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Automatic Loop Summarization via Path
Dependency Analysis

Xiaofei Xie, Bihuan Chen, Liang Zou, Yang Liu, Wei Le, Xiaohong Li

Abstract—Analyzing loops is very important for various software engineering tasks such as bug detection, test case generation and
program optimization. However, loops are very challenging structures for program analysis, especially when (nested) loops contain
multiple paths that have complex interleaving relationships. In this paper, we propose the path dependency automaton (PDA) to
capture the dependencies among the multiple paths in a loop. Based on the PDA, we first propose a loop classification to understand
the complexity of loop summarization. Then, we propose a loop analysis framework, named Proteus, which takes a loop program and a
set of variables of interest as inputs and summarizes path-sensitive loop effects (i.e., disjunctive loop summary) on the variables of
interest. An algorithm is proposed to traverse the PDA to summarize the effect for all possible executions in the loop. We have
evaluated Proteus using loops from five open-source projects and two well-known benchmarks and applying the disjunctive loop
summary to three applications: loop bound analysis, program verification and test case generation. The evaluation results have
demonstrated that Proteus can compute a more precise bound than the existing loop bound analysis techniques; Proteus can
significantly outperform the state-of-the-art tools for loop program verification; and Proteus can help generate test cases for deep loops
within one second, while symbolic execution tools KLEE and Pex either need much more time or fail.

Index Terms—Disjunctive Loop Summary, Path Dependency Automaton, Path Interleaving

F

1 INTRODUCTION

Analyzing loops is very important for various software en-
gineering tasks, e.g., bug detection, test case generation, and
program optimization. However, loop analysis is one of the
most challenging tasks in program analysis, especially when
(nested) loops contain multiple paths that have complex in-
terleaving relationships. Specifically, loops are the “Achilles’
heel” of program verification [1], and a key bottleneck for
scaling symbolic execution [2], [3].

1.1 Existing Work
Three kinds of techniques are mainly used for analyzing
loops, namely loop unwinding, loop invariant inference and loop
summarization. Loop unwinding unrolls the loop with a fixed
number of iterations. This technique is simple but cannot
reason about the program behaviors beyond the unwinding
bound. A loop invariant is a property that holds in each
loop iteration. The limitations are that, applications typically
rely only on the sufficiently strong loop invariants [1] that
might be difficult to infer especially for complex loops;
and commonly-used fixpoint-based invariant inference [4]
is iterative and sometimes time-consuming.
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Compared to loop invariants, loop summarization pro-
vides a more accurate and more complete comprehension
for loops [1], [2], [5], [6], [7] in terms of loop summary. A
loop summary captures the relationship between the inputs
and outputs of a loop as a set of symbolic constraints.
Therefore, we can replace a loop fragment with its loop
summary during program analysis. For example, we can use
a loop summary to verify program properties after a loop;
and we can use it to direct test case generation in symbolic
execution.

1.2 Challenges

Several loop summarization techniques [2], [5], [6], [7]
have been proposed, however, challenges still remain for
multi-path loops (loops that contain branches) and the in-
terleaving execution among multiple paths. For example, the
loop summarization techniques in [2], [5] handle single-path
loops where variables are modified by a constant in each
loop iteration. The recent advances of loop analysis [6],
[7] can summarize some multi-path loops but they do not
consider the interleaving pattern of the paths. The multi-
path loops can be nested or unnested loops, and their
executions can be sequential or interleaving. Specially, nested
loops are challenging because 1) nested loops are all multi-
path loops because there are multiple paths in outer loops
and inner loops; and 2) nested loops are usually interleaving
execution among the paths due to the nesting between the
inner loops and outer loops. Hence, the existing approaches
either cannot handle multi-path loops or do not consider
the interleaving pattern. The goal of this paper is to reason
about the interleaving of multiple paths in a nested or
unnested loop and generate a disjunctive loop summary (DLS)
for such multi-path loops.
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As an example, the while loop in Fig. 1(a) contains an
if-else branch, which makes it a multi-path loop; and the
computation in the if and else branches impacts the eval-
uation of the if condition, leading to the interleaving of the
two paths in the loop. The initial values of the variables x, z
and n determine the possibilities of interleaving between the
if and else branches, which produce different effects after
the loop execution. Let x, z and x′, z′ be the values before
and after the loop execution respectively. If the initial values
satisfy x ≥ n, the loop effect is x′ = x ∧ z′ = z; if
x < n ≤ z, the loop effect is x′ = n ∧ z′ = z; and if
the loop starts with x < n ∧ z < n, the loop effect is
x′ = z′ = n. Therefore, loop summarization should consider
all interleaving possibilities and a precise summary should
be a disjunction that includes all possible loop executions
due to the different initial values of the variables. Hence,
the DLS for Fig. 1(a) is (x ≥ n ∧ x′ = x ∧ z′ = z) ∨ (x <
n ≤ z ∧ x′ = n ∧ z′ = z) ∨ (x < n ∧ z < n ∧ x′ = z′ = n).
Comparing with the loop summary from [2], [5], [6], [7],
DLS considers each possible pattern of interleaving and is
more specific and fine-grained1.

1.3 The Proposed Approach

This paper accomplishes three tasks to advance the state
of the art in loop analysis. First, we propose a path depen-
dency automaton (PDA) to model the relationships between
multiple paths of unnested and nested loops. Second, we
propose a classification to understand the difficulty of loop
summarization. The loop classification defines what types
of multi-path loops we can handle precisely, what types of
multi-path loops we can handle with approximation, and
what types of multi-path loops we cannot yet handle. Last,
we develop a loop analysis framework, named Proteus2,
to summarize the loop effect for each loop type based
on the PDA. Proteus takes a loop code fragment and a
set of variables of interest as inputs to compute the DLS. The
DLS is a disjunction of a set of path-sensitive loop effects on
the variables of interest.

Proteus generates a fine-grained loop summary in three
steps. The first step applies program slicing on the loop ac-
cording to the variables of interest such that some irrelevant
paths can be reduced in the loop. The second step is a novel
technique where a PDA is constructed from the control flow
graph (CFG) of the loop to model the path interleav-
ing. Each state in the PDA corresponds to a path in the
CFG; and transitions in the PDA capture the dependencies
of the paths. The last step traverses the PDA to summarize
the effect of each feasible trace in the PDA (each trace rep-
resents a possible execution in the loop). The final result,
i.e., DLS, is a disjunction of the summaries for all possible
executions of the loop.

We have implemented Proteus and evaluated the useful-
ness of DLS by applying it to loop bound analysis, program
verification and test case generation. We computed the loop
bound for 8,782 loops from five open-source projects. The re-
sults indicate that Proteus can compute a more precise loop

1. In this paper, we say DLS is more fine-grained since DLS summa-
rizes for each possible trace of the loop and it is a disjunction of all trace
summaries.

2. A Greek god who can foretell the future.

bound than the existing techniques [8], [9], [10], [11]. We also
applied DLS to program verification on 169 programs from
two well-known benchmarks. The results show that Proteus
can summarize 136 (80.47%) programs; and for these sum-
marized programs, Proteus can help verify 133 (97.80%) pro-
grams correctly, while SMACK+Corral [12], which achieved
the highest correct rate in SV-COMP’16 [13], can only verify
106 (77.94%) programs correctly. Besides, Proteus only took
64 seconds, while SMACK+Corral took more than 7 hours.
We also applied DLS to test case generation, and compared
symbolic execution tools KLEE [14] and Pex [15] with Pro-
teus. Our results show that Proteus can generate test cases
for the deep loops (large number of iterations) in one second
while KLEE either times out or needs much more time and
Pex often throws an exception.

This work is a substantial extended version of our previ-
ous work [16]. In addition to a more detailed and systematic
description of the approach, we extend the previous work
to be more general in the following aspects.

1) we extend our framework to support nested loops which
cannot be modeled (Section 2), classified and summa-
rized in the previous work. Based on our extended PDA
in [17], we improve the classification (Section 3) and
summarization (Section 5) on both unnested and nested
loops.

2) we extend the summarization algorithm to support more
complex variables (Section 4.2). In the previous work,
we can only summarize the variables which are changed
with a constant (i.e., the update values of each variable
is Arithmetic Sequence). In this work, we extend the
definition of induction variable, and can summarize the
variables (Algorithm 1, 2 and 3) whose n-th term can be
calculated with the domain knowledge of mathematics.
For example, the Constant Sequence, the Geometric Se-
quence and the combined Sequences can also be handled.
Hence, the new Type 1 loops we can summarize in this
work contain part of the Type 2 and 3 loops in the
previous work.

3) we extend the summarization algorithm to handle more
periodic cycles (Algorithm 3). In the previous work, the
execution count of each state in each execution of the
periodic cycle must be the same. In this work, we extend
that the cycle is periodic if the execution count of each
state has a regular change, which can be determined (e.g.,
Arithmetic Sequence, Geometric Sequence and so on).

4) we extend the summarization algorithm to handle some
connected cycles by analyzing the dependencies among
the cycles (Section 5.3), while the previous work does not
handle and summarize the PDA that contains connected
cycles.

5) we provide more detailed proofs for the soundness of the
approach (Theorem 1, 2 and 3).

6) we add more benchmarks and rerun all the experiments
(Section 7). For the bound analysis application, we clas-
sify and compute bounds for the nested loops in the
five open-source projects. For program verification, we
add one new benchmark that contains nested loops and
more complex unnested loops. For test case generation,
we choose several programs from the new benchmark as
the target for generating test cases.
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1. int n=*;
2. int x=*;
3. int z=*;
4. while(x<n){
5. if(z>x)
6. x++;
7. else
8. z++;
9. }

(a) Loop [9]
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Fig. 1: Unnested Loop

1.4 Contributions
In summary, the main contributions of this work are:
1) we propose a path dependency automaton to capture the

dependency and interleaving of the paths in multi-path
loops;

2) we propose a classification for multi-path (nested) loops
of four types to understand the complexity of loop sum-
marization;

3) we propose a loop analysis framework, Proteus, to com-
pute disjunctive loop summary based on the path depen-
dency automaton; and

4) we conduct an evaluation to demonstrate the usefulness
of disjunctive loop summaries in three important appli-
cations.
The rest of this paper is structured as follows. Section 2

defines the path dependency automaton. Section 3 presents
the loop classification and the overview of our loop analysis
framework. Section 4 introduces the construction of path de-
pendency automaton. Section 5 and 6 elaborate our summa-
rization approach for different types of loops. Section 7 eval-
uates the usefulness of our approach. Section 8 reviews the
related work before Section 9 draws the conclusions.

