still a valid proof as

RHS = (
d

∏

i=1

e(σyj

j+1,i, wi) · e(
k

∏

l=1

λ
h(λl)
l , g2)

=

(

d
∏

i=1

e(σj+1,i, wi)

)yj

· e(
k

∏

l=1

ηrlh(λl), g2)

= e(βj+1, g2)yj · e(
k

∏

l=1

ηrlh(λl), g2)

= e((H1(idj+1)
k

∏

l=1

η
mj+1,l
l )yj , g2) · e(

k
∏

l=1

ηrlh(λl), g2)

= e(H1(idj+1)yj ·
k

∏

l=1

η
yjmj+1,l+rlh(λl)
l , g2)

= e(H1(idj+1)yj ·
k

∏

l=1

ημl

l , g2)

Back to the normal case, since the cloud server maintains the index hash
table, it can always redirect the challenge on the corrupted blocks to uncorrupted
blocks in order to pass the verification. The index hash table is used by Oruta
to support data dynamic operations. However, our attack essentially shows that
such a technique is not suitable since it makes the scheme vulnerable to the
Replace attack.

In [10], the authors assumed that the cloud server will return the identifiers
for challenged indices honestly in the soundness (Unforgeability of Response)
model and proof. However, as is known, the cloud server is treated as a soundness
adversary in Remote Integrity Check protocols. So the cloud server has the
motivation not to return the correct identifiers.

A.3 Recommendation

Despite of many interesting features supported by this protocol, we showed that
a dishonest cloud server can deliberately delete some data blocks in a file but
still pass the verification. We also pointed out that the problem is caused by the
technique used in “Oruta” for allowing data dynamic operations.

Based on Yang and Jia’s scheme [15], we can let the TPA maintain the index
hash table as the cloud server is treated as the soundness adversary of the RIC
protocol. Nevertheless, the TPA becomes stateful if we adopt such an approach,
and another verifier cannot perform the auditing without such a table. Another
option to solve the problem is to use the Merkle Hash Tree (MHT) which has
been used in [14]. It uses a tree structure to organise the file blocks, and the
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roots of the tree, which are derived from the file blocks, need to be verified in
every operation.

B Proof of Correctness

Correctness of the Non-anonymous Verification Equation:
e
(

∏

j∈J H(name||j)cj · hμ, g2

)

=
∏d

i=1 e (Σi, yi).

RHS =
∏

i�=s

e(Σi, yi) · e(Σs, ys)

=
∏

i�=s

e (gai
1 , yi) · e

⎛

⎜

⎝

∏

j∈J

σ
cj
j

/

ψ

⎛

⎝

∏

i�=s

yai
i

⎞

⎠

1/xs

, ys

⎞

⎟

⎠

= e

⎛

⎝g1,
n

∏

i�=s

yai
i

⎞

⎠ · e

⎛

⎝1

/

ψ

⎛

⎝

∏

i�=s

yai
i

⎞

⎠ , g2

⎞

⎠ · e

⎛

⎝

∏

j∈J

σ
cj
j , ys

⎞

⎠

= e

⎛

⎝ψ

⎛

⎝

n
∏

i�=s

yai
i

⎞

⎠ , g2

⎞

⎠ · e

⎛

⎝1

/

ψ

⎛

⎝

∏

i�=s

yai
i

⎞

⎠ , g2

⎞

⎠ · e

⎛

⎝

∏

j∈J

σ
cj
j , ys

⎞

⎠

= e

⎛

⎝

∏

j∈J

σ
cj
j , ys

⎞

⎠ = e

⎛

⎝

∏

j∈J

(H (name||j) · hmj )cj/xs , gxs
2

⎞

⎠

= e

⎛

⎝

∏

j∈J

H (name||j)cj · h
∑

j∈J cjmj , g2

⎞

⎠

= e

⎛

⎝

∏

j∈J

(H (name||j)cj · hμ, g2

⎞

⎠ = LHS

Correctness of the anonymous verification equation: l(u � π) = c � k .

LHS = l F (u1, π1)F (u2, π2)

=

(

1 1
1 L

) (

1 e(g1, y
r11
1 yr21

2 ...yrd1
d )

1 e(gα
1 , yr11

1 yr21
2 ...y

rd1
d )

)

=

(

1 e(gτ
1 , yr12

1 yr22
2 ...y

rd2
d )

1 e(gτα
1 , yr12

1 yr22
2 ...y

rd2
d )

)

RHS = F (c1, k1)F (c2, kd)...F (cd, kd)

=

(

1 e(gr11+r12τ
1 , y1)

1 e(g
α(r11+r12τ)
1 Σ1, y1)

) (

1 e(gr21+r22τ
1 , y2)

1 e(g
α(r21+r22τ)
1 Σ2, y2)

)

(

1 e(grd1+rd2τ
1 , yd)

1 e(g
α(rd1+rd2τ)
1 Σd, yd)

)
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Calculating Hadamard product:

e(g1, yr11
1 yr21

2 ...yrd1
d )e(gτ

1 , yr12
1 yr22

2 ...yrd2
d )

= e(g1, yr11+r12τ
1 )e(g1, yr21+r22τ

2 )...e(g1, yrd1+rd2τ
d )

= e(gr11+r12τ
1 , y1)e(gr21+r22τ

1 , y2)...e(grd1+rd2τ
1 , yd)

L e(gα
1 , yr11

1 yr21
2 ...yrd1

d )e(gτα
1 , yr12

1 yr22
2 ...yrd2

d )

= L e(gα(r11+r12τ)
1 , y1)e(g

α(r21+r22τ)
1 , y2)e(g

α(rd1+rd2τ)
1 , yd)

(as L can be viewed as e(Σ1, y1)e(Σ2, y2)...e(Σd, yd))

= e(gα(r11+r12τ)
1 Σ1, y1)e(g

α(r21+r22τ)
1 Σ2, y2)e(g

α(rd1+rd2τ)
1 Σd, yd)

C Proof of Anonymity (Theorem 1)

Proof. For the (unconditional) anonymity of the file tag, it directly follows that
of the underlying ring signature (e.g., [2]). In the following we will focus on the
anonymity of the responses returned from cloud server. Let A be the adversary
who has a non-negligible advantage ε in winning the Anonymity game, we can
construct a simulator C to solve the XDH problem.

