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Abstract 

Maintaining a food journal can allow an individual to monitor eating habits, including unhealthy eating sessions, 
food items causing severe reactions, or portion size related information. However, manually maintaining a food 
journal can be burdensome. In this paper, we explore the vision of a pervasive, automated, completely unobtrusive, 
food journaling system using a commodity smartwatch. We present a prototype system — Annapurna— which is 
composed of three key components: (a) a smartwatch-based gesture recognizer that can robustly identify eating-
specific gestures occurring anywhere, (b) a smartwatch-based image captor that obtains a small set of relevant 
images (containing views of the food being consumed) with a low energy overhead, and (c) a server-based image 
filtering engine that removes irrelevant uploaded images. Through lessons learnt from multiple user studies, we 
refine Annapurna progressively and show that our vision is indeed achievable: Annapurna can identify eating 
episodes and capture food images (involving a very wide diversity in food content, eating styles and environments) 
in over 95% of all free-living eating episodes. 

Keywords 

Wearable sensing, Mobile computing, Food journaling, Automated eating tracking system, IMU and camera data 
processing 

 

1. Introduction

Automating the creation of a personal food diary has been a long-standing research goal in the mobile sensing 
community for supporting various wellness-related goals – e.g., losing or maintaining target weight, or capturing 
unhealthy eating habits, such as eating fast or midnight snacking. However, most proposed automated solutions are 
either obtrusive – e.g., hanging the phone around the neck [1], clipping a camera to the clothing [2], or rely on 
specialized wearable sensors – e.g., ear-worn wearables [3], [4], [5], or neck-mounted devices [6], [7], [8]. More 
recently, researchers have utilized the inertial sensors on a more mainstream wearable (a wrist-worn smartwatch) to 
capture the ‘intake’ gesture during eating [9], [10]. Such wrist-worn approaches hold promise as an unobtrusive, 
automated way to identify eating episodes, but they do not capture images of the food being consumed — i.e., do not 
help answer the question “What did you eat?”. 

To bridge this gap, in this work we demonstrate the possibility of combining inertial sensing signal (to detect specific 
eating gestures) from a smartwatch with a smartwatch-mounted camera to capture & curate useful images of the food 
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Fig. 1. Smartwatches with embedded cameras located at various positions.

items consumed, without imposing a prohibitively high energy overhead. Our work is motivated by the gradual emergence
of smartwatches with embedded cameras, some of which are shown in Fig. 1, as well as the gradual adoption of
small form-factor, wearable camera devices (such as Narrative Clip [11] & SenseCam [2]), which can record image and
sensor data for an entire day while running on batteries. In addition, advances in deep learning-based food recognition
(e.g., [12,13]) have increased the intrinsic value of such captured food images, to support applications such as dietary
conformance analysis and personalized food recommendations. Our core idea is simple: (a) a smartwatch’s inertial sensor
can help identify the eating-related ‘‘hand-to-mouth’’ gestures; while (b) the embedded camera can then opportunistically
take appropriate pictures, when it has a clear, unobstructed view of the food being consumed. We investigate these
possibilities and show that such unobtrusive, gesture-triggered capture of food content for a journal is not just feasible, but
also appeals to real-world users. We develop the necessary technical components and embed them to realize a prototype
system – Annapurna,1 which automatically provides an individual with a portal-based view of the food items consumed
during the day (as well as other gesture-related information such as number of mouthfuls eaten).

In this work, we focus primarily on automatically capturing images of food consumed during meals and served in
plates. Indeed, as we shall see in Section 3, 80% of meals consumed in Singapore involve plated food items, which are
amenable to capture by Annapurna. We suspect that this predominance of plated food will be true in eating cultures across
several parts of Asia where rice is the core item of the meal component [14]. Of course, in cultures were plated meals
are less common (e.g., cultures where food items such as sandwiches that can be consumed without a plate are observed
frequently), Annapurna can still recognize the onset of an eating episode, but will not be able to capture images of the
consumed food. We discuss about an alternate journaling strategy in such settings in Section 10.

Overall, our vision gives rise to these key research questions:

• Can the inertial sensors on the smartwatch be used to reliably identify eating gestures early enough to trigger the camera?
Continuous image capturing using a camera is energy intensive [15]. Thus, it is necessary to develop techniques that
opportunistically trigger the camera. Recent works, including ours have shown that individual eating gestures may be
identified using the smartwatch’s inertial sensor data [9,16]. However, in these approaches, the eating gestures are
detected only after the gesture is over, making them unsuited to the goal of triggering the camera to capture the
images. To obtain useful images of the food, individual eating gestures must be identified as soon as the gesture starts.
An open question thus relates to the robustness vs. latency characteristics of eating gesture recognition — i.e., can
eating activities be identified reliably and fast enough to even capture relatively short-lived eating episodes? This is a
formidable challenge as real-world eating is inherently a very diverse activity, distinguished by (a) mode of eating (with
hands, chopsticks, forks etc.), (b) food type (e.g., noodles, pizza, sandwiches, etc.) and (c) venue-specificity (e.g., relative
height of table vs. chair, shape of plate).

• Can the smartwatch’s camera acquire useful (good-quality) images of the food being consumed? Since our goal is to
unobtrusively capture images of food that an individual consumes, the smartwatch camera must acquire these images
during the eating gesture. This is a significant challenge since the user’s wrist is in motion, leading to blurry images,
images of other-person’s food, etc. Further, commercial smartwatches have their camera in different positions, some of
which are unsuitable for capturing images of the food.

• Can the sensing on the wearable be suitably optimized? While continuous background monitoring of inertial sensors
has now become feasible [17], continuous use of the camera sensor (to capture possible food images) is energy
intensive [15]. To support continuous day-long operation, we must selectively trigger the inertial sensors and the
camera. This appropriate time window must be learnt, so that it can accommodate diversity in eating styles.

• Can we automatically curate the captured images? Even if the smartwatch’s camera is triggered only during eating
episodes, the captured set of images may contain a significant fraction of irrelevant images — i.e., non-food related
images or blurry images. It is important to automatically eliminate such images, both to save bandwidth/energy on the
wearable and mobile device, and to reduce the user’s cognitive load. Moreover, such curation needs to take into account

1 Video showing the system’s working is available at http://is.gd/annapurna.
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real-world characteristics of eating gestures, such as potential long pauses between successive hand-to-mouth gestures.
In addition, the execution of such a curation pipeline must be carefully partitioned across multiple platforms (the
smartwatch, the usually-paired smartphone and the back-end cloud infrastructure) to best balance energy-vs-accuracy
tradeoffs.