2 LOOP MODELING

In this section, we first introduce the concepts of control flow
graph and loop paths, and then we propose the path depen-
dency automaton.

2.1 Preliminaries
Let D be a finite integer domain and X = {x1, x2, . . . ,
xn} be a finite set of variables ranging over D. An atomic
condition over X is in the form of g(x1, x2, . . . , xn) ∼ b,
where g : Dn 7→ D is a function that performs the integer
operations on X , ∼∈ {=, <,≤, >,≥} and b ∈ D. For
the operator ̸=, we transform the condition to e > 0∨ e < 0.
We use PX to denote the set of all possible atomic conditions
over X . A condition over X can be a Boolean combination
of atomic conditions over X .

A loop can be modeled by a control flow graph (CFG),
as formulated in Definition 1. In this paper, we assume
the loops always terminate. The summarization of non-
terminating loops will be discussed in Section 5.5.

Definition 1. A control flow graph of a loop is a tuple G =
(L,E, lpre, Lh, Le), where (L,E) is a finite directed graph;
L is a set of basic blocks, each of which contains a sequence
of assignment instructions; E ⊆ L × PX × L is a set of
directed edges connecting the basic blocks; lpre ∈ L is the
pre-header after which the loop enters into the entry block;
Lh ⊂ L is a set of header blocks; and Le ⊂ L is a set of exit
blocks.

• Each edge (l, p, l′) ∈ E represents that the basic block
l′ can be executed after l if the condition p is satisfiable.
For simplicity, we use l

p−−→ l′ to denote (l, p, l′).
• l ∈ L dominates l′ ∈ L if every path from lpre to l′ goes

through l.
• l ∈ Lh is a header block if there is an edge (l′, p, l) ∈ E

and l dominates l′.
• l ∈ Le is an exit block if there is an edge (l′, p, l) ∈ E

where l′ is in the loop and l is not in the loop.

Let wp be the weakest precondition operator based on
Hoare Logic [18]. wp takes the instruction s and a postcon-
dition Q as inputs, and returns the weakest precondition
of s with respect to Q, denoted as wp(s,Q). In this paper,
we use the assignment and sequence rules to compute the
weakest precondition:

wp(x := E,Q) = Q[x← E]
wp(s1; s2, Q) = wp(s1, wp(s2, Q))

Definition 2. Given a CFG G = (L,E, lpre, Lh, Le) of a loop,
a path (denoted as σ) is a sequence of edges, l0

p0−−→ l1
p1−−→

. . .
pk−1−−−→ lk, where l0 ∈ Lh∪{lpre} is the head of σ, denoted

by head(σ); lk ∈ Lh ∪ Le is the tail of σ, denoted by
tail(σ); and ∀1 ≤ i < k, li ̸∈ Lh ∪ Le. The weakest
triggering condition of σ (denoted as θσ), i.e., the weakest
condition under which σ can be executed, is computed as
wp(l0, p0)∧wp(l0; l1, p1)∧. . .∧wp(l0; . . . ; lk−1, pk−1), where
each li in wp represents a sequence of instructions in the
basic block li. We use

∏
G to denote the set of all paths in G.

In this paper, we will use path condition to represent the
weakest triggering condition of a path. A path σ is called
an iterative path if head(σ) = tail(σ); otherwise it is called a
one-time path. Intuitively, the loop execution consists of the
interleaving of multiple iterations of paths. During the loop
execution, an iterative path can be consecutively executed
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1. int m=1;
2. int i=1;
3. int j=0;
4. while(i<n) {
5. j=0;
6. while(j<i)
7. m += (i-j);
8. j++;
9. i++;
10.}
11.assert(m>=n);

(a) Loop [19]
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Fig. 2: Nested Loop

for multiple times. A one-time path can only be executed
once and then one of the other paths is executed. We use
σk to denote the k consecutive executions of path σ, i.e, the
path σ is executed for k times consecutively. We define the
function fσ(X, k) that computes the value of the variables
X after k consecutive executions of path σ. For example, if x
is updated as x := x+1 in each execution of σ, we compute
fσ(x, 10) = x + 10. For the sake of simplification, we also
use Xσk to represent fσ(X, k).

Example 1. Fig. 1 and 2 show the examples of an unnested
and a nested loop, respectively. Consider Fig. 2(b) which
shows the control flow graph of the nested loop in Fig. 2(a).
In this CFG, there are seven basic blocks named from a
to g, and eight edges. a is the pre-header from which the
loop program executes the loop, b and e are the header
blocks, and d is the exit block. Specially, the basic blocks
b, e and d contain no instructions. The edge b

i<n−−−→ c
represents that c can be executed after b if the condition
i < n holds. T represents True, which means the edge is
always feasible. In the CFG, there are five paths that are
shown in Fig. 2(c). Among them, σ2 is an iterative path, and
the others are one-time paths. Intuitively, σ2 can be executed
many times before the execution of σ3. σ1 is a one-time
path and it can only be executed once before the execution
of σ2 or σ3. Similarly, in Fig. 1(b), there are four paths. In
each execution of path σ1, x increases by one. Thus we can
compute fσ1(x, k) = x+ k (i.e., xσ1

k = x+ k).

2.2 Path Dependency Automaton
Loop execution is a sequence of execution of the paths,
which represents the interleaving among the paths. To
model the interleaving among different paths in the loop, we
propose the path dependency automaton (PDA) as follows.

Definition 3. Given a loop with its CFG G = (L,E, lpre,
Lh, Le), the path dependency automaton (PDA) is a tuple A =
(Q,L, q0, accept, T ), where

• Q = {q0, . . . , qn} is a finite set of states.
• L : Q →

∏
G is a function that maps each state q ∈ Q

to a path L(q) ∈
∏

G . We also use the notation Lq to
represent L(q).

• q0 is the initial state, where head(Lq0) = lpre.

• accept = {q ∈ Q | tail(Lq) ∈ Le} is a set of accepting
states.

• T = {(q, q′) ∈ Q × Q | tail(Lq) = head(Lq′) ∧
Lq ̸= Lq′∧(∃k : (

∧
0≤i<k θLq [XLq

i/X])∧θLq′ [XLq
k/X]

is satisfiable)} is a finite set of transitions.

A state in the PDA corresponds to a path in the CFG of
the loop. The initial state represents the path that is first
executed. An accepting state represents the path whose tail
is an exit block, and the loop terminates after the execution
of that path. The semantics of one transition (q, q′) ∈ T
is that the path Lq′ can be executed after finite (k ≥ 1)
executions of the path Lq . Note that, one state q can only
transit to another state q′ when the head node of Lq′ is equal
to the tail node of Lq .

θLq
[XLq

k/X] represents that the variables in the path
condition of Lq are substituted with the value after k execu-
tions of the path Lq . For example, after k executions of σ1 in
Fig. 1(b), we can compute xσk = x + k, the path condition
x < n ∧ z > x becomes x + k < n ∧ z > x + k. The
transition (q, q′) is feasible if the path condition θLq

always
holds after each of the first k − 1 executions of Lq , and θLq′ will
hold after k executions of path Lq . The existence of k ensures
Lq′ can be executed eventually. Note that, if Lq is a one-
time path, then the path Lq can only be executed once (i.e.,
k = 1) before transiting to Lq′ . Specially, the accepting state
has no successor (i.e., there is no transition starting from the
accepting state) since the state ends with an exit block.

Definition 4. Given a loop with its PDA
A = (Q,L, q0, accept, T ), EA = {(q0, . . . , qn) | qn ∈
accept ∧ ∃k0, . . . , kn−1 :

∧
0≤i<n((

∧
0≤j<ki

θLqi
[XLqi

j/X])∧
θLqi+1

[XLqi
ki/X]) is satisfiable, where XLq0

0 = X ∧ ∀0 <

i ≤ n : XLqi
0 = XLqi−1

ki−1 } is a set of feasible traces.

We assume the loop always terminates, and thus
each trace is finite and ends with an accepting state.
The trace (q0, . . . , qn) is feasible if the transitions
(q0, q1), . . . , (qn−1, qn) are feasible. The conditions in Def-
inition 4 include two parts: 1)

∧
0≤j<ki

θLqi
[XLqi

j/X]) ∧
θLqi+1

[XLqi
ki/X]) guarantees that each transition (qi, qi+1)

is feasible, and 2) ∀0 < i ≤ n : XLqi
0 = XLqi−1

ki−1

represents that the initial value of each path is the output



0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2788018, IEEE
Transactions on Software Engineering

5

value of the previous path. The two parts guarantee that
one trace is feasible.

Each trace τ ∈ EA represents one run of the PDAA. The
semantics of one trace (q0, q1, . . . , qn) is one execution of the
loop, which can be represented by the execution of paths:
(Lq0

1,Lq1
k1 , . . . ,Lqn−1

kn−1 ,Lqn
1), where each path Lqi in

the trace will execute ki times. Note that Lq0 and Lqn can
only be executed once since they are one-time paths. A trace
contains a cycle if it contains a subsequence (qi, . . . , qj , qi).
The cycle (qi, . . . , qj) can be consecutively executed with
multiple iterations in the trace.

