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Abstract. This work utilizes Algorithm Selection for solving the Team
Orienteering Problem (TOP). The TOP is an NP-hard combinatorial
optimization problem in the routing domain. This problem has been
modelled with various extensions to address different real-world prob-
lems like tourist trip planning. The complexity of the problem moti-
vated to devise new algorithms. However, none of the existing algorithms
came with the best performance across all the widely used benchmark
instances. This fact suggests that there is a performance gap to fill. This
gap can be targeted by developing more new algorithms as attempted
by many researchers before. An alternative strategy is performing Algo-
rithm Selection that will automatically choose the most appropriate algo-
rithm for a given problem instance. This study considers the existing
algorithms for the Team Orienteering Problem as the candidate method
set. For matching the best algorithm with each problem instance, the
specific instance characteristics are used as the instance features. An
algorithm Selection approach, namely ALORS, is used to conduct the
selection mission. The computational analysis based on 157 instances
showed that Algorithm Selection outperforms the state-of-the-art algo-
rithms despite the simplicity of the Algorithm Selection setting. Further
analysis illustrates the match between certain algorithms and certain
instances. Additional analysis showed that the time budget significantly
affects the algorithms’ performance.

1 Introduction

Orienteering is essentially a type of sports, concerned with moving form a start-
ing location to an end location while visiting a number of intermediate points.
The goal is to maximize the total score which is collected through those vis-
ited points, within a given time limit. Orienteering is approached as an opti-
mization problem in a general context beyond sports as the Orienteering Prob-
lem (OP) [12,15]. From this perspective, OP is modeled as a routing problem.
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Unlike pure routing attached to the Traveling Salesman Problem (TSP), the OP
also includes the Knapsack Problem (KP) due to score maximization under a
time budget. When the goal is to determine multiple paths, achieved by multi-
ple people or vehicles, between the given starting and end points, the problem
is denoted as the Team OP (TOP) [4]. Tourist trip planning is an example,
real-world use case of the TOP [46]. The NP-hard nature of the TOP [36] has
been attracting many researchers and practitioners to devise effective algorith-
mic solutions, mostly in the form of algorithms without optimality guarantee.
Despite these development efforts, there is not a single algorithm outperform-
ing all other algorithms for the TOP, as is the case for many other search and
optimization problems [48].

One way to deal with this need for developing “the best” TOP algorithm is
to specify the most suitable algorithm for each TOP instance. Algorithm Selec-
tion (AS) [22,40] is a systematic and automated way of achieving this task. AS
is a high-level, meta-algorithmic strategy, traditionally achieving the selection
tasks by deriving performance prediction models. These models basically map
a set of features, F, characterizing the problem instances, I, to the algorithms,
A, performance, P|I|×|A|. The resulting models are used to predict the perfor-
mance of the candidate algorithms on a given problem instance. Regarding the
candidate algorithms, Algorithm Portfolios (AP) [14] focus on having diverse
and complementary algorithm sets to choose from. Such sets can also be used
through scheduling [18] without AS. The schedules assign time periods to the
candidate algorithms to run on one or more processing units. With sufficient
computational resources, each AP member can run in parallel, returning the
overall best solution(s). Going back to the AS models, the algorithm(s) with the
best expected performance can be utilized to solve the target instance. Unlike
this traditional use of AS, there have been AS methods with additional com-
ponents such as pre-solvers [49,50]. While AS can be used to specify the best
possible per-instance algorithm, there is not a single or an ultimate AS strategy.
Considering that AS can be designed by utilizing different sub-components such
as using a specific machine learning method as well as setting different param-
eter values for those accommodated sub-components, its automation was also
studied, i.e. designing the best AS system based on the given AS tasks [25].