To address these research questions, we designed and evaluated Annapurna, a system that unobtrusively and auto-
matically logs and filters images of food consumed in a plate during a meal. Annapurna has a smart-watch component
which automatically identifies eating episodes, trigger the camera at the right time to capture images of the food plate
in a energy efficient manner. Annapurna’s backend system identifies relevant images and logs them as a food journal for
the end user. Our design is driven by extensive real-world observations of eating behavior and validated through a series
of studies, conducted within the city of Singapore: one in-lab controlled study, one directed semi-controlled free-living
study, and two completely free-living studies. Every study helped in improving subsequent studies, thus improving the
robustness of Annapurna.
Key Contributions: The key contributions in this paper are:

• Robust, real time identification of eating gestures: Using detailed studies on real-world eating gestures recorded from
subjects in Singapore, we designed and developed a 2-tier robust classifier for recognizing eating episodes (details in
Section 5). This classifier balances the requirement of not missing eating episodes while reducing the energy overhead
(recall vs. energy tradeoff) by: (a) requiring multiple atomic eating gestures (classified over 500 ms segments) to
determine the onset of an eating episode (as a precursor to activating image acquisition by the camera) and (b) using
the absence of subsequent gesture segments to aggressively deactivate the image acquisition process. This step allowed
recalling 95% eating episodes in the two free-living studies.

• Feasibility of capturing useful images of the food consumed: In Section 3, we demonstrate that we can automatically cap-
ture useful food images using a commercial smartwatch’s camera in 65 to 90% episodes. However, this success depends
on the position of camera on the watch. Additionally, we demonstrate that the right moment (during an eating gesture)
for capturing such an image is position-dependent. We also demonstrate how a pipeline of computationally-simple
image processing techniques can eliminate irrelevant images.

• An optimized image capturing process, balancing battery-load while ensuring that useful images are captured: In Section 6,
we show how the Preview mode achieves the best balance between the goals of minimizing energy-intensive [15]
smartwatch-based image acquisition and capturing usable food images: this mode takes a sequence of pictures with
low energy overhead (40.7 mW per image) and can be triggered with low (less than 435 ms) latency. We also evaluate
two different strategies to stop the image acquisition pipeline by exploiting the trade-off between energy and efficacy.
In Section, 5.4, we further show that simple heuristics may be used to further reduce the battery load of the overall
system.

• Evaluation of Annapurna in free-living conditions: Through multiple in-the-wild studies collected from 8 individuals, each
contributing at least 4 days of eating data (described in Section 9), we demonstrate that Annapurna could correctly
capture the in-the-wild eating episodes and display useful food images in the portal with a precision and recall of 95%
each. These studies are substantially longer than several existing in-the-wild, unconstrained eating detection studies.
However, further evaluation with more longitudinal studies on demographically diverse population would be necessary
to potentially fine tune the system to region or culture-specific food choices and eating habits.

2. Related work

Food journals such as MyFitnessPal allow users to manually record all food items that they consume through the
day [18]. However, self reporting is onerous as well as vulnerable to reporting bias [19,20]. To overcome the challenges
associated with manual food journaling, several researchers have proposed automated food consumption monitoring
systems, and journaling approaches. Automated journaling uses techniques such as instrumented locations [21], modified
tabletops [22], or even utilizes off-the-shelf [16] or custom made [23] mobile and wearable devices. Indeed, researchers
have explored numerous types of wearables such as wrist-worn [9,24], ear-worn [4,5], neck-worn [7,25], or eye-
worn [26,27] devices for eating detection. For each type, researchers have explored various sensor signals such as utilizing
sensor data from inertial [9,23], audio [4,7], image & video [1,28], or even a fusion of multiple sensor data [3,29]. In
addition to automatically detecting eating activity using images and videos, researchers have used images to identify
the food items that an individual consumed [30,31]. Since we rely on a smartwatch for detecting the eating activity, in
this section, we introduce relevant eating detection and monitoring systems which primarily utilize similar devices. We
specifically discuss about (a) inertial sensor for eating gesture identification, (b) automatically capturing images of food,
and (c) analysis of the food images.

2.1. Inertial sensor-based eating detection

Amft et al. demonstrated the possibility of detecting eating gestures by evaluating signals from four on-arm accelerom-
eters [32], while Dong et al. used the gyroscope of a custom-made wrist-worn device to detect similar gestures [23].
With the advent of commercial wearable devices, especially smartwatches, with embedded inertial sensors, they find
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natural utility in detecting the eating activity. Ye et al. conducted a controlled study and demonstrated the possibility
of utilizing accelerometer data from a smartwatch and a smartglass to determine eating gesture [33]. The fusion of
both the accelerometer and gyroscope signal from a custom device for eating gesture detection was also explored by
Dong et al. [34]. Clearly, these studies demonstrated that inertial sensors could facilitate monitoring the eating activity
in controlled settings. To explore the possibility of monitoring the eating activity in free-living setting, Thomaz et al.
conducted a user study where they analyzed sensor data from a smartwatch’s accelerometer in free-living conditions [9].

Although the previously mentioned studies relied on a single wearable device, a multi-device approach has the
potential to capture finer details of the eating activity. Mirtchouk et al. explored this possibility of using multiple sensing
devices and observed that the performance indeed improved [29]. A major challenge with these studies is that the systems
detected the individual eating gesture (or episode) post hoc, i.e., after the gesture (or episode) completes. This makes them
unsuitable for capturing food images by opportunistically triggering the camera at the right moment within a eating
gesture, during a eating period. In our work we try to tackle this additional challenge by building upon these earlier
works and also investigate the interplay between the dynamics of such inertial sensing and the real-time camera based
capture of relevant food item images.

2.2. Capturing images of food consumed

Although several researchers use image and video data for ground truth and validation purposes [4,25], however, an
alternate approach for food intake identification and monitoring is by utilizing and processing these visual information,
i.e., the images or videos. The first step towards such monitoring is to successfully capture images of the food item that an
individual is consuming. Several researchers demonstrated the feasibility of capturing food image using a smartphone’s
camera [1,35]. The phone was suspended across the user’s neck using a lanyard, however makes the system obtrusive.
Zhu et al. removed the obtrusiveness by asking the users to manually capture the image of the food plate at the start and
end of a meal [36]. However, this approach trades-off the automaticity of the system for unobtrusiveness. Recognizing
the food consumed by the user from the images obtained from the camera of a smartphone has been studied by Kawano
et al. [37] and Lee et al. [30]. However all these techniques require the user to explicitly acquire or label the images of
the food and then they identify the food item.

2.3. Automated analysis of images

Recently, researchers have explored analysis of images to automatically detect the eating activity [38,39]. However,
the images in these studies have been captured in controlled laboratory environments. A major challenge in free living
studies is to automatically identify and filter out images that do not contain food items, both to improve the analysis
accuracy and also to preserve the energy consumption of wearable devices. Several prior works have also discussed
the possibility of filtering the relevant food-related images (from the large set of images acquired from wearables) using
standard image processing methods [1,3,40]. More recently, with the popularity of deep learning techniques for image
processing, several researchers have proposed techniques to automatically identify images of food items [13,41,42]. The
images acquired in these studies are focused on ego-centric first person views which are considerably less challenging as
compared to the images acquired from a smartwatch during an eating gesture. However, such techniques can utilize our
work which effectively performs pixel isolation to extract such frontal views from images captured automatically during
eating gestures.

3. Feasibility of food journaling using a smartwatch

We envision Annapurna as an unobtrusive diet journal. To this end, we investigate (a) what relevant aspects of real-
world eating activities do we need to incorporate in the design of robust classifiers for eating detection? and (b) can a
smartwatch camera even capture images of the food being consumed? We first investigate whether this depends on the
type of food or the on-watch placement of the camera sensor via a comprehensive controlled microscopic study.