Example 2. Fig. 1(c) and 2(c) give two PDAs. The red node
represents the initial state, and the double-level node rep-
resents the accepting state. In each state, we mark the
corresponding path with its possible number of execu-
tions (the symbol * in the figures means the path is
an iterative path). The edge between two nodes rep-
resent the transition. In Fig. 1(c), we have the states
Q = {q0, q1, q2, q3} which correspond to the paths
{σ0, σ1, σ2, σ3}, the initial state q0, the transitions T =
{(q0, q1), (q0, q2), (q0, q3), (q1, q2), (q2, q1), (q1, q3)}, and the
accepting states accept = {q3}. q0 can transit to q1, q2 and
q3 since σ1, σ2 and σ3 can be executed after the execution
of σ0. q1 can transit to q2, since x ≥ z may be satisfiable
after certain iterations of σ1. In Fig. 1(c), there are four
type of traces EA = {τ1 = (q0, q3), τ2 = (q0, q1, q3), τ3 =
(q0, (q1, q2)

+, q1, q3), τ4 = (q0, (q2, q1)
+, q3)}, where +

means one or more executions of the sequence. EA rep-
resents all possible executions of the loop. The details of
constructing the PDA will be described in Section 4.

It is worth mentioning that our path-based PDA is
generic with respect to unnested and nested loops due to
the well-defined paths in the CFG. The difference is that,
in unnested loops, one iterative path usually starts from
the entry block and goes back to the entry block. Hence,
one iteration of an unnested loop is one execution of the
iterative path. In nested loops, as one iteration of the outer
loop contains the loop execution of the inner loop, the path
in the outer loop is ”split” by the inner loop. One iteration
of the outer loop is represented by multiple paths (i.e., the
split paths). Intuitively, the structure of the PDA of a nested
loop is usually more complex than the PDA of an unnested
loop since it may contain more paths (in outer and inner
loops), which lead to more transitions among the paths and
more cycles.

Example 3. In Fig. 1, one iteration of the loop (executing
from the basic block b to the basic block b) is one execution
of σ1 (b → c → e → b) or σ2 (b → c → f → b). However,
in Fig. 2, one iteration of the outer loop (executing from
basic block b to the basic block b) is a sequence of execution
(σ1, σ2

∗, σ3), which contains: one execution of σ1 (b→ c→
e), greater than or equal to zero execution of σ2 (e→ f → e)
and one execution of σ3 (e→ g → b).

3 LOOP ANALYSIS

In this section, we first introduce the concept of loop sum-
marization. Then, we present a classification for loops to un-
derstand the complexity of loop summarization. Finally, we
present the overview of our loop analysis framework.

3.1 Loop Summarization
For one loop with PDAA, one loop execution is represented
as one trace τ ∈ EA. For the trace τ , we use X and Xτ to
represent the value of the variables before and after τ . Xτ

can be obtained from X by updating the variables in each
execution of each path σ ∈ τ (i.e., the effect after the loop
execution). Loop summarization is to statically compute
the constraints ϕ(X,Xτ ), which describe the relationship
between X and Xτ . With the loop summary ϕ(X,Xτ ), we
can compute the final values Xτ (i.e., the postcondition)
from the given initial value X .

Definition 5. Given a PDA A and a set of variables X , the
summary of a trace τ ∈ EA is the constraints denoted as
ϕ(X,Xτ ). The disjunctive loop summary (DLS) of A, denoted
as SA, is

∨
τ∈EA

{ϕ(X,Xτ )}, i.e., the disjunction of sum-
maries of all traces in the PDA.

To compute the DLS for a loop A, we need to com-
pute the summary for each trace τ ∈ EA. For each trace
τ ∈ EA, we can summarize the effect of each state q ∈ τ
by determining the value change in each iteration of each
path Lq and the number of iterations of Lq . The number
of iterations of each path depends on the path condition
and the value change in the path condition. If the variables
in the path condition are induction variables, we can usually
reason about the number of iterations. Summarizing a trace
containing a cycle is more challenging since the execution
count of each path is obtained by summing up the count
in multiple executions of the cycle. However, if we can
compute the execution count of the cycle and the value
change in each execution of the cycle, we can also reduce
the complexity.

Based on the above analysis, summarizing a multi-
path loop depends on 1) the patterns of value changes in
path conditions, i.e., whether the variables are induction
or non-induction, and 2) the patterns of path interleaving
in each trace, i.e., acyclic execution or cyclic execution. In
the following, we provide a detailed explanation for the two
patterns, and also present the loops we can summarize and
the loops we cannot summarize.

3.2 Loop Classification
Patterns of Value Changes in Path Conditions. Given a
variable x and an iterative path σ, the updated values of a
variable after consecutive executions of path σ are a sequence
of numbers. We define the n-th term of the variable x in the
path σ is the value of x after n consecutive executions of σ.
With the domain knowledge of sequences and series [20],
we can calculate the n-th term for some sequences, e.g., if x
is an Arithmetic Sequence, we can compute xn = x0+n∗d,
where x0 is the initial term, d is the common difference in the
sequence.

According to the patterns of value changes, we classify
the variables into two types.

• Induction Variable. A variable x is an induction variable
(IV) in a path σ if the value of x after n consecutive ex-
ecutions of σ (i.e., the n-th term xn) can be computed
with the initial value x0 and the variable n. Specifically,
x is a monotonic induction variable (MIV) in a path σ
if x is an IV and the value of x is strictly monotonic



0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2788018, IEEE
Transactions on Software Engineering

6

TABLE 1: A Classification of Loops

IV condition (∀) NIV condition (∃)
Sequential Type 1 Type 3Periodic
Irregular Type 2 Type 4

increasing or decreasing, or assigned with a constant
during the execution of σ.

• Non-induction Variable. Otherwise, if we cannot compute
the n-th term after the executions of σ for the variable
x, the variable is a non-induction variable (NIV).

Non-induction variables mainly include: 1) the value of
a variable that depends on other variables and we cannot
compute its n-th term (e.g., x = x+ y2 + z2), 2) the value of
a variable that depends on alias, content of files or function
calls (e.g., x = x+ f(y)).

Example 4. In Fig. 1(b), x is MIV in σ1 and σ2 since the
value of x during the execution of each path is an Arithmetic
Sequence. We can compute xn = x0+n in σ1 and xn = x0 in
σ2. Similarly, z and n are also MIVs. In Fig. 2(b), m is MIV
in σ2, and we can compute mn = m0 + [(2 ∗ i0 − 2 ∗ j0 −
n+ 1) ∗ n]/2.

Notice that we cannot determine all induction variables
statically because it is non-trivial to infer the value of
variables during loop iterations. For example, in the loop
while(i<10) x+=a[i], if the values in the array a are
equal, x is indeed an IV; otherwise, x is a NIV. In our
implementation, we perform a conservative static analysis
and report a variable as induction variable only when
we can statically compute the n-th term with the domain
knowledge of mathematics (see Section 4.2).

The path condition is a conjunction of multiple atomic
conditions. Each atomic condition is the form of g(X) ∼ b,
we use e = g(X) as a variable for the ease of presentation.
The conditions can be classified into two types:

• IV Condition. A condition is an IV condition if the con-
dition is an atomic condition e ∼ b and e is a MIV in
the path. For example, the condition x < n (an atomic
condition x−n < 0) in Fig. 1(b) is an IV condition in all
three paths since x− n is a MIV in each path. The strict
monotonicity can be used to determine the number of
executions of the path.

• NIV Condition. A condition is a NIV condition if e is not
a MIV.

Patterns of Path Interleaving. Given a loop with the
PDA A, we classify a loop execution into three types:

• Sequential Execution. There is no cycle in each trace τ ∈
EA.

• Periodic Execution. If all the cycles in every trace are
regular and periodic (the period can be used to abstract
the cycle), the loop execution is a periodic execution;
otherwise, it is a non-periodic execution.

• Irregular Execution. If there are some traces that contain
non-periodic cycles, the loop execution is an irregular
execution. For irregular execution, we cannot determine
the execution pattern of the cycle statically because the
cycle is non-periodic. Hence, we cannot compute the
number of executions for each path.

while ( x<1000)
i f ( x>=0 && y>0)
x=2*x ; y−−;

else i f ( x>0 && y<=0)
x−−; y−=2;

else i f ( x<0 && y>=0)
x ++; y=3*y ;

else
y++;

(a) Type 2

i n t i =0 ;
while ( i <1000)

i f ( i <100)
i ++;

else
i n t j =random ( ) ;
assume(1<= j ) ;
assume ( j<LINT ) ;
i = i + j ;

(b) Type 3

while ( i<n )
i f ( s [ i ]== ’ a ’ )

i ++;
else i f ( s [ i ]== ’ b ’ )

i +=2;
else i f ( s [ i ]== ’ c ’ )

i−−;
else

i +=3;

(c) Type 4

Fig. 3: Loop Classification Examples

The Proposed Loop Classification. According to the pat-
terns of value changes in path conditions and the patterns of
path interleaving, we define a loop classification, as shown
in Table 1. The first row indicates that we classify a multi-
path loop based on whether each atomic condition in the
paths of the loop is an IV condition (Type 1 and 2) or there
exists some NIV conditions (Type 3 and 4). The first col-
umn displays the criteria of path interleaving patterns, i.e.,
whether all the feasible executions of the loop are Sequential
or Periodic (Type 1 and 3) or there exists some loop execution
that can be Irregular (Type 2 and 4). This loop classification
helps to understand the difficultness of loop summarization,
i.e., what loops can be precisely summarized, what loops
can be summarized with some approximation, and what
loops are challenging to summarize (see Section 5 and 6).

The loops related to integer arithmetics often belong to
Type 1; and the loops that traverse a data structure often
belong to Type 3 and 4, because the loop iteration depends
on the content of the data structure. Intuitively, loops with
NIV conditions, such as the loops that are related to complex
data structures, tend to have irregular execution because
the path interleaving depends on non-induction variables,
which have irregular value changes and often lead to non-
periodic cycles among the paths.