Simulator C receives a challenge gk, ψ,A = gx
1 , B = gy

1 , C = gz
1 , where z is

either xy or a random element ξ in Zp. C simulates the game as follows.

Setup: Simulator C sets the commitment key to be u1 = (g1, A), u2 = (B,C).
C then uses the information in gk and ψ to generate all user public/private key
pairs as described. Finally Simulator C randomly chooses a user b ∈ [1, d] as the
real owner of all the queried files.

Phase 1: Simulator C answers the tag queries honestly and stores the tokens,
glue value and auxiliary information correctly.

Phase 2: To answer a proof query, C computes μb, {Σb} honestly. Then C uses
{Σb} to generate response as follows: Randomly choose r11, r12, r21, r22...rd1, rd2

from Zp. Then compute the commitment c: c11 = gr11
1 Br12 , c12 = Ar11Cr12Σb1 ,

c21 = gr21
1 Br22 , c22 = Ar21Cr22Σb2 , ... cd1 = grd1

1 Brd2 , cd2 = Ard1Crd2Σbd .
Finally compute the proof π = (π1, π2) where π1 = (1, yr11

1 yr21
2 ...yrd1

d ) and π2 =
(1, yr12

1 yr22
2 ...yrd2

d ).

Decision: Simulator C sends the response (μ, c,π) to A. A outputs b′ as a guess
of b. If b′ = b, then simulator C outputs 1; otherwise C outputs 0 for the instance
of the XDH problem.

Probability: Case 1: z = xy. In this case, the distribution of the response is
identically to that of a real response, so we have Pr[b′ = b] = 1/d + ε. Case 2:
z = ξ. In this case, the commitment scheme is perfectly hiding and reveals no
information about the value of b. Hence, under this case we have Pr[b′ = b] = 1/d.
Combining both cases, C has advantage ε to solve the XDH problem.
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D Proof of Soundness (Theorem 2)

Proof. We will prove this by contradiction. If there exists an adversary A who can
win the soundness game with non-negligible probability, then we can construct a
simulator to solve the variant of the Co-CDH problem also with a non-negligible
probability:

Setup: Simulator C sets up the system parameters and chooses α, τ ∈ Zp to
generate the commitment key u1 = (g1, gα

1 ) and u2 = (gτ
1 , gτα

1 ). C then sets
h = gab

1 as the other generator in system parameter and constructs a table
< name, j, rj , H(name||j) > for hash oracle. C also randomly chooses xi ∈ Zp

for each user and computes the public key yi = (ga
2 )xi = uxi . (We can view the

private key as axi.)

Phase 1: For simplicity, Simulator C chooses the first user as the signing user,
and generates the file tag using the underlying ring signature scheme. C answers
the token queries as follows:

– Hash Query: Simulator C randomly chooses rj ∈ Zp and sets H(name||j) =
ψ(ga

2 )rj/hmj . The entry < name, j, rj ,H(name||j) > is stored into the table.
– Authenticator: σj = (H(name||j) · hmj )1/ax1 = ψ(ga

2 )rj/ax1 = g
rj/x1
1

Simulator C answers the glue queries as follows:

– For each user i �= 1 in the ring, C chooses ai ∈ Zp, and computes auxiliary
information. bi = gai

1

– C computes a glue value θ = 1

ψ(∏d
i�=1 y

ai
i )1/ax1

= 1

ψ(∏n
i�=1((g

a
2 )

xi )ai)1/ax1
=

1

g
(∑

i�=1 aixi)/x1
1

.

Phase 2: Finally A outputs a proof P ′ = (μ′, c,π) for t′, {m′
j}j∈J and challenge

{cj}j∈J , where at least one m′
j has been modified by the adversary.

C uses the commitment secret key α to recover the Σ′
i = ci2/cα

i1 and
let μ =

∑

j∈J cjmj , {Σ} be the honestly generated component. Then we

have the following equations: e
(

∏

j∈J H (name||j)cj · hμ′
, g2

)

=
∏n

i=1 e (Σ′
i, yi)

then e
(

∏

j∈J H (name||j)cj · hμ, g2

)

=
∏n

i=1 e (Σi, yi). Therefore, we can get

e(hμ′−μ, g2) =
∏n

i=1 e (Σ′
i/Σi, yi) then e(hμ′−μ, g2) = e

(
∏n

i=1 (Σ′
i/Σi)

xi , ga
2

)

.
As C chooses the challenges cj at random and h = gab

1 , with overwhelming
probability 1 − 1/p, μ′ =

∑

j∈J cjm
′
j �= μ =

∑

j∈J cjmj , we can obtain

gb
1 =

(

n
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i=1

(Σ′
i/Σi)

xi

)1/(μ′−μ)
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