3.1. Controlled-study details and insights gained

We performed an extensive micro-study with 21 participants (8 females, 13 males), employed in our university. These
participants were involved in a total of 135 eating episodes that were consumed in public food courts. We define an eating
episode as the period of time between the start of a meal (i.e., the meal is either placed in front of an individual in a restaurant
or handed to the individual in a self-service eatery) and the consumption of the last spoonful. The participants consumed these
meals during regular meal hours when they went for lunch, snacks or dinner. Most episodes took place in the university’s
food court (self-serviced and illuminated by artificial lights), with a few occurring outdoors. A custom application running
on the watch (Samsung Gear 1 smartwatch worn on the eating hand) collected accelerometer, gyroscope and preview
frames during the entire episode, while an external observer video-recorded the meal (for visual confirmation). Separately,
we also recruited 2 individuals to investigate the sensitivity of the results to the on-body location & orientation of the
smartwatch camera. The users wore three distinct smartwatches, Samsung Gear 1, Samsung Gear 2 and Omate TrueSmart
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Fig. 2. The possibility of capturing images of the food plate from various smartwatch-embedded camera position.

Table 1
Key results from the controlled in-lab study.
Food item Eating # of Completion Hand to mouth Episodes

Modality episodes time (s) Gestures (count) with useful

min max avg min max avg Frames

Rice F,S 66 211 1140 568 22 54 33.5 95.5%
Sandwich H 20 255 363 299 6 35 14.4 65%
Pasta/noodles F/C 29 234 771 459 13 35 27.3 86.2%
Fruits T 20 51 387 183 7 23 13.5 70%

F : Fork, S: Spoon, H: Hand, C: Chopstick, T : Fruit pick.

(illustrated in Fig. 1), each with the camera mounted in a distinct position on the outward or inward rim of the watch
bezel or on the strap. By varying the orientation on the wrist, we obtained 7 different camera positions (Samsung Gear 1
for positions 1,6 and 7; Samsung Gear 2 for positions 2 and 5; and Omate TrueSmart for position 3 and 4), as illustrated
in Fig. 2(a).
Key Insights: Table 1 highlights some of the key parameters associated with the consumption of these food types. Some
key observations were:
Duration of the meal: We observed wide variations in eating gestures for the different food types considered. For items
like rice and noodles, episodes lasted anywhere between 3.5 to 19 min, involving 13 to 54 separate hand-to-mouth
gestures.2 Among these food items, we also observed that: (a) sandwiches and fruits presented the least number of distinct
hand-to-mouth gestures (as users often held the items close to their mouth between successive bites), (b) noodle or pasta
had high variability in the number of hand-to-mouth gestures mainly due to the use of forks vs. chopsticks, while (c) the
variation for rice-based meals is generally due to the individual eating speed and quantity consumed in each mouthful.
Possibility of image capture & orientation sensitivity: On observing the annotated images captured by the smartwatch
camera we found that the likelihood of obtaining at least one usable food image (one which provides an unobstructed view
of the consumed food) is fairly high (80% or higher) for all food types, except for sandwiches and fruits, i.e., in situations
where the user never puts the item down on the plate.

We then analyzed the videos captured from the 2 users who wore the different smartwatches which had the cameras
in different positions. The food plate was visible at least once (for both users) only for camera positions 1,2 and 7. More
specifically, a useful image is found in 82.6%, 77.4% and 80.4% of all eating gestures, respectively, for these positions.
Moreover, Fig. 2(b) shows the probability of the images being useful (i.e., the food item is visible) as a function of different
points in the gestural sequence (the 50% point corresponds roughly to the zenith, where the hand is closest to the mouth).
We see that the on-watch camera position significantly affects this probability — for position 1 & 2, the plate is most visible
when the hand was near the mouth (which, incidentally, is also the point where the hand movement speed is the lowest).
To provide a clearer understanding of the images captured at different points in the gesture, in Fig. 3 we present images
captured from an entire representative eating gesture when the camera was positioned at position 1. Our studies help
establish guidelines on where the image sensor must be placed on wrist-worn wearables, to support such diet capture.
Additional Background Data & Implications: Clinical studies on women with normal BMI showed that the mean duration
of breakfast, lunch, and dinner is 14, 28 and 29 min respectively [43]. Also, survey-based studies on 80 secondary

2 Annapurna’s energy-efficient food image capture technique leverages on the observed presence of tens of such gestures in an eating episode.
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Fig. 3. Sub-sampled image frames extracted from the video captured when the camera was at position 1. The entire gesture duration was 4 s. In
this gesture, the useful images were obtained from the 20% to 40% of the gesture duration.

Fig. 4. Annapurna consists of an Eating Gesture Recognition module that utilizes inertial sensor data to detetct eating gestures. On detecting eating
gestures, it triggers the camera to capture images of the food plate. The captured images are passed through an image processing pipeline to detect
images of teh food plate. These images are then presented to the user in the form of a food journal .

school boys in Singapore revealed that over 80% of the standard meals (lunch and dinner) consisted of plate-based items
(e.g., noodles, rice) with only 8% or less being ‘one-item’ meals (e.g., chicken nuggets, burgers and sandwiches) [44]. Hence,
we believe that in the Singaporean (and perhaps, more broadly, in the Asian) context, it is meaningful to develop a system
that (a) principally focuses on plate-based food items, and (b) assumes that an eating episode will contain dozens of
hand-to-mouth gestures. Indeed, Annapurna is designed to capture the food consumed during ’significant eating episodes’
(meals, which involve multiple hand-to-mouth gestures), and does not target the isolated acts of eating (e.g., popping a
piece of candy into one’s mouth).

4. System architecture

Fig. 4 provides the high-level workflow of Annapurna. Broadly, the components on the smartwatch detect the
intermittent eating activities during the day, and selectively triggers the camera to capture likely images of the food
consumed. Subsequently, these images are subjected to filtering on the user’s paired smartphone to remove some
irrelevant images. The remaining images are subjected to comprehensive processing on the server to rank and select
a small but precise set that best represents the food associated with an eating episode. Finally, these images, and other
relevant eating-related information, are displayed to the user. Annapurna comprises of the following components:

1. Detecting the eating gesture: The Eating Gesture Recognizer module on the smartwatch uses the accelerometer and
gyroscope sensor data to detect (i) the onset of an eating episode, and (ii) individual repetitive eating (i.e., hand-to-
mouth) gestures within the episode. It balances recall (missing eating episode) and precision (classifying non-eating
activities as eating). Additionally, it should identify eating episodes fairly early (i.e., within a few hand-to-mouth
gestures), to capture short-lived meals. We describe the implementation details of this module in Section 5.

6
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Fig. 5. Pipeline for recognizing the eating gestures and episodes. Level 1 uses a longer 2500 ms window with 80% overlap; Level 2 uses a shorter
500 ms window with 80% overlap.