The present study applies AS to the TOP for the first time. The goal is to
benefit from the existing algorithms by placing an AS layer on top of them. The
algorithm set consists of 27 algorithms while the instance set used for both train-
ing and testing has 157 instances. For performing AS, the most obvious bench-
mark specifying elements are employed as F. An existing AS system designed as
an algorithm recommender system, i.e. ALORS [27], is used for the automated
selection duty. Its problem instance and algorithm analysis capabilities besides
its success in automatically choosing algorithms or their components is further
shown on varying problems [28,29,31,32,39]. The experimental results revealed
that AS is able to outperform all the constituent algorithms with almost no
additional effort. Besides the pure selection results, a dis-/similarity analysis is
reported both on the algorithm and instance space. All these analysis comes
from the results of ALORS.
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In the remainder of the paper, Sect. 2 further explains ALORS and how it is
exactly used for this TOP setting. Section 3 reports the AS performance results
while delivering the aforementioned analysis on the algorithms and the instances.
The paper is summarized and the outcomes are briefly discussed together with
listing the future research plans in Sect. 4.

2 Method

ALORS is a per-instance Algorithm Selection (AS) system based on recom-
mender systems. ALORS specifically accommodates Collaborative Filtering
(CF) [42]. Unlike the majority of the AS methods, CF allows ALORS to be
able to work with incomplete performance data, P. Yet, the present study works
with the complete performance data. Considering the varying performance cri-
teria, ALORS use P with the algorithms’ ranks on each instance for general
applicability. Another difference of ALORS is the way of building the perfor-
mance prediction models. The mapping of instance features, F, to P is indirectly
achieved.

For this purpose, ALORS follows an intermediate step of feature to feature
mapping. The initial, source features are those problem features, F. The features
to be mapped, i.e. latent (hidden) features Fh, are automatically extracted from
P. As these features are directly driven from P, they are expected to fairly
represent the algorithms’ performance. In that sense, ALORS takes the initial
feature space to a new and more reliable feature space. This feature extraction
process is handled by a well-known Matrix Factorization (MF) approach from
linear algebra, i.e. Singular Value Decomposition (SVD) [13]. SVD is commonly
used in CF or for dimensionality reduction as a data preprocessing step.

SVD applied to P|I|×|A| returns two main matrices besides a diagonal matrix
of singular values, Σ. Referring to the components of P, the initial matrix, U , con-
sists of the latent features representing the problem instances. The other matrix,
V , represents the candidate algorithms. They have been earlier used effectively
on different problem domains [26,30]. Those matrices together approximates to
P with the specified matrix ranks, k ≤ min(|I|, |A|), as follows. In our setting,
r denotes the number of latent features. Since the singular values are sorted,
from larger to smaller, earlier dimensions are more important than the latter
dimensions, so the features. Thus, r can be picked as a small value while having
strong approximation to P with possible noise elimination.

P = UΣV T ≈ UkΣV T
k

When the mapping model is used for a new problem instance, it simply
predicts a new row for U . This row is multiplied with Σ and V as denoted above.
The outcome will be the rank predictions for all the candidate algorithms. Then,
the algorithm with the best predicted rank is utilized for the target problem
instance. The complete pseudo-code is provided in Algorithm1.
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Algorithm 1: ALORS: AS functionality [27]
Input

Performance matrix in ranks P ∈ IR|I|×|A|
Initial representation F ∈ IR|I|×d of the problem instances
Features f of the target problem instance

AS Model Generation
Build matrices U and V

Build E = {(fi, Ui), i = 1 . . . |I|}.
Learn Φ : IRd �→ IRk from E (for a given matrix rank k)

AS Prediction
Compute Uf = Φ(f)

Return argmin
j=1...|A|

〈Uf , Vj〉

3 Computational Results

The Team Orienteering Problem (TOP) benchmarks are originated from [4].
The benchmark set consists of 387 instances. As the present performance data
is collected from [16], only a subset of the instances are utilized, ignoring the
ones where all the tested algorithms return the solutions of the same quality.
This exclusion leads to 157 instances. The algorithm set has 27 approaches to
be chosen as listed in Table 1.