Example 5. The loop in Fig. 1(a) belongs to Type 1 because
the conditions are IV conditions and the cycle (q2, q1) in the
PDA is a periodic cycle. Fig. 3 presents the other types of
loops. Fig. 3(a) belongs to Type 2 because all the conditions
are IV conditions but the cycle (the interleaving among the
four paths) in the loop is not periodic. The loop in Fig. 3(b)
belongs to Type 3 since its execution is sequential (i.e., from
if branch to else branch) but the variable i is a non-
induction variable whose value depends on the function
random(). Fig. 3(c) belongs to Type 4 as all the conditions
are NIV conditions which depend on the array s and lead to
the irregular execution among the paths.

3.3 Loop Analysis Framework

Fig. 4 shows the workflow of Proteus. It takes a loop and a set
of variables of interest as input, and it reports a loop summary
for the variables of interest. The variables of interest are
given by the client analysis that uses the loop summary.
For example, if the goal is to determine the loop bound,
the variables in the conditions that may jump out of a
loop are of interest; and if we use the loop summary for
program verification, we will need to summarize the vari-
ables relevant to the properties to be verified. In this way,
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Fig. 4: An Overview of Our Framework Proteus

Proteus performs a problem-driven summarization for the
loop program. Guided by the variables of interest, Proteus
can further simplify the loop to generate the summary
more efficiently. If the variables of interest are not specified,
Proteus will try to generate a summary for all the variables
in the loop.

Proteus consists of four steps to summarize a loop. Step
1 performs program slicing using the variables of interest as
slicing criteria and constructs the control flow graph (CFG)
for the sliced loop program.

From the CFG, we can directly determine the type of the
loop from the loop conditions. If all the conditions in a loop
are IV conditions, the loop belongs to Type 1 or 2; otherwise,
the loop belongs to Type 3 or 4. Since summarizing NIVs is
very challenging because of the uncertain value changes,
we provide some approximation techniques (i.e., Step 2) to
transform the loops of Type 3 and 4 to Type 1 or 2. The
approximation may cause imprecise summaries but may
still be useful and effective in specific applications.

In Step 3, Proteus extracts the path condition and ana-
lyzes the dependency between any two paths. We construct
the PDA for the Type 1 and Type 2 loops to capture the
execution order and path interleaving patterns of the paths.
We can construct the PDA for Type 1 and Type 2 loops.

In Step 4, we perform a path enumeration procedure on
the PDA to check the feasibility of each trace in the PDA and
summarize its effect. The loop summary is a disjunction of
all feasible trace summaries. The last two steps are our main
contributions in this paper, which will be elaborated in
Section 4 and Section 5–6 respectively.

4 PDA CONSTRUCTION

In this section, we first introduce how to perform slicing
and computing the n-th term in a sequence of numbers,
then we describe the construction of PDA for Type 1 and
Type 2 loops.

4.1 Loop Slicing

The loop slicing removes irrelevant instructions, which
leads to reduce irrelevant paths in the constructed CFG.
Thus, it makes the summarization more efficient. We im-
plement our loop slicing based on the method in [8]. The
loop slicing is based on the program dependence graph
(PDG) [21] that combines control flow dependencies and
data flow dependencies. Taking both types of dependencies
into account, we determine the relevant instructions from a
slicing criterion. We illustrate the basic idea of determining
the relevant instructions using Example 6. The algorithmic
details can be found in [8].

1. int n=*;
2. int x=*;
3. int z=*;
4. int i=*;
5. while(x<n){
6. if(x<100)
7. i++;
8. if(z>x)
9. x++;
10. else
11. z++;
12.}
13.assert(x==10);

(a) Unsliced Loop (b) PDG

Fig. 5: Example of Loop Slicing

Example 6. Fig. 5(a) shows the unsliced loop program of
Fig. 1(a); and Fig. 5(b) gives the corresponding PDG where
nodes represent the instructions and edges represent the
control flow dependencies (solid arrows) and data flow
dependencies (dotted arrows). Here we want to check the
property x == 100; Thus, x is a variable of the slicing
criterion. In Fig. 5(b), starting from node 3, we first find and
add the relevant instruction in node 1 due to the control
dependency x ≥ n, and the instruction in node 6 based on
the data dependency. From node 6, we find node 1 and node
5 because x depends on the control dependencies x < n
and x < z. From node 5, we find node 7 based on the data
dependency. Here, we determine node 5 does not depend on
node 2 because z > x can be executed under the conditions
x < 100 and x ≥ 100. Hence, node 2 is not added. At last,
we find all the relevant nodes (marked in grey in the figure).

4.2 Computing n-th Term in a Loop Path
The n-th term [20] computation for a sequence of numbers is
a classical mathematical problem and can be computed with
the domain knowledge in sequences and series. Here we
consider the following sequences.

• Basic Sequence. Arithmetic Sequence (xn = x0 + c ∗ n),
Geometric Sequence (xn = x0 ∗ cn) and Constant
Sequence (xn = c) are basic sequences, where c is a
constant. We can easily compute the n-th term by the
definition.

• Dependent Sequence. If a sequence depends on another
sequence, such as xn = xn−1 + yn, xn = yn or xn =
xn−1 ∗ yn where yn is a known sequence, then it is a
dependent sequence, and we can compute its n-th term.
For example, for xn = xn−1+yn, if we can compute the
sum of first n terms for yn, then we can compute the n-
th term of xn with accumulation; i.e., calculate the sum
by (xn − xn−1) + (xn−1 − xn−2) + · · · + (x1 − x0) =
xn − x0 = yn + yn−1 + · · · + y1 and get the result
xn = x0 +

∑
1≤i≤n yi.

Based on these two kinds of sequences, we can compute
the value of the variables after n executions of a path in the
loop. For example, during the loop iteration, the value of x
is an Arithmetic Sequence if x is updated as x := x+c in one
execution of a path, a Geometric Sequence if x is updated
as x := x ∗ c in one execution of a path, and a Constant
Sequence if x is updated as x := c in one execution of a path,
where c is a constant. If x is updated as x := x + y in one
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Algorithm 1: ConstructPDA
input : G = (L,E, lpre, Lh, Le): CFG
output: A: PDA

1 Assume
∏

G := {σ1, . . . , σn};
2 Q := {q0, . . . , qn} ;
3 L := {(q0, σ0), . . . , (qn, σn)};
4 T := {} ;
5 q0 is the state, where head(σ0) = lpre;
6 accept := {q ∈ Q | Lq ∈ Le};
7 foreach (qi, qj) ∈ {(qm, qn) | qm ∈ Q ∧ qn ∈

Q ∧ tail(σm) = head(σn) ∧m ̸= n} do
8 Let kij be the state counter for (qi, qj) ;
9 ϕij := θσi ∧ θσi [Xσi

kij−1/X] ∧ θσj [Xσi
kij /X] ∧

(σi is an iterative path?kij ≥ 1 : kij = 1);
10 if ϕij is satisfiable then
11 T := T

∪
{(qi, qj)};

12 return A = (Q,L, q0, accept, T );

execution of a path and y is a known sequence in the path,
we can compute the n-th term with dependent sequence. In
Fig. 2, the value of variable m in σ2 is a dependent sequence
since we can find m := m + (i − j) in σ2 and i − j is an
Arithmetic Sequence. Hence, we can compute mn = m0 +
n ∗ (2 ∗ i0 − 2 ∗ j0 − n+ 1)/2. Notice that the update of the
variable is inferred by performing the data flow analysis on
the sequence of statements in the path.

If we cannot compute the n-th term for x during the
loop iteration, we regard it as NIV. Notice that, the n-th
term computation is orthogonal to our loop summarization,
and can be extended with more advanced algorithms.

4.3 Constructing PDA

Algorithm 1 presents the procedure of PDA construction. It
takes as input the CFG of a loop, and returns the constructed
PDA. At Line 1–3, we construct the states Q of PDA and the
function L which maps each state to each path based on∏

G . For each qi ∈ Q, we have Lqi = σi and σi ∈
∏

G .
The set of transitions T is initialized at Line 4. The initial
state is q0 whose corresponding path σ0 starts with the pre-
header lpre (Line 5). The accepting state is the state whose
corresponding path ends with the exit block (Line 6).

Then we compute the transition between each two pos-
sible states qi and qj in the PDA (Line 7–11). Notice that
qi can only transit to qj whose head equals to the tail of
qi. First, we introduce the variable kij ≥ 1, called state
counter, for the transition (qi, qj), which represents that after
kij iterations of σi, σj will be executed (where σi = Lqi

and σj = Lqj ) (Line 8). Then we compute the guard
condition for the transition (qi, qj) as the conjunction of
θσi

, θσi
[Xσi

kij−1/X] and θσj
[Xσi

kij /X], which respectively
represents the path condition of σi before executing the path
σi, the path condition of σi after k − 1 execution of σi and
the path condition of σj after k execution of σi (Line 9). If σi

is an iterative path, then the iterations of σi can be greater
than one (i.e., kij ≥ 1); otherwise, σi is a one-time path and
can only execute once (i.e., kij = 1). If ϕij is satisfiable, qi
can transit to qj . Then we add the transition into the set T
(Line 10–11), which is proved in Theorem 1.

σ0 [1]
True

q0

q2

q3

q1

σ1[*]
x<n  z > x

x++

σ2[*]
x<n  z ≤ x

z++

σ3 [1]
x ≥ n

𝑘21 ≥ 1, 𝑘21=x-z+1

True

x’=x ,z’=x+1,n’=n

𝑘12 ≥ 1, 𝑘12=z-x

z<n

x’=z, z’=z, n’=n

𝑘13 ≥ 1,𝑘13=n-x

z≥n

x’=n, z’=z, n’=n

𝑘02=1

x<n  z ≤ x

x’=*, z’=*, n’=*

Fig. 6: Details of the PDA in Fig. 1(c)

Theorem 1. If ϕij in Algorithm 1 is satisfiable, then qi can
transit to qj .