2. Responsive image capturing: On identifying the onset of an eating episode (via multiple closely-spaced eating gestures),
Annapurna captures images automatically by triggering the camera at the right time during subsequent gestures. This
is challenging because eating gesture is relatively short-lived, and the smartwatch’s latency for image acquisition
(i.e., time to turn on and capture an image) is relatively high (≈0.9 s). In Section 6, we show how a preview-mode
based image capture strategy overcomes this challenge.

3. Image filtering: This component performs (a) irrelevant image elimination, and (b) selection of the best set of images
for each eating episode. For energy-efficient operation, the smartphone executes only simple (but effective) image
pre-processing that eliminates a bulk of the images; the backend server ensures that relevant images are identified
and displayed to the user. In Section 7, we detail these image elimination and ranking techniques.

4. Food journaling: Finally, the server stores this small subset of relevant images corresponding to each detected eating
episode. Users can view these images via a Web portal. While the portal development is straightforward, in Section 8,
we discuss some design choices (e.g., number of images per episode to be presented) intended to improve the overall
user experience.

5. Detecting eating gestures

Our final design of the two-level eating detection pipeline is shown in Fig. 5. We first describe the initial implemen-
tation of this pipeline, and then describe its evolution based on experiences gathered from real-world studies.

5.1. Feature extraction and classification

We extracted the raw accelerometer and gyroscope data and manually labeled the hand-to-mouth gesture periods in
the data. We observed that an average eating episode has 18 to 19 eating gestures. Our initial approach was to use features
defined over short frames of 500 ms for both accelerometer and gyroscope data. The small frame size is needed to trigger
the camera reasonably quickly to get appropriate images. This approach is shown in the bottom part (Level 2) of Fig. 5. The
raw sensor data is partitioned into frames of length 500 ms (with 80% overlap between frames); a set of widely-used time
and frequency domain features for the three axes of both accelerometer and gyroscope (identical to features extracted
in [45]) are then derived for each frame. We built a person-dependent classification models. Table 2 shows the accuracy,
precision and recall of a 10-fold cross-validation for three commonly used classifiers. From the table we observe that both

7
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Table 2
Performance of classifiers in identifying eating gestures.
Classifier Accuracy Precision Recall

DT 96.6% 96.1% 96.5%
RF 98.2% 97.1% 99.0%
SVM 85.7% 83.6% 87.1%

Table 3
Gesture prediction error (%) for different window size(w), threshold (t).
w t (count)

(s) 10 20 30 40 50

2 −152.1 – – – –
5 −4.2 −22.2 −3.4 – –
10 48.3 35.7 34.3 35.9 33.9

Fig. 6. Variation of accuracy as training data size is varied.

Fig. 7. Variation of accuracy as number of users is varied.

Decision Tree and Random Forest classifiers offer high classification accuracy. We eventually selected the Decision Tree
classifier because its lower computational complexity makes it more suitable for a resource constrained smartwatch.

To understand whether the performance of the decision tree-based eating detection model is influenced by the size
of the training data, we considered the 95 episodes where participants either consumed rice or noodles/pasta (66 rice,
29 pasta/noodles). We divided these 95 episodes into training and test set; we explored various training-test set size
ratios. Episodes were randomly assigned to either the training set or the test set, while ensuring that the training-test
ratio was maintained. The training set was used to create the decision tree-based eating gesture detector and this model
was tested on the test set. We repeated this process of randomly assigning episodes to training or test set 10 times. Fig. 6
shows the average performance of the classifier for various training set sizes. From the figure we can see that for n = 1,
the prediction accuracy is 77%, which appears to be reasonably high. However, on scrutinizing the prediction results, we
observed that for 36% of the experiments, every instance in the episode was predicted as not-eating. This percentage of
episodes where all instances are predicted as not-eating drops to 10% when we use 15 episodes for training and further
to below 5% when 30 episodes are used for training. At the same time, the prediction accuracy when using 30 episodes
for training is above 85%.

We next analyzed the performance of a person-independent model when all episodes of participant p : p ∈

{1, 2, 3, 5, 7, 10, 15} was used to create the training model and it was tested on the remaining participants. This analysis
was performed on the 95 rice and noodle/pasta consumption episodes. For the training data, we randomly selected p

8
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Table 4
Variation of false positives and false negatives for different values of cost parameter used in building a
cost-sensitive decision tree for detecting eating activity.

0 20 35 50 100

False Positives 36.6 18.9 12.6 8.6 6.7
False Negatives 3.5 8.9 17.4 37.1 55.3

participants from the pool of 21 participants. For every value of p, we repeated the process 10 times. Fig. 7 shows the
variation in performance when the value of p is varied. From the figure, we also see that there is significant variation in
performance at lower values of p. This indicates that the performance of the system is affected by the users selected for
building the model. However, for p ≥ 5, the variation is low. Additionally, beyond p = 5, the performance of the system
stabilizes, thus indicating that building a robust person-independent model is indeed possible.

For a 500 ms window of sensor data, we observed that even during an eating gesture, two consecutive frames were not
always classified as eating. There were also periods during the eating episode when non-eating gestures (e.g., adjusting
one’s hair or waving) were classified as eating in several 500 ms windows. On average, our classifier’s prediction indicated
that during a single eating episode, there were 337 transitions from non-eating to eating. This is much higher than the
ground-truth (average of 18–19 gestures), indicating the need of a second window to remove the noise.

5.2. Determining length of an eating gesture

From the ground truth data we observed that an average eating gesture lasted for 3.1 s (Rice - 2.8 s, Noodles -
3.7 s, Sandwich 3.1 s) where a gesture starts from the point the hand starts moving upwards and ends when the
hand comes back to rest. To evaluate the 500 ms window’s performance in detecting eating, we take a window (w)
of past raw classifier outputs (obtained every 100 ms.) and compare the number of eating gestures identified by the
classifier during this window with a threshold (t) value. If the number of positive classifications in w is more than
t , then we declare the window to be an eating gesture window. Table 3 presents the average error in determining
the number of gestures (transitions from not-eating to eating) in an episode, as a function of w and t . We computed
Prediction Accuracy=

∑
GT−

∑
P∑

GT ∗ 100, where GT is the number of actual eating gestures and P is the system-predicted
gesture count. A positive value indicates that our system is under estimating, while a negative value indicates over-
estimation. From this table, we see the lowest values of error in gesture estimation are obtained for w = 5. A smaller
value (w = 2 s.) over-estimates the number of eating gestures, whereas an overly large window (w = 10 s.) under-counts
the eating gestures.

When we compared the estimation errors for different settings of w and t for individual food items (rice and noodles),
we found that they are indeed different, due to the different eating styles. (In case of noodles, the user usually holds the
hand near the mouth till she has consumed the entire strand of noodle.) However, even though t and w varied across
different food items, the variation was modest enough to allow us to use t = 10 and w = 5 across food-types.

5.3. Refining the classifier

We observed that during a rice eating episode, an eating gesture occurred every ≈17 s. However, the gesture occurrence
was not evenly distributed, but was rather bursty. Since we wanted to capture images of the food plate when we
determined eating, we aimed at capturing the image early in the episode so that the food items were still on the plate. On
average, the first minute of the rice eating episode had ≈ 3 eating gestures. To ensure high recall, we chose a conservative
approach and declared the start of an eating episode if at least 2 gestures were detected in a minute.