The referenced study [16] reports the best solution delivered among 20 runs
by each algorithm on each instance besides the average spent CPU time. The
rank data is derived both based on the performance and the computational con-
sumption. The spent time is used to break ties when two algorithms return the
solution of the same quality. In other words, faster algorithms have better ranks
than the slower algorithms with the same performance in terms of the solution
quality. The features are simply the TOP benchmark specifications including n:
the number of nodes, m: the number of vehicles and tmax: the maximum duration
of each route.

For mapping, ALORS uses Random Forests (RF) [3]. SVD is performed with
the rank of k = 3. The selection performance evaluation is achieved through
10-fold cross validation (10-cv). In other words, the TOP instance set of 157
instances is partitioned into 10 mutually exclusive, equally-sized1 subsets. Each
time, 9 subsets are used for training while the remaining subset involving unseen
instances during training is used for testing.

Figure 1 illustrates the rank variations of each candidate TOP algorithm.
While HALNS happens to be the overall best algorithm, MSA, AuLNS, PSOMA
and MS-LS follow it. GLS, SiACO and DACO are the worst performing algo-
rithms. Additionally, SkVNS and FPR are the least robust options as their rank
performances significantly differ across the TOP instances. The detailed perfor-
mance results can be found in the aforementioned study where the performance
data is taken from [16].
1 Almost equally-sized as 157 is not integer divisible by 10.
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Table 1. 27 TOP algorithms

Algorithm Variant

Tabu Search (TS) [9–11] TMH [43], GTP [1], GTF [1]

Variable Neighborhood Search
(VNS) [17,33]

FVNS [1], SVNS [1], SkVNS [45]

Ant Colony Optimization (ACO) [7] SACO [19], DACO [19], RACO [19],
SiACO [19],

Particle Swarm Optimization
(PSO) [21]

PSOiA [6]

Local Search (LS) GLS [45], MS-ILS [47], MS-LS [47]

Simulated Annealing (SA) MSA [24]

GRASP [37] + Path Relinking
(PR) [38]

FPR [41], SPR [41]

Large Neighborhood Search
(LNS) [35]

AuLNS [23], LNS [34], HALNS [16]

Evolutionary Algorithms (EAs) Memetic Algorithm (MA) [2],
UHGS [47], UHGS-f [47]

Harmony Search (HS) [8] SHHS [44], SHHS2 [44]

Hybrid PSOMA [5]

Others Pareto Mimic Algorithm (PMA) [20]

Table 2 reports the selection performance. Oracle, a.k.a. Virtual Best Solver
(VBS), denotes the optimal performance by choosing the best algorithm for each
instance. Single Best (SB) which is HALNS, represents overall best algorithm as
one algorithm is used for all the instances. The results show that AS achieved by
ALORS reaches to the overall average rank of 3.93 while the best algorithm out
of 27 candidates come with the rank of 4.77. Take note that the lower the rank,
the better the performance. Additionally, when the performance is evaluated
with respect to each instance set, ALORS delivers the average rank of 4.18. The
average rank of HALNS gets much worse, i.e. 4.77. These values indicate the
clear advantage of ALORS. Being said that Oracle achieves the average rank
of 1.12 and 1.10 for the respective evaluations. This means that there is still a
room for improvement, likely by extending the instance feature space.

Figure 2 reveals the contribution of each feature on the AS prediction model
of ALORS. RF used in ALORS, is a decision-tree based ensemble strategy pro-
viding importance on each single feature in terms of Gini importance/index. The
corresponding importance evaluation shows that tmax happens to be the signifi-
cantly most critical feature contributing to the AS recommendation model. Yet,
although m and n are illustrated as substantially less important features than
tmax, they still affect the algorithms’ performance ranks. Being said that the
use of tmax in the selection decisions may not be dominant if the benchmark
instances are further diversified in terms of tmax.
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Fig. 1. The ranks of the TOP algorithms across all the instances