Proof. (Sketch) Let σi = Lqi and σj = Lqj . From Defini-
tion 3, we know if ϕ′

ij = ∃kij : (
∧

0≤m<kij
θσi

[Xσi
m/X]) ∧

θσj
[Xσi

kij /X] is satisfiable, then qi can transit to qj . If we
can prove ϕij can imply ϕ′

ij (i.e., Proposition (1)), then
(qi, qj) is feasible.

ϕij =⇒ ϕ′
ij (1)

In Algorithm 1, we know ϕij = θσi
∧ θσi

[Xσi
kij−1/X] ∧

θσj [Xσi
kij /X]. Note that θσi [Xσi

0/X]) = θσi . The differ-
ence between ϕij and ϕ′

ij is that
∧

0<m<kij−1 θσi [Xσi
m/X]

is considered in ϕ′
ij but not in ϕij . Hence, to prove Proposi-

tion (1), we only need to prove Proposition (2). We assume
kij ≥ 3 in Proposition (2). When 1 ≤ kij ≤ 2, it is intuitive
to prove that Proposition (1) is true.

θσi ∧ θσi [Xσi
kij−1/X] =⇒

∧
0<m<kij−1 θσi [Xσi

m/X] (2)

We prove Proposition (2) with the proof by contradiction.
We assume that θσi ∧ θσi [Xσi

kij−1/X] is true, and ∃ 0 <
m < kij − 1, θσi

[Xσi
m/X] is false. Thus, we need to prove

the assumption (i.e., Proposition (3)) is a contradiction.

θσi ∧ θσi [Xσi
kij−1/X] ∧ 0 < m < kij − 1 ∧ ¬θσi [Xσi

m/X]

(3)
From the definition of path condition, we know θσi

is a
conjunction of some IV conditions: e1 ∼ 0 ∧ · · · ∧ ek ∼ 0,
where ∼∈ {<,≤, >,≥,=}. θσi

[Xσi
m/X] is not satisfiable

means ∃1 ≤ n ≤ k, en[Xσi
m/X] ∼ 0 is not satisfied. Thus,

we derive Proposition (4):

(3) =⇒ en ∼ 0 ∧ en[Xσi
kij−1/X] ∼ 0

∧0 < m < kij − 1 ∧ en[Xσi
m/X] ≁ 0

(4)

From the definition of IV condition, we know en is a MIV.
Hence, it is monotonic increasing, decreasing or constant,
which implies Proposition (5).

en < en[Xσi
m/X] < en[Xσi

kij−1/X]

∨en > en[Xσi
m/X] > en[Xσi

kij−1/X]

∨en = en[Xσi
m/X] = en[Xσi

kij−1/X]
(5)

For each ∼∈ {<,≤, >,≥,=}, Proposition (5) is a contra-
diction with Proposition (4). Then we get a contradiction for
the assumption. Thus, we can prove Proposition (1) is true;
i.e., if ϕij is satisfied, then qi can transit to qj .

Based on the guard condition ϕij , we get the following
information: 1) the constraints on the state counter kij which
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Fig. 7: Different Structures of PDA

can represent the iteration count of σi, 2) the simplified
guard condition by eliminating the variables kij from ϕij

with quantifier elimination, and 3) the postcondition (i.e.,
the value of the variables X after the transition) which can
be computed based on kij .

Example 7. Fig. 6 shows a detailed PDA for the loop in
Fig. 1(b). Each state is one path in the CFG with the path
condition and variable update in each iteration. Each table
above the transition includes: constraints about the state
counter kij in the first row, the simplified guard condition
in the second row, and the postcondition in the third row.
For simplicity, we omit the tables from q0 to q1 and q3, and
they are similar to (q0, q2). Consider the transition (q1, q2).
The variables are all IVs in σ1. With Algorithm 1, we can
compute ϕ12 = x− n < 0 ∧ z − x > 0 ∧ (x+ k12 − 1− n <
0)∧(z−x−k12+1 > 0)∧(x+k12−n < 0)∧(z−x−k12 ≤ 0).
After the simplification of the inequalities in ϕ12, we can
get z − x ≤ k12 < z − x + 1, i.e., k12 = z − x (in the
first row). We can further eliminate k12 from ϕ12 and get a
simpilified guard condition as z < n (in the second row). By
substituting k12 with z − x, we can compute the postcon-
dition (i.e., the value of the variables after the transition) as
{x′, n′, z′} = {x+1 ·k12, n+0 ·k12, z+0 ·k12} = {z, n, z} (in
the third row). Similarly, we can also compute the transitions
of (q2, q1) and (q1, q3).

5 SUMMARIZATION FOR TYPE 1 LOOPS

In this section, we elaborate the algorithm for computing
disjunctive loop summaries for Type 1 loops whose atomic
conditions are all IV conditions.

As described in Section. 3.1, we summarize the effect for
each trace, and the difficultness of summarization depends
on the cycles in the traces. Fig. 7 shows different structures
based on the cycles in the PDA. In Fig. 7(a), if a PDA does
not contain cycles, then it is like a tree. By traversing the tree
from the root node to each leaf node, we can get all the traces
that are acyclic. In Fig. 7(b), if a PDA contains the cycles that
are not connected (called simple cycles), we merge the cycle
into one state and the PDA becomes acyclic. If the cycles are
connected (called connected cycles), as shown in Fig. 7(c),
then it can produce irregular execution between the cycles
in each trace, which makes the summarization non-trivial.

The PDA structure of a loop depends on the number of
paths and the number of transitions among the paths. For
example, the PDA of the typical loop for(i=0;i<n;i++)
belongs to the class of acyclic PDA. The PDA in Fig. 1(c)
contains a simple cycle. Due to the nesting of the inner
loop and the outer loop, the PDA of a nested loop contains
connected cycles which include the cycles caused by the

execution of the inner loop and the cycles caused by the
execution of the outer loop. For example, Fig. 2(c) is a
simplest PDA (there is no if-else branch in both of the
inner loop and the outer loop), which contains the connected
cycles between (q1, q2, q3) and (q1, q3).

In the following sections, we will introduce the summa-
rization for acyclic PDA, PDA with simple cycles and PDA
with connected cycles, respectively.

5.1 Summarization for Acyclic PDA
Given the PDA A of one loop, we summarize
the effect of the loop by callling Algorithm 2 as
SummarizeTrace(q0, P re(A), X, SA) where q0 is the ini-
tial state, Pre(A) is the precondition, X is a set of induction
varibales that will be summarized and SA is the result, i.e.,
the loop summary.

Algorithm 2 performs a path enumeration on the PDA to
find each trace and summarize each transition of the trace.
Its inputs include the current state qi, the current trace con-
dition tc under which the sub-trace from q0 to qi is feasible,
and the values of variables X ′ after the previous transition.
If qi is an accepting state, the summarization for the current
trace τ is finished. The value of the variables after executing
the trace τ (i.e., Xτ ) equals to the value of the variables after
executing the path Lqi once (i.e., X ′

Lqi
1

) (Line 2). Note that
Xτ contains the state counters which are bounded in the
trace condition tc.

On the other hand, if qi is not an accepting state, the algo-
rithm continues to summarize each of the transitions from
qi to its successors (Line 4–8). For each successor qj , we
update the guard condition ϕij (computed in Algorithm 1)
by substituting its variables X with X ′. The constraint
tc ∧ ϕij [X

′/X] is solved to check whether the current trace
can transit to σj (Line 6). If feasible, the algorithm updates
the current trace condition to tc ∧ ϕij [X

′/X] and updates
the variables to X ′′ with kij (Line 7). Then it continues
the summarization from state qj (Line 8). Notice that the
introduced variable kij represents the execution count of qi,
which is used to compute X ′′ after the transition from qi to
qj (Line 7). The value of kij is bounded by the path condi-
tions of σi and σj , i.e., in ϕij . For example, in Example 7, the
value of variable k12 is bounded as z−x ≤ k12 < z−x+1.

Example 8. Consider the PDA in Fig. 6 which contains one
simple cycle. Here we ignore the transition (q1, q2) and the
PDA is acyclic. Starting from the initial state q0, it can first
transit to q3, and Algorithm 2 reaches an accepting state.
Hence, the trace condition is x ≥ n, the variables do not
change, and the summary for the trace (q0, q3) is x′ = x ∧
z′ = z ∧ n′ = n. When q0 transits to q1, the trace condition
becomes x < n ∧ z > x. Consider the transition (q1, q3),
the execution reaches an accepting state after this transition.
The trace condition is updated to x < n ∧ z > x ∧ z ≥ n
which can be simplified to x < n ≤ z. The variables are
updated to x′ = n∧ z′ = z ∧n′ = n. Thus, the summary for
the trace (q0, q1, q3) is k13 = n−x∧x′ = n∧z′ = z∧n′ = n.

5.2 Summarization for PDA with Simple Cycles
Summarizing the trace that contains cycles is challenging for
Algorithm 2 since the execution count of the cycles is uncer-
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Algorithm 2: SummarizeTrace
input : qi: current state, tc: current trace condition

X ′: updated variables, SA: loop summary

1 if qi ∈ accept then
2 SA = SA

∨
(tc ∧Xτ = fLqi

(X ′, 1)) ;

3 else
4 foreach qj ∈ {qm | (qi, qm) ∈ T} do
5 Let ϕij be the guard condition of (qi, qj);
6 if tc ∧ ϕij [X

′/X] is satisfiable then
7 Let X ′′ := fLqi

(X ′, kij);
8 SummarizeTrace(qj , tc∧ϕij [X

′/X], X ′′, SA);

tain, which may cause the algorithm not to terminate. How-
ever, if the variables are updated in the cycle regularly, we
can merge the cycle as one state and reduce the complexity
of PDA. In this section, we first introduce how to determine
periodic cycles, then how to summarize for periodic cycles.