Step 1 — Building a Cost-Sensitive Classifier: When the base classifier (described above) was applied to the controlled
study dataset, it resulted in a high positive rate. This triggered detection of many false eating episodes and drained the
battery rapidly by turning on the camera unnecessarily. To tackle this problem, we increased the cost of false-positive
mis-classification in the training phase, thereby building a cost-sensitive classifier. However, this new classifier missing
several real eating episodes in a feasibility study (low recall).

Step 2–Cost-Sensitive, Two-stage Classifier: To address this challenges, we needed: (a) to determine the optimum
cost for the classifier to trade-off between false positives and false negatives, and (b) an additional pre-classifier, that
worked on a longer window, to reduce the false-positives.

We performed a grid search and evaluated the cost-sensitive decision trees to determine the optimum cost parameter.
Additionally, we acquired day-long regular life-style sensor traces of non-eating activities from 3 participants who were
asked to remove their watches when they were eating, but wear the watch at other times. For the models with different
cost parameter settings, the false-negative rate was determined from cross-validation on the controlled-study training
dataset itself. To evaluate the false-positive rate, we used the day long traces of non-eating data (from these 3 participants).
Table 4 provides the false-positive and false-negative rates for different values of cost parameter. When the cost of false
detection is low, the FN rate is low, meaning we will not miss many eating gestures. However, the FP rate on real-life
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trace is very high (36.8%). For a cost of 100, the FP rate on the real-life trace is very low (6.7%), but the FN rate for eating
is also very high (55.25%), implying we will miss a substantial number of eating episodes.
From this table, we observe that a cost parameter of 35 provides a suitable value for both FP rate (12.6%) on the real-life
trace and the FN rate (17.4%) for detecting eating gestures.

We also observed that several false-positives were generated by ‘‘jerky movements’’ of the hand during regular
activities such as gesticulating during interactions or repeated lifting of objects. While a small frame-duration of 500 ms
is needed for efficient, low-latency triggering of the camera, an additional longer-frame duration of 2.5 s was also needed
to eliminate these transient gestures. Accordingly, we developed an additional classifier (Level 1, as shown in Fig. 5) that
uses a longer 2.5 s. frame of accelerometer data alone, to first identify the likely eating episodes. As each eating episode is
long-lived, this initial classifier triggers the fine-grained classifier (Level 2 in Fig. 5) which works on the shorter 500 ms
frames, additionally using the gyroscope readings also. Once the eating gesture is consistently detected in level 1 (for
more than 10 frames within a minute), this triggers the cost-based classifier (described earlier) that operates on 500 ms
frames.

5.4. Additional heuristics to reduce energy consumption

Based on our observation of data, we identified several situations where we could turn off all or some of the sensors,
allowing reducing energy consumption, resulting in longer battery life. Additionally, from prior literature, we identified
several Singapore-based lifestyle characteristics that could further reduce the energy consumption. We next introduce
these energy saving heuristics that we applied in Annapurna.

• If Annapurna detects that the hand has been at rest or in a low motion state (determined by low variance of the
accelerometer readings) for nrest (currently, nrest = 120 s), it assumes that the user is resting, and thus switches off
all sensors for the next 60 s (nrest /2 s). A 60 s time window for switching off all sensors ensures that Annapurna can
still capture parts of an eating episode that starts during the nrest period. Overall, from our feasibility study, we observed
that choosing a low threshold for variance (less than 0.2 m/s2 in a 1-min window) ensured that we did not miss any
eating episode, while the day long data collection from the 3 participants indicated that on average this threshold could
allow turning off all the sensors for ≈ 25 min in a day.

• As identified by Leech et al. [46], the inter-meal gap between two consecutive meals is at least 900 s. This indicates that
once Annapurna detects the end of the meal, it can assume that the next meal will not occur within 900 s. Annapurna
takes a conservative approach and currently turns off all sensors for nb2b = 600 s, once it detects the end of one eating
episode.

• If the smartwatch detects certain activities – e.g. walking or running for 2 consecutive minutes, it turns off all sensors
for nact seconds (currently, nact = 180 s.), as it is highly unlikely for a user to have an in-plate meal while concurrently
performing these activities. From the non-eating data that was collected from the 3 participants for an entire day we
found that one participant’s running session lasted for more than 30 min during this data collection. Additionally, as
identified by Olzewski et al. in Singapore, 50% of individuals would use walking as their mode of transportation for a
distance of 850 m [47]. Considering an average walking speed of 5 km/h, this translates to over 10 min of walking to
cover the distance. Currently, we consider a society with an active lifestyle to design this heuristic. Further investigation
for choosing the thresholds will be necessary for societies (or even individuals) with different active levels.

• As observed by Zhang et al. [25], the inter-chew gap (which directly translates to hand-to-mouth gestures) between
two chewing bouts is less than 120 s in 80% cases. This indicates that if there is no hand-to-mouth gesture for 120 s (a
hand-to-mouth gesture is the starting action in a chewing bout), it is highly likely that the eating episode has ended.
Currently, if Annapurna’s Level 2 classifier does not observe 3 hand-to-mouth gestures in 300 s (60 additional seconds
to minimize falsely missing gestures ), then it switches back to the Level 1 classifier, thereby reducing energy overhead
of running a gyroscope.

The final Annapurna system also utilizes human-in-the-loop principles to conserve energy and ensure accuracy.
Whenever Annapurna determines the commencement of an eating episode, a pop up appears on the smartwatch to
confirm if the individual is eating. If the user responded negatively to the pop up, Annapurna stopped the sensors and
image capturing for the subsequent 300 s. If the user responded positively or does not respond at all, Annapurna assumes
that the user is eating and carries on as it would have. Based on all the above mentioned heuristics, all sensors could be
turned off for nearly 25% of the app running time in our dataset (details in Section 9). We have determined our heuristics
and thresholds using data from participants who lead an active Singaporean lifestyle. Modification to these heuristics and
thresholds might be necessary before deployment in other settings or cultures. Once an eating period is identified, the
camera is triggered whenever Annapurna identifies a start of the subsequent hand-to-mouth gesture (from the output of
the Level2 Classifier).

6. Image capturing technique

Once the eating gesture recognition module detects eating, the next step is to capture images using the camera.
According to the Android Camera API documentation, the camera can capture either (a) videos or (b) images [48]. However,
both these options were problematic for our use case:
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Fig. 8. Power consumption for image capturing.

Fig. 9. Comparison of likelihood of acquiring a good image by the Till-gesture (left) and the In-gesture (right) strategies.

• Capturing video: Given the limited battery capacity of smartwatches, continuous video recording is not feasible, even if
it is restricted to the eating episodes. By measuring the battery drain for continuous video capture, we found that the
battery drains from 100% to 10% in ≈80 min.

• Capturing image: Capturing a single image reduces the probability of capturing images of the food item. We thus
investigated capturing a burst of images. Capturing a burst of images has two issues: (i) latency – from triggering
the camera to capturing a single image, the latency is ≈900 ms, and (ii) usability – as the number of images captured
is small, the possibility of capturing an usable food plate image is extremely low.