Table 2. The average ranks of each constituent algorithm besides ALORS where the
best per-benchmark performances are in bold (#: the size of the instance set; SB: the
Single Best solver; AVG: the average rank considering the average performance on each
benchmark function; O-AVG: the overall average rank across all the instances)

Inst. Set (#) Oracle SB (HALNS) ALORS

4 (54) 1.19 3.12 3.02

5 (45) 1.07 5.18 5.49

6 (15) 1.00 7.57 5.23

7 (43) 1.13 3.20 2.99

AVG 1.10 4.77 4.18

O-AVG 1.12 4.16 3.93
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Fig. 2. Importance of the initial, hand-picked TOP instance features, using Gini
Index/Importance

Further on the instance features, Fig. 3 visualizes the characterization of the
instances through k-means clustering both considering those initial 3 basic fea-
tures and 3 SVD originated latent features. The number of clusters, i.e. k, is
determined by the best mean Silhouette score regarding the latent features. The
features spaces are degraded into 2 via Multi-dimensional scaling (MDS). While
the initial features yield rather clear instance distribution, the instance space
looks more dispersed with the latent features. This is anticipated as the ini-
tial feature space is limited, only using 3 straightforward features. Instance by
instance resemblance is depicted in Fig. 4.

Figure 5 visualizes the algorithms when they are hierarchically clustered,
using the SVD (k = 3) driven features. For example, the leading single algo-
rithm, i.e. HALNS, resembles to AuLNS and PMA. Essentially, in terms of per-
formance HALNS and AuLNS similar as were discussed on Fig. 1. Unlike those
comments, PMA is relatively poor compared both. Being said that the similarity
comes from rank variation across the instances, not specifically the rank values.
This aspect is reflected in Fig. 1 as the boxplot shapes are substantially similar.
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Fig. 3. Instances in 2-dimensional space using the initial and latent features (coloring
is achieved by the initial features (top) and the latent features (bottom))

Besides these algorithms, PSOiA and LNS are determined as the most similar
algorithms. Additionally, earlier mentioned least robust algorithms, i.e. SkVNS
and FPR, are off the chart as they are cleary different than the rest, as shown
in Fig. 1.
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Fig. 4. Hierarchical clusters of instances using the latent features extracted from the
performance data by SVD (k = 3)
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Fig. 5. Hierarchical clusters of algorithms using the latent features extracted from the
performance data by SVD (k = 3)

4 Conclusion

Algorithm Selection (AS) is a meta-level approach allowing to benefit from mul-
tiple algorithms for solving a given target problem. Traditionally, AS delivers
performance prediction models for a group of algorithms on an instance set, per-
instance basis. This study applies AS to the Team Orienteering Problem (TOP),
using an existing AS method named ALORS [27]. The task is to automatically
determine the expectedly best algorithm among 27 candidate algorithms for
any given TOP instance. Using the basic TOP benchmark specifications as the
instance features, ALORS showed that all the constituent TOP algorithms are
outperformed. Considering the diversity of the algorithms and the relatively
large instance space, the reported dis-/similarity analysis provides a view both
on the nature and characteristics of the algorithms and the instances.

This paper raises a series of research questions to be investigated. The
reported research will be further extended by incorporating new features for
strengthening the AS prediction quality, for example, whether nodes are clus-
tered, nodes with higher scores are further from the start/end point, nodes with
higher scores are clustered, and so on.

The next step will be achieved again on the feature space, yet targeting
automated feature extraction. This idea will be realized by constructing images
representing the TOP instances. The starting point will be using specific heuris-
tics to deliver solution graphs. These graphs will then be given to Convolutional
Neural Networks (CNNs) for feature engineering. Additionally, common graph
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based features will also be utilized. Finally, the computational results will be
enriched by the other existing AS systems.

Acknowledgement. This study was supported by a Reintegration Grant project
(119C013) of Scientific and Technological Research Council of Turkey (TUBITAK
2232).
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