Determine Periodic Cycles. For a cycle c =
(ql, ql+1, . . . , qi) (qi can transit to ql), we regard it as a
state qc. Each execution of qc represents one sequence of
executions of the states in the cycle c. For the ease of
presentation, for each qn ∈ c, we use kn

3 rather than
kn,n+1 to represent the state counter in the transition from
qn to its successor in the cycle. The path condition of
state qc is θLqc

= θLql
∧ θLql+1

[fLql
(X, kl)/X] ∧ · · · ∧

θLqi
[fLqi−1

(. . . fLql
(X, kl) . . . , ki−1)/X], which is the weak-

est precondition to trigger the execution of the cycle c. If θLqc

is satisfiable before the loop executes Lql , the path condition
of each state in the cycle will be satisfiable. Hence, the cycle
c can be executed.

Here we classify the cycles into two types.
• A cycle (ql, ql+1, . . . , qi), regarded as a state qc, is a

periodic cycle if the state counters kl, . . . , ki are IVs, and
each atomic condition in θLqc

is an IV condition in Lqc .
• Otherwise, it is a non-periodic cycle.
Specifically, we check whether a cycle (ql, ql+1, . . . , qi) is

periodic by two steps : 1) check whether the state counters
kl, . . . , ki are IVs, and 2) for each atomic condition e ∼ 0
in θLqc

, check whether e is a MIV. The constraints on
the state counters kl, kl+1, . . . , ki can be obtained from the
constraints ϕ (see Line 9 in Algorighm 1). With the method
in Section 4.2, we first check whether each state counter is
IV. Based on the state counters, we then compute the value
of the expression e after one execution of qc for each atomic
condition e ∼ b: e′ = fLqi

(. . . fLql
(e, kl) . . . , ki), which can

be used to check whether e is a MIV.
Here the key point is to check whether the state counters

in the cycle are IVs because the changes of the variables
depend on the state counters. If the state counters are IVs,
then the execution of the cycle has certain regularities,
i.e., the execution count of each path in the cycle can be
determined during the execution of the cycle. For exam-
ple, for one cycle (q1, q2) whose state counters k1 and k2
are IVs, suppose they increase by one in each iteration
of the cycle, then we can infer its execution is periodic:
Lq1 ,Lq2 ,Lq1

2,Lq2
2,Lq1

3,Lq2
3 . . . If we cannot determine

3. The value of each state counter can be different during the execu-
tion of the cycle.

Algorithm 3: HandleCyclicExecution
input : c: the cycle, tc: current trace condition

X ′: updated variables, SA: loop summary

1 Let cycle c = (ql, . . . , qj , qi, ql);
2 if c is periodic then
3 Create a new state qc := (σc, θLqc

);
4 tran(c) := {(qm, qn)|∃qm ∈ c, (qm, qn) ∈ T ∧ qn ̸∈ c};
5 foreach (qm, qn) ∈ tran(c) do
6 Compute the transition (qc, qn);
7 X ′′ := fLqm

(. . . fLqc
(X ′, kcn) . . . , km);

8 SummarizeTrace(qn, tc ∧ ϕcn[X
′/X], X ′′, SA);

9 else
10 Summarize other types;

whether the state counters are IVs or whether each atomic
condition is MIV, then we conclude it is an aperiodic cycle.

Summarization of Periodic Cycles. For the periodic cy-
cle, we can merge it as a new state since we can summarize
the effect of each execution of the cycle. Note that a cycle
can be executed partially. For example, Fig. 8 shows the
execution of Fig. 7(b), which consists of two parts: 1) k
(≥ 1) executions of the complete cycle (the red part), and 2)
one execution of the remaining chain ql, . . . , qj , qn (the blue
part). The chain is a part of the execution of the cycle, from
which the loop leaves the cycle and executes other state qn.

Algorithm 3 shows the procedure to handle a peri-
odic cycle. Its input is the cycle c = (ql, . . . , qj , qi, ql)
with the current trace condition tc and the current value
of the variables X ′. If c is a periodic cycle, we sub-
stitute the cycle with a new state qc (Line 3), whose
path condition is θLqc

= θLql
∧ θLql+1

[fLql
(X, kl)/X] ∧

· · ·∧θLqi
[fLqi−1

(. . . fLql
(X, kl) . . . , ki−1)/X] where the con-

straints about the state counters kl, . . . , kj , ki are from the
summary in the sub-trace (ql, . . . , qj , qi, ql). For an aperiodic
cycle, the summarization will be described in Section 6
(Line 10).

Then, the algorithm computes every transition (qm, qn)
that can leave the cycle, where qm is in the cycle, and qn is
not in the cycle and is the successor of qc (Line 4). For each
transition (qm, qn), it computes the dependency between qc
and qn, i.e., the transition (qc, qn). The computation of the
transition (qc, qn) (Line 6) is similar to Algorithm 1. There
are two possible cases: 1) there is no remaining chain (i.e,
qn is triggered after several complete executions of qc), and
2) there is one remaining chain (ql, . . . , qm) after several
complete executions of qc (see Fig. 8).

For the first case, we can directly use Algorithm 1 to
compute the transition (qc, qn). For the second case (in
Fig. 8), the last iteration of state qc is not complete but a
chain (part of the execution) before transiting to qn. Here we
consider the effect of the chain and compute the transition
based on the observation: θLqc

is satisfiable after kcn − 1
iterations of qc, and θLqn

is satisfiable after kcn iterations of
qc and the execution of chain (ql, . . . , qm), where kcn is the
state counter from qc to qn. Since the cycle is periodic, we
can compute 1) the values of the variables X after kcn−1

executions of the cycle (denoted as X1) and 2) the values of
X after kcn executions of the cycle and the chain (denoted
as X2). Further, we can check whether qc can transit to qn
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ql: kl

qj: kj

sl: kl
...

sj: kj

si: ki

qn

...
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sj: k≤kj

sn

...

qi: ki

...

ql: kl ...

qj: kj

qi: ki

ql: kl

qj: k≤kj
qn

...

...

qi: ki

+

q1
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q3

Fig. 8: Periodic Cycle Execution

TABLE 2: The Summarization Process for (q1, q2, q1, q2)

trace tc X′

(q1 , q2) x < n ∧ k12 = z-x,
z > x ∧ z < n x′ = z, z′ = z, n′ = n

(q1, q2 , q1) x < n ∧ z > x k12 = z-x, k21 = 1,
∧z < n ∧ true x′ = z, z′ = z+1, n′ = n

(q1, q2, q1 q2) x < n ∧ z > x k12 = z − x = 1, k21 = 1,
∧z < n ∧ z + 1 < n x′ = z+1, z′ = z+1, n′ = n

by checking whether θLqc
∧ θLqc

[X1/X] ∧ θLqn
[X2/X] is

satisfiable (Line 6).
Finally, we update the value of the induction variables

X as X ′′ after executing the cycles and the chain based on
the state counters (Line 7) and continue the summarization
from the state qn (Line 8).

Example 9. Table 2 shows the summarization process for
(q1, q2, q1, q2) in Fig. 6. We can know that k12 = k21 = 1,
which means the state counters are IVs in the cycle c =
(q2, q1). The path condition Lqc can be computed as θσc

=
θLq2

∧ θσ1
[fLq2

(X, 1)/X]=(x < n ∧ z ≤ x) ∧ (x < n ∧ x <
z+1). If θσc

is satisfiable, then the cycle must be executed at
least once. Each atomic condition in θσc

is an IV condition
(e.g., x < z + 1 is IV condition since (x − z − 1) is MIV
in σc), thus c is a periodic cycle. In each execution of the
cycle, we know both x and z increase by one, and n does
not change. Fig. 9 shows the PDA after merging the cycle as
the new state qc. In this case, the cycle has no chain since
k12 = 1. Hence we can compute the transition (qc, q3) with
Algorithm 1, and tran(c) is {(q1, q3)}. Finally, the trace of
the loop execution is (q0, q1, (q2, q1)

+, q3), and its summary
is k12 = z − x ∧ kc3 = n − z ∧ x′ = n ∧ z′ = n ∧ n′ = n.
Similarly, we can also compute the summary for another
trace (q0, q2, (q1, q2)

+, q1, q3) as k21 = x − z + 1 ∧ kc1 =
n− x− 1 ∧ k13 = 1 ∧ x′ = n ∧ n′ = n ∧ z′ = n. Differently,
the second trace contains a chain q1 which transits to q3 after
the cycle (q1, q2).

For the cycle (q1, q2, q3) in Fig. 2(c), the values of the
state counters k12 and k31 are always one, and the state
counters k23 is an Arithmetic Sequence since k23 = i and i
is an Arithmetic Sequence. The path condition of the cycle is
i < n ∧ j[0/j] < i ∧ j[i/j] ≥ i (i.e, 0 < i < n). Based on the
information, we conclude that the cycle is a periodic cycle.
With the method in Section 4.2, we can summarize the n-th
term of m in the cycle as mn = m0 + (3 ∗ i20 ∗ n + 3 ∗ i0 ∗
n2 + n3 − n)/6, where i0 ≥ 1.4.

5.3 Summarization for PDA with Connected Cycles
It is non-trivial to summarize PDA with connected cycles
due to the interleaving between the cycles. For example, in
Fig. 7(c), one trace can execute ((q1, q2)

∗, (q2, q3)
∗, (q3, q1)

∗,

4. In the example Fig. 2(a), it can be simplified as mn = 1+ [n ∗ (n+
1) ∗ (n+ 2)]/6 with m0 == 1 ∧ i0 == 1
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Fig. 9: The Merge of a Periodic Cycle

(q1.q2)
∗, (q2, q1, q3)

∗, . . .). This trace not only contains the
interleaving between states (e.g., q1 and q2), but also con-
tains the interleaving between cycles (e.g., (q1, q2), (q2, q3)
and (q3, q1)). The length of the trace is non-deterministic
because of the interleaving between the cycles. To reduce
the complexity, we can try to compute the dependencies
of the cycles, which is similar with the path dependencies.
If we can infer that the execution of the cycles is sequen-
tial (i.e., there is no interleaving among the cycles) under
certain preconditions, then we can summarize the loop by
summarizing a sequence of simple cycles in the PDA.