From Android’s API documentation we observed that Android also supports a preview class.

• Preview class: According to the API documentation, ‘‘a camera preview class is a SurfaceView that can display the live image
data coming from a camera, so users can frame and capture a picture or video’’ [48]. This preview frame can be grabbed
from the SurfaceView and stored. The preview frames refresh at a high rate (> 20 fps in the Gear 1), thus solving the
latency issue that exists in capturing images. While of a lower quality, we found the quality of Preview frames to be
good enough for image analysis.

To support low-energy continuous operation, we investigated the power consumption profile of the three modes.
Fig. 8 shows the power consumption (measured using the Monsoon Power monitoring tool [49]) for different modes
(along with inertial sensing). From the figure, we see that the Burst mode consumes the least power, while the Preview
mode consumed only marginally higher power. Our feasibility studies showed that the burst mode could only capture an
average of 2.7 images per gesture, while the preview mode captured 45.3 images per gesture (compared to 46.8 frames
per gesture captured in video mode). Given our desire to capture a large set of images with low latency and low power
consumption, the Preview mode is the most suitable approach.

Stopping the camera — Energy vs. Efficacy: An important question that now arises is — once the camera is triggered,
how long should it be kept on? To answer this question, we computed the likelihood of getting at least one good image
of the food content, in a ranked subset consisting of top p images from among all images captured till the Nth gesture,
for each of the 135 eating episodes in the controlled-study (details of the ranking algorithm is explained in Section 7).
If we considered the top 10 ranked images (p = 10), for a likelihood of 0.8 (80% of episodes had one good image),
Annapurna had to wait for an average of 8 gestures and the camera sensor is kept on for approximately, 135 s. As an
alternate strategy, we considered stopping the camera at the end of each gesture and starting it again at the next gesture
(In-gesture strategy). In this case Annapurna had to wait for an average of 13 gestures and the camera sensor needs to
be active for only approximately, 40 s. Even though the second approach kept the camera sensor ON for a shorter time
duration, Annapurna adopted the former approach because (a) the complexity and the latency of triggering the camera
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Table 5
Effectiveness of each image filtering step.
Filtering step (921617 Images) Device % of images remaining

Total images captured Watch 100
RGB variance & Face filter Phone 88
Edge count filter Phone 37
Plate shape filter Server 6.6
Depth map & CNN based Filter Server 0.8

within the limited time of an ongoing individual gesture and (b) our desire to capture food item images even for smaller
meals (ones with a lower number of eating gestures). Evaluation of both strategies for different values of p and N is shown
in Fig. 9.

7. Image filtering

Our studies showed that many of the images captured by the preview mode were not useful–these included (i) blank
images — when the camera captured only the table or other non-food items, (ii) blurry images — when the camera
captured images while the hand was moving (iii) misleading images — when a neighbor’s food plate or images with human
faces was captured. We used a sequence of filters based on fairly standard image-processing operations to eliminate
these irrelevant images. The key challenge was to balance the filtering efficiency (tradeoffs between false-positives and
false-negatives) and the computational/energy overheads of different alternatives. We eventually adopted an architecture
of ‘lightweight early discard’ (similar to the approach for continuous vision in Glimpse [50], where a relatively simple
processing pipeline on the smartphone (to which the smartwatch is paired) eliminates a large percentage of low-quality
images, and a second computationally-intensive pipeline on a backend server performs the ranking and selection of
curated images.

7.1. Lightweight pre-processing on the phone

Images acquired by the smartwatch are transferred to the paired smartphone via Bluetooth. The phone in-turn is
connected to a server over Wi-Fi. The obvious choice for performing the computationally intensive image processing
operations (to filter irrelevant images) would be a server, rather than the smartphone. However, blindly transferring all
the images to the server consumes both energy and bandwidth. To prevent all the images from being transferred to the
server, Annapurna implements a lightweight pre-processor on the phone. The pre-processor utilizes (a) a color histogram
based solid background detector, followed by (b) an initial face detection system using android’s FaceDetector class,
and (c) opencv’s implementation of an edge detector. The background detector eliminates images with solid background
(e.g. camera view blocked or pointing towards a wall/table), while the face detector eliminates images with visible human
face. The edge detector filters images based on the observation that a clear image has a large number of edges, whereas
blurry images have a smaller number of edges caused by motion blur.

By performing these simple image processing steps, we could eliminate 63% of the captured images even before
the images were transferred to the server, thus saving both transmission power as well as bandwidth. Currently, we
have investigated simple image processing steps on the smartphone. The simple image processing steps using OpenCV
have little energy footprint on resource constrained devices [51]. Although more complex image processing operations
can be performed on the smartwatch, the computation needs of these operations will introduce additional energy and
latency overheads, but might reduce the communication overheads. With the advancement in deep learning techniques
on resource constrained devices [52,53], in future, one might consider implementing more sophisticated deep learning
techniques on either the smartphone or smartwatch. However, researchers should be wary about the energy drain of the
deep learning approaches. As identified by Lane et al. the battery life of the device can drop to below 4 h when more
complex deep learning approaches for image processing are implemented on mobile and wearable systems [17]. In future,
it is necessary to investigate if such implementation can further optimize the image transfer, while ensuring that such
techniques do not adversely affect the computation and battery life.

7.2. Detailed processing on the server

Images transferred to the server are processed to identify relevant images.
Determine shape of edge The first step at the server side processing is to identify if the edge is the edge of a plate.
We assume that the plate has a regular, convex shape (either rectangular or circular). To determine rectangular shape,
we identify straight lines whose length is above a minimum threshold. Similarly, we use the approxPolyDP function in
opencv to compute the number of curves in the edge. If the number of curves is above a threshold, and the slopes of the
consecutive curves indicate a monotonic increase or decrease, the overall shape is convex and a candidate for a plate’s
outline.
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Fig. 10. View of the Annapurna portal.

Eliminating using a depth map Several irrelevant images were observed to contain edges, but from objects (e.g., pictures
on the wall, or from the neighbor’s plate) that were distinct from the user’s food container. To eliminate such images,
a depth map is constructed (via the parallax method) from the acquired sequence of images. The dominant SURF
features [54] in two images, taken 300 ms apart, are identified. The pixel disparity (after common axis alignment) between
the identified features is evaluated to build the depth map: foreground objects have higher disparity than background
objects. If the rectangular/circular object detected in the image is in the foreground, then this image is saved as a likely
image of the food plate; else, it is discarded.
Non-food elimination via deep learning Although the aforementioned steps help in eliminating irrelevant images, there
is still uncertainty about whether the image contains food images. To ensure that the image is indeed that of a food item,
we then invoke the API provided by Clarifai inc. [55]. This API utilizes CNN to identify the likelihood of presence of food
in an image.

Finally, all images that pass these filtering steps are stored, and ranked based on a ‘visibility area’ score: this score
is directly proportional to the area of extrapolated rectangle. Table 5 shows the average fraction of images that were
eliminated at each step on our controlled study corpus.

8. Building the food journal

We next identify a users’ food journaling preferences.

8.1. Image preference (survey)

We surveyed 32 students and researchers (16 male and 16 female) to understand (a) howmany food images they would
like to see per eating episode, and (b) how sensitive they were to erroneous images taken by Annapurna (e.g., images that
did include the food or were too blurry).

Overall, 70% of the respondents indicated that at least 5–10 food images were appropriate per eating episode. We
suspect this is because users would like to see the food they ate from different angles or they did not want episodes
where no correct food images were shown. Moreover, 80% of the respondents indicated they would still use the system
(16% definitely, 37% probably and 28% possibly) if at least 80% of the displayed images were correct food images.

8.2. Annapurna web portal

Annapurna’s web portal is shown in Fig. 10. The portal is configured to display the top-5 images (determined by the
image processing algorithm) to the user. Our food image selection algorithm has an 88% accuracy at picking correct food
images (details in Section 8.3). In a day-wise tabbed view users can see photos of the food consumed on any particular
day. For each day, the food photos are separated into different meals based on the time of consumption.
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Fig. 11. Assessment of image quality. The plot shows (i) the accuracy with which Annapurna could identify images of food, as displayed in the portal
(blue), (ii) number of images which had images of food items that were not consumed by the individual (orange), and (iii) images that were either
blurry or captured someone’s face (gray).

8.3. Effectiveness of the food journal

To evaluate the effectiveness of the food journal and its image ranking algorithm, we conducted a semi-controlled free-
living study with 14 participants (4 females, 10 males, aged between 23 and 36). Participants were instructed to consume
one meal while wearing a smartwatch (with our app running). We did not provide any instructions about where, when,
what, or how to eat their food.

The participants consumed their meals in 7 distinct locations (2 public seating areas, 3 food courts, and 2 restaurants);
consuming a diverse food item choice including buns, rice cakes, rice with curry, pasta, and salad. The food items were
consumed using some combination of their hands (2 episodes), spoons (8 episodes), forks (7 episodes), and chopsticks (2
episodes).

Results: For each participant, Annapurna journal displayed the top 5 images. The participants were then asked to
evaluate the system in terms of (1) image accuracy — did the images contain food items that they consumed, and (2)
image quality — were the images clear? Fig. 11 shows the results for image accuracy and quality, computed over each set
of 5 images representing one meal episode. The Y axis of the figure indicates the number of images.

8.3.1. Image accuracy
The Annapurna journal displayed 4.14 valid food images (out of 5) on average. We define a valid food image as one

that shows at least one food item that the participant consumed. For 7 participants, all the 5 displayed images were valid.
Also, there was no eating episode where food images did not get captured at all. The worst result had just 2 valid food
images and occurred for a participant consuming rice cakes with relatively little hand movement.

8.3.2. Image quality
Overall, the participants could clearly identify about 80% of the displayed pictures, with only 1.07 images considered

blurry on average. In the worst case, one participant marked 3 of the 5 images as blurry, although even this person noted
that he could still identify the food items in the images. This observed sensitivity to such motion blur led us to increase
Annapurna’s blur threshold in the final production-ready version.

9. In-the-wild evaluation

The semi-controlled study allowed us to validate the feasibility of capturing images of food items consumed by
participants in an uncontrolled environment, during explicit eating episodes. As a logical next step, we explore the end-
to-end feasibility of Annapurna as an automated food journal, which tracks a user’s eating episodes throughout the day,
while the user continues with their everyday activities. To this end, we recruited participants to wear the smartwatch
continuously throughout the day. Overall, we conducted two free-living studies with a stable eating gesture recognizer
module – uncontrolled free-living Study 1 (S1) with 4 participants (1 male, 3 females) and uncontrolled free-living Study 2
(S2) with 7 participants (3 females, 4 males). S1 allowed us to evaluate the feasibility of capturing eating gestures in
free-living settings. The eating recognizer module described in Section 5.3 was used in S1. However, the battery life of
the smartwatch was poor. We thus incorporated several refinements to the eating recognizer module (as described in
Section 5.4) and that was used in S2. Table 6 provides extensive details about the two studies. In the table, TP (true
positive) indicates eating episodes that were correctly identified and displayed to the user, FP (false positive) refers to
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Table 6
Performance of Annapurna in the completely free-living studies.

Uncontrolled free- Uncontrolled free-living Overall
living study 1 (S1) study 2 (S2)

Ground truth

Participant Id 1 2 3 4 4 5 6 7 8 9
# days 5 5 5 5 6 5 5 4 6 46
App time (h) – – – – 33.7 26.1 32.6 26 33.9 152.3
# Meals (GT) 7 7 6 10 11 9 11 8 12 81

Performance

TP 7 7 6 9 11 7 11 7 12 77

FP-Inertial 2 2 1 4 7 7 7 5 10 45
FP-Overall 1 0 0 1 1 1 0 0 0 4

FN 0 0 0 1 0 2 0 1 0 4
FNs - Camera 0 0 0 0 0 1 0 1 0 2

Sensor use (hours)

All Sensors OFF 11.7 5.4 8.3 3.9 8 37.3
Accel ON 13.6 14.9 19.1 14.9 18.6 81.2
Accel + Gyro ON N/A 7.8 5.3 4.6 6.8 6.5 31
Camera ON 0.6 0.5 0.6 0.4 0.8 2.9

TP: True positive (Correct meal detection), FP-inertial: False positives triggered by gesture recognizer, FP-Overall: False positives in the final journal
after image filtering, FN: False negative (Meals missed by App), FNs Camera: FN due to Camera triggering failure.
Participant # 4 participated in both studies.

episodes that our system falsely inferred as eating, and FN indicates eating episodes that we missed. Note that even if the
gesture recognition system falsely identified eating episodes, the image filtering technique was successful in removing
these FP (FP-Overall).

9.1. S1 : Uncontrolled free-living study 1

4 participants were recruited and were provided with a smartwatch and a smartphone with the Annapurna app
installed. They were asked to appropriately recharge the battery. While they had no directives in terms of their eating
decisions (when, where and what to eat), the participants were instructed to validate the images uploaded to Annapurna
Web Journal at the end of the day. In addition to validating the images in food journal, the participants were also instructed
to go through all the images that were uploaded to the server. In order to protect their privacy, they were instructed to
delete any image which captured sensitive context and they were not comfortable in sharing. The research team accessed
the uploaded images only after the participant indicated that they were okay with sharing the uploaded images.

The 4 participants wore the smartwatch for 5 days each. During this study, Annapurna recalled 29 eating episodes
reported by the users, while missing just one eating episode. Also there were just 2 false positives (when Annapurna
presented images from non-eating periods in the journal) across all users. On a closer look, there were 9 times when the
gesture recognizer had actually triggered the camera incorrectly. This included 2 episodes where the participant consumed
only a beverage. However, the images acquired from 7 of these cases, including the 2 only beverage episodes were rejected
by the image filters.