Actually, the PDAs of nested loops often contain con-
nected cycles since the cycles from the outer loop and inner
loop can be connected. However, many connected cycles are
usually sequential (e.g., for the common rectangular loops
and triangular loops [22]). Even for some complex nested
loops, their connected cycles can be sequential under certain
preconditions.

Algorithm 4 presents the main procedure to handle
connected cycles. Given a PDA with connected cycles, we
traverse it with Algorithm 2 from the state q and traverse
for each trace tr (Line 1). During the traversal, if one cycle
is detected, we check whether it has been summarized in
the trace before (Line 3). If the cycle appears before, which
indicates the interleaving among the cycles, we cannot
handle such cases (Line 4). Otherwise, we summarize each
simple cycle c with Algorithm 3 (Line 6) and continue the
summarization from each successor of c (Line 8).

Example 10. In Fig. 2(c), from the structure of the PDA, we
see there is one PDA with connected cycles. The cycle c1 =
(q1, q2, q3) and cycle c2 = (q1, q3) are connected. However,
with the precondition of the loop i = 1, we find that c2
will never be executed. Even if i can be any value before
the loop, we can also find that c2 cannot be executed after
c1. Thus, we can summarize the loop including connected
cycles because the execution of the cycles is sequential.

5.4 Soundness
Theorem 2. (Soundness) Given a Type 1 loop with the PDA
A and the summary

∪
τ∈EA

{ϕ(X,Xτ )}, the summarized
constraints ϕ(X,Xτ ) for each trace τ are satisfiable after
each concrete execution of τ .

Proof. (Sketch)Our goal is to prove that there is no such a
concrete execution that follows the trace τ but whose output
does not satisfy the constraints ϕ(X,Xτ ). To prove it, we
need to prove that each concrete execution of τ satisfies the
constraints ϕ(X,Xτ ). Without loss of generality, suppose
one concrete execution follows the trace τ = (q0, . . . , qn).
The input value of the variables is X , and the output value
of the variables after the concrete execution is X ′ which can



0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2788018, IEEE
Transactions on Software Engineering

12

Algorithm 4: SummConnectedCycle
input : q: the current state, tr: the current trace

1 Perform summarization for the trace tr from the state q
with Algorithm 2;

2 if cycle c is detected then
3 if c is in tr then
4 Summarize for irregular execution;

5 else
6 Summarize c with Algorithm 3;
7 foreach qi as the successor of c do
8 SummConnectedCycle(qi,tr);

be regarded as a set of equations. We prove that X ′ implies
the summarized constraints ϕ(X,Xτ ).

The summary ϕ(X,Xτ ) is computed based on the ac-
cumulation of each transition in the trace τ (Algorithm 2).
For any transition (qi, qj), suppose the input before the
transition is X0, and the outputs of summarization and
concrete execution are respectively Xs and Xc. If we can
prove Xc implies Xs, then we can prove the theorem with
induction in each transition of the trace.

The output of the transition is computed based on the
input and the state counter, i.e., Xs = fσi

(X0, kij) (Line 7
in Algorithm 2). Since the variables X are all IVs, if we
can prove the concrete execution count of Lqi implies the
constraints about kij , then Xc implies Xs. From Theorem 1,
we know if qi can transit to qj , it is sufficient to get that
∃kij ≥ 1: θσi

∧ (
∧

1≤m<kij
θσi

[Xσi
m/X]) ∧ θσj

[Xσi
kij /X]

is satisfiable, which guarantees that the concrete execution
(from qi to qj) implies the constraints about kij . Thus, we
prove that the summarized result can be implied by the
result of the concrete execution.

Note that the periodic cycle in the trace does not affect
the soundness. The periodic cycle is transformed to one
new state, and the execution of the new state (i.e, cycle)
is equivalent to the execution of the states in the cycle. After
the transformation, it is similar to prove that the result after
the new state to its successor is also implied by the result of
the concrete execution.

5.5 Discussion about Non-Terminating Loops
We first emphasize that we handle the loops that always
terminate in this paper for simplicity. Nevertheless, the
algorithm can also be used to summarize the terminating
traces for non-terminating loops. In this section, we discuss
the summarization for non-terminating loops.

A loop is non-terminating if there are some inputs that
make the loop not terminate. Hence, the PDA of a non-
terminating loop can contain non-terminating traces and
terminating traces for different inputs, while the PDA of
a terminating loop only contains terminating traces for all
inputs. For example, in the loop while (x<0) x=x+a;, the
trace is terminating when the inputs satisfy the condition
x ≥ 0 ∨ a > 0, and the trace is non-terminating when the
inputs satisfy the condition x < 0 ∧ a ≤ 0.

The approach in this paper is to compute summaries
for terminating traces. For non-terminating traces, the sum-
marization is meaningless since they have no outputs. The

[1]
i<n
j=0

[k]
j<i

m+=(i-j)

j++

[1]

i++

c

i++
j=i

m+=s 

k>=1

i-j>=1

s>=1

1

2

[*]

x1--

[*]

x2--

[*]

x3--

[1]

c[1]

x1=x1-k1
x2=x2-k2

x3=x3-k3

[1]

Fig. 10: Transform with Approximation

challenge is how to detect the non-terminating traces. Prov-
ing termination and non-termination is a typical and hard
research problem, which is beyond the scope of this paper.
Furthermore, we have proposed a loop termination analysis
in [17] based on the PDA. Hence, we can first perform the
termination analysis, and then summarize for terminating
traces and report the non-terminating traces.

6 SUMMARIZATION FOR TYPES 2, 3 AND 4 LOOPS

It is non-trivial to precisely summarize Type 2, 3 and 4 loops
as they contain NIV conditions, irregular executions or both.
We introduce several approximation techniques to Proteus
to facilitate the summarization, which will make an over-
approximation of the summary, which may cause unsound-
ness in finding bugs but can be still effective for other
applications, such as proving safety, termination analysis
and bound analysis.

NIV Condition. The NIV conditions are difficult to sum-
marize because of the unpredictable value change for non-
induction variables. Algorithm 2 cannot summarize the loop
that has non-induction variables as we cannot compute its
n-th term (at Line 7 in Algorithm 2) or cannot bound
the range for the state counters (i.e., k) between each two
states. We introduce three strategies to compute the sum-
mary as follows.

1) For non-induction variables, we apply the interval ap-
proximation to compute the summary of the variable using
inequality. For example, if x := x + c in each iteration of a
path and c is not an IV, then x is a non-induction variable.
However, if we know 1 ≤ c ≤ 5, then we can approximate
the computation as x0 + n ≤ xn ≤ x0 + 5 ∗ n, where xn

is the approximated n-th term in the path. Similarly, in a
cycle, if the state counters of some states are not IVs, then it
is not a periodic cycle. If we know the interval, we also try to
approximate the iteration count of the state with inequality.
The summary is similar to the summary of Type 1 loops.

Example 11. Consider the cycle in Fig. 2(c), assume Algo-
rithm 1 is limited to compute the n-th term for m and the
state counter k23 (notice that the limitation is not a theoret-
ical limitation but in the used algorithm), thus m is a NIV
and the cycle is not periodic. In Fig. 10, we show the cycle
and try to summarize it with approximation. From the PDA,
we can infer that k23 ≥ 1 and i−j ≥ 1. We use s to represent
the approximation of i− j. By approximating the computa-
tion, we can transform the aperiodic cycle c to one state. In
each iteration of σc, we know s ≥ min(k) ∗min(i− j) ≥ 1.
At last, we can summarize m = s ∗ n ≥ n. The result can
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1. int w = 1, x = 0;
2. int y = 0, i = 0;
3. int n = nondeter();
4. bool z = 0;
5. while(i<n){
6. if(w%2)
7. x++;
8. if(!z)
9. y++;
10. w++;
11. z = !z;
12. i++;
13.}
14.assert(x == y);

(a) Loop

[1]
i<n
j=0

[k]
j<i

m+=(i-j)

j++

[1]

i++

c

i++
j=i

m+=s 

k>=1

i-j>=1

s>=1

1

2

[*]

x1--

[*]

x2--

[*]

x3--

[1]

c[1]

x1=x1-k1
x2=x2-k2

x3=x3-k3

[1]

x>0
x++x>0∧x>10

x--
x>0∧x<=10

x++

x<=0

[1]
w=1 z=0
x=0 y=0
i=0 n=*

[1]
i<n^w%2==1

^z==0
x++ y++ i++

w++ z=!z

[1]
i<n^w%2==0

^z==1
i++

w++ z=!z

i>=n
(x==y?)

[1]
i<n^w%2==1

^z==1
x++ i++

w++ z=!z

[1]
i<n^w%2==0

^z==0
y++ i++

w++ z=!z

(b) PDA

Fig. 11: A revised version from P10 program in [19]

still be used to prove the safety. We can see the result is an
over-approximation of the result in Example 9.

2) For some specific NIV conditions, such as including
modulo operation or boolean variable, which can make the
path executed once, we can also summarize for the loops.
For example, in the path if(bv) {bv =!bv;x++} where the
condition bv is a NIV condition, we can infer that the path
can only be executed once, and then it will execute other
paths. Hence, x is increased by one.

Example 12. Consider the loop with its PDA in Fig. 11,
σ0 is the initial state and σ5 is the accepting state. By the
dependency analysis, we infer that σ2 and σ3 cannot be
executed under the precondition. Both of the two conditions
in the if branches are NIV conditions. However, we can
infer that each state can only be executed once during the
transition. For example, in the transition from σ1 to σ4, σ1

is executed once because of the update of w and z. Hence,
the cycle (σ1, σ4) is a periodic cycle (in each iteration of the
cycle, both of σ1 and σ4 can be executed once) and we can
summarize the effect for the induction variables x and y
with the previous algorithms. At last, we can prove that the
property x == y is satisfied with the summary.

3) For the NIV condition (suppose it is p) whose values
are dependent on the input or context but not the loop
execution, we abstract p and ¬p as true, which is also an
over-approximation. Then we need not compute its n − th
term. For example, in the NIV condition a[i] > 3, the value
of a[i] depends on the value of the array a and not the loop
iteration, and thus we regarded a[i] > 3 and a[i] <= 3 as
true since both of them can be satisfiable.

Example 13. In the loop assume(i>0); while(i>=0 &&
v[i]>key) i--;, whose PDA contains three states σ1:
{i >= 0 ∧ v[i] > key, i − −}, σ2: {i >= 0 ∧ v[i] ≤ key}
and σ3: {i < 0}. The conditions v[i] > key and v[i] ≤ key
are abstracted as true. Then we can summarize the two
traces of the loop as: (1) the trace summary for (σ1, σ2) is
(i > 0, 1 ≤ k12 ≤ i∧i′ = i−k12) and (2) the trace summary
for (σ1, σ3) is (i > 0, k13 = i+ 1 ∧ i′ = −1). Note that this
loop summary is also precise here. It is unsound when the
content of data structures are updated before or in the loop.

Algorithm 5: IrregSummarize
input : A: PDA, Pre(A): precondition
output: SA: loop summary

1 Let {q1, . . . , qn} = Q\accept;
2 Let k1 ≥ 0, . . . , kn ≥ 0 be the path counters of the states

in {q1, . . . , qn};
3 foreach qi ∈ accept do
4 foreach qj ∈ {qm | (qm, qi) ∈ T} do
5 Let X ′ := fLqn

(. . . fLqj
(X, kj − 1) . . . , kn);

6 Let X ′′ := fLqn
(. . . fLqj

(X, kj) . . . , kn);
7 SA :=

SA
∨

(Pre(A) ∧ ¬θLqi
[X ′/X] ∧ θLqi

[X ′′/X]);

8 return SA;

We will discuss the unsoundness in Section 7.

Irregular Execution. For loops with irregular path ex-
ecutions (e.g., the connected cycles which cannot be han-
dled by Algorithm 4), the interleaving pattern cannot be
determined. Hence, we do not know the number of the
iterations for each path. In this case, we do not consider
the interleaving order in any transition, but consider the
total effect of each path during the whole loop execution by
introducing a path counter [7] ki ≥ 0 for each path σi. Each
path counter ki can be used to compute the values of the
IVs after ki executions of the loop.

Here our assumption is that each variable is an IV and its
sequence is Arithmetic Sequence whose output does not de-
pend on the execution order of the paths. For example,
suppose x increases by n1 in the first path. If x increases
by n2 in the second path, we will compute the output after
the two paths as x0 + n1 + n2. However, if x multiplies by
n2 in the second path, we will compute it as x0 ∗ n2 + n1 or
(x0 + n1) ∗ n2.

Algorithm 5 shows the procedure to summarize the loop
with irregular execution. Let {q1, . . . , qn} be the states of
irregular execution (Line 1). We introduce the path counters
for each state (Line 2). The path counter means that the cor-
responding path can be executed any times. Based on the
path counters, we abstract the irregular states as one state qc.
Then we compute the summary based on the transition from
qc to each accepting state (Line 3-7). Intuitively, qc can transit
to the accepting state qi from the state qj , which can transit
to qi (Line 4). After kj−1 executions of qj and the executions
of other states, we compute the value of the variables as
X ′ (Line 5), and the path condition of the accepting state
θLqi

does not hold (Line 7). After kj executions of qj and
the executions of other states, we compute the value of the
variables as X ′′ (Line 6), and θLqi

holds (Line 7).

Example 14. The loop in Fig. 12(a) has irregular executions
among the states σ1, σ2 and σ3. σ4 is the accepting state. We
introduce path counters k1, k2 and k3 to represent their total
execution count for the paths σ1, σ2 and σ3. Then we merge
the three states into one state σc, the variables after the state
can be x′

1 = x1 − k1 ∧ x′
2 = x2 − k2 ∧ x′

3 = x3 − k3. There
are three possible transitions from σc to σ4 since each of the
three states can transit to σ4. Consider the state σ1 which can
transit to σ4 whose path condition is θσ4 = ¬(x1 > 0∧x2 >
0 ∧ x3 > 0), after k1 − 1, k2, k3 iterations of σ1, σ2 and σ3, the
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1. while(x1>0&&x2>0&&x3>0)
2. if (nondet())
3. x1=x1-1;
4. else if (nondet())
5. x2=x2-1;
6. else
7. x3=x3-1;
8. assert(x1==0||x2==0

||x3==0);

(a) Loop [13]

[1]
i<n
j=0

[k]
j<i

m+=(i-j)

j++

[1]

i++

c

i++
j=i

m+=s 

k>=1

i-j>=1

s>=1

1

2

[*]

x1--

[*]

x2--

[*]

x3--

[1]

c[1]

x1=x1-k1
x2=x2-k2

x3=x3-k3

[1]

(b) PDA

Fig. 12: Irregular Execution

condition ¬θσ4 holds; and after k1 iterations of σ1, the condition
θσ4 holds, which implies the constraints x1 − (k1 − 1) >
0∧x′

2 > 0∧x′
3 > 0∧ (¬(x1−k1 > 0∧x′

2 > 0∧x′
3 > 0)). By

simplifying the constraints, we can get x′
1=0∧x′

2 > 0∧x′
3 >

0. Similarly, for other two transitions (i.e., from the state σ2

or σ3), we can compute x′
2=0 or x′

3=0. The summary can be
used to prove the property after the loop successfully.

Theorem 3. (Termination) The summarization algorithms
always terminate.

Proof. (Sketch) We first prove the termination of the algo-
rithms for Type 1 loops. For the acyclic-PDA summariza-
tion, Algorithm 2 is a traversal on a tree and terminates
intuitively. For the PDA with only simple cycles that are
periodic, each cycle is transformed to a new state. Hence,
the cyclic-PDA becomes an acyclic-PDA and it also termi-
nates. For the PDA with connected cycles, we traverse the
PDA and check whether one cycle exists before (Line 3 in
Algorithm 4). If yes, we return UNKNOWN. Otherwise, in the
connected cycles, the total number of the cycles is finite,
and thus the summarization of each trace is finite since each
cycle can only exist once in each trace. Thus, the algorithm
always terminates.

For the other loop types, we perform the approximation
for NIV conditions and irregular execution. For NIV con-
ditions, we approximate them into IV conditions, then the
loops become Type 1. The approximation does not affect
the termination. For the irregular execution, Algorithm 5
contains two while loops, which always terminate since the
sets accept and T are finite.

7 EVALUATION

The goals of our experiments are 1) to study the distri-
butions of loop classification in loop programs, and 2)
to demonstrate the usefulness and accuracy of Proteus in
practical applications.

We implemented Proteus using LLVM 3.7 [23] and SMT
solver Z3 [24], and applied Proteus in three important
applications: loop bound analysis, program verification, and
test input generation. Note that loop classification depends
on the application scenarios because different applications
care about different variables, for example, some Type 3
and 4 loops can become Type 2 after removing irrelevant
statements. Hence, we studied the loop classifications before
the applications. The experimental results are discussed in
the following sections.

TABLE 3: Loop Classification for Real-Life Loops

Projects Total Type1 Type3 Type4
coreutils 3349 657 (19.6%) 2259 (67.5%) 433 (12.9%)

gmp 1411 641 (45.4%) 745 (52.8%) 25 (1.8%)
pcre2 209 22 (10.5%) 151 (72.3%) 36 (17.2%)
libxml 2652 498 (18.8%) 1592 (60.0%) 562 (21.2%)
httpd 1161 69 (5.9%) 1025 (88.3%) 67 (5.8%)
Total 8782 1887 (21.5%) 5772 (65.7%) 1123 (12.8%)

7.1 Application to Loop Bound Analysis

With the disjunctive loop summary, we compute the loop
bound using the constraints of the state counter, which
represents the execution count of the corresponding path.
Each state counter is bounded by the path conditions be-
tween each pair of states; i.e., the state counter has a upper
bound. In an unnested loop, each state represents iterations
of the loop. Hence, for each feasible trace, we compute the
bound by adding the upper bounds of all state counters in
the trace. For the cycle of the PDA, we compute the total
execution count by multiplying the total execution count in
each iteration of the cycle by the execution count of the cycle.
The loop bound is the maximum number of the bounds of
all traces. For example, we compute the bound for the trace
(q0, q1, (q2, q1)

+, q3) in Example 9 as k12+2∗kc3 = 2n−x−z.
For a nested loop, we compute the loop bound by adding
the bounds of the outer loop and the inner loop. Note that,
in the PDA of a nested loop, the inner loop splits the path of
the outer loop into two parts (e.g., σ1 and σ3 in Fig 2(c)), and
we only add the bound of such a path once when computing
the bound of the outer loop.

Here we selected five open source projects, including
coreutils-6.10, a basic module in the GNU operating system
containing the core utilities, gmp-6.0.0, an arithmetic library,
pcre2-10.21, the library that implements regular expression
pattern matching, libxml2-2.9.3.tar, the XML C parser and
toolkit developed for the Gnome project, and httpd-2.4.18,
the Apache HTTP Server Project. We selected these projects
to ensure their diversity so that different forms of loops are
included.

To compute the loop bound using Proteus, we are inter-
ested in knowing when the exit conditions are met. Thus,
we use the exit conditions as the slicing criteria to simplify
the loops as the first step. We studied the loop classifications
and perform summarization on the sliced loops.

In Table 3, the programs under study are listed in the
first column. Under Total , we list a total number of loops
discovered. Under Type1, Type3 and Type4, we list the total
number of Type 1, 3, 4 loops found for each of the bench-
marks. There is no column for Type 2, as we have not found
any Type 2 loops in the five benchmarks. Theoretically Type