9.2. S2: Uncontrolled free-living study 2

At the end of S1, we surveyed the participants (from S1 and also from the previous pilot study) about the usability
of the system. A total of 6 Annapurna users responded back. The users indicated improvements that they would like in
future version: (a) 3 users wanted a mechanism to automatically compute the calories consumed, (b) 1 user suggested
that we should display the total duration of every meal, and (c) 1 user wanted to manually inspect the images captured
before they were sent to the server. While (a) is outside our scope, Annapurna can be easily modified to support (b) and
(c).

We recruited 7 participants for the subsequent study with a more power efficient app. However, 2 participants had
issues with the app running on their watch, and hence could not be effectively included in the study. We followed the same
protocol as S1 and collected 26 person days of data from the 5 participants, which resulted in 152.3 h of data collection.
During the 152.3 h, 51 meals were consumed by the participants while they wore the smartwatch. Since Annapurna turned
off all sensors after 8 eating gestures were detected, we could not measure the duration of the meals in the free-living
setting, Among these 51 meals, Annapurna could correctly identify 48 meals, indicating that the energy-saving heuristics
did not affect the recall of the system. In terms of false positives, 36 false positive (FP) episodes were detected by the
gesture recognition module. This included 5 episodes where the participant consumed only a beverage. In all, 34 among
these 36 episodes were eliminated by the image filtering module, including all five only-beverage episodes (FP-Overall=
2). The images which were unfiltered had closeup images of objects that resembled food items.

By measuring the power consumption of each of the sensors, we had found that the accel alone consumed ≈20 mW
power, accel + gyro together consumed ≈150 mW power and the camera along with the inertial sensors consumed ≈800
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mW power. Overall, we found that based on the simple heuristics, we could turn off all sensing for ≈24.5% of the entire
application running time without any significant drop in accuracy. Additionally, the gyroscope ran for less than 21% of
the total app running time, thus allowing longer battery life.

9.3. Overall Performance of Annapurna

From S1 and S2 we observed that Annapurna could recall 95% meals (77 out of 81) that were consumed by the
participants. Although gesture recognition itself had several false positives, the precision of the system was 95% after
the image filtering (compared to 63% precision in the absence of such filtering). The energy saving heuristics assisted in
saving nearly 25% of Annapurna’s sensing time, while the app had expensive sensors (e.g., camera and gyroscope) disabled
for approx. 80% of a typical day.

10. Discussion and future work

While Annapurna affirms the possibility of building an automated food journaling system, in future, several additional
issues need to be explored.

Large scale user study: We have currently tested Annapurna with 8 unique participants in multiple free living studies,
across a total of 46 days (an average of 5 days per participant). The duration is definitely longer and more rigorous as
compared to several existing free living eating activity monitoring studies [56]. However, it must be noted that the current
study sample size is small for claiming generalizability of the system. The studies have currently been conducted with
participants who are affiliated with an university in Singapore. The eating style in Singapore might differ from eating
styles in other locations, although it appears to be broadly representative of eating styles across Eastern and Southern
Asia. A free living study in another geographic location might help in understanding the general eating pattern. Currently,
Annapurna has been tested on a healthy population, who are in the normal BMI range. In future, it will be useful to test
Annapurna with a clinically vulnerable population to understand how an automated food journaling system can help such
population.

Identifying food items and estimating calorific values: Currently, Annapurna captures usable food-images but does not
automatically identify the food item and an estimate of its calorific content. Work by Kawano et al. attests to the possibility
of such automatic food identification [37], while more recently, Sahoo et al. have applied deep learning-based approaches
for automated food recognition [42]. However, these techniques utilize a clear, frontal image of the food item, and
further investigation is necessary to determine whether they will work on Annapurna’s food images, which have partial,
sometimes blurry, views of the food item. Orthogonally, Dong et al. have observed a correlation between the number of
hand to mouth gestures and caloric intake [23]. Annapurna can use a similar approach for caloric estimate in the future.

Using in-situ deep learning approaches: As discussed in Section 7, Annapurna currently leverages on simple image
processing steps on the smartphone, before transferring the images to the server for further analysis. With advancement
in on-device deep learning implementation on resource constrained devices [52,53,57] and improvement in capabilities
of modern smartwatches, deploying these deep learning techniques on smartwatches and smartphones is gradually
becoming a possibility. Such implementation will reduce the communication overhead for the smartwatch. In case deep
learning approach is implemented on a smartphone, it might further optimize the image filtering process. However, as
discussed in Section 7, Annapurna currently implements simple and low-energy computation. Further communication
and computation trade-off analysis is necessary before using deep learning approaches on the smartwatch to optimize
the processing pipeline.

Alternate approaches: Currently, Annapurna utilizes a smartwatch-based camera to capture an image of the food item.
Alternately, we can explore other wearable devices for such automated image capture. For example, a smartglass-mounted
camera, such as one proposed by Zhang et al. [28] or camera as used by Liu et al. [3] is likely to obtain a clearer image
of the food being consumed. Similar to Annapurna’s current implementation, the gesture recognizer module running on
a smartwatch can trigger the camera on a different device. Such approaches, however, require multiple wearable devices
and tighter synchronization across devices. Additionally, one must keep inter-device communication latency in mind while
implementing such an approach.

Capturing additional facets: Annapurna currently captures a small subset of representative images of the food item: for
energy efficiency, the image capture is disabled, once Annapurna determines that an appropriate number of images has
been recorded. However, we may be interesting in automatically tracking the total amount of food consumed. This can be
done, for example, by taking an image of the plate at the end of a meal, and comparing the size of the observed food item
with a corresponding image taken at the beginning of the meal. This will require changes to Annapurna’s image capturing
logic, and would impose a different energy-vs-accuracy operational trade-off.

Ensuring user privacy To detect the food plate, Annapurna automatically captures images using the smartwatch’s RGB
camera. However, in addition to images of the food plate, false positives in the gesture recognition pipeline leads to
capturing unnecessary and sometimes sensitive context. In our study, at the end of the day, participants manually
reviewed each uploaded image to ensure that the captured images were not privacy encroaching. This allowed preserving
user privacy in the user studies. Currently, Annapurna does not apply any image obfuscation technique on the images,
i.e., capturing only the food plate, while removing any sensitive context. Recently, there has been substantial advancement
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in thermal imaging approaches for food item detection [30,58], and for obfuscation of unnecessary context [59]. Infrared
sensor arrays such as the GRID-EYE [60] consume little power and provide thermal details of the scene. In future, we can
consider augmenting the output of the RGB camera with the thermal sensor to allow detecting food items in scene and
to enhance user’s privacy by obfuscating unnecessary (and possibly privacy-sensitive) context.

11. Conclusion

We presented Annapurna, the first known implementation of an end-to-end automated smartwatch-based food
journaling system. Annapurna first identifies eating gestures, and then capture images of the food item by activating
the camera-sensor during the eating activity. We observed that a smartwatch-embedded camera can indeed capture
such food-related images, with the preview mode providing the balance between energy efficiency and image relevance.
Through image filtering and processing, we demonstrated that Annapurna could identify the correct images in over 80%
cases. Finally, through multiple free-living studies in Singapore we showed that Annapurna could achieve a precision and
recall of 95% in naturalistic environments, even when either no sensor or a low-energy accelerometer sensor was running
during ≈ 80% of the detection duration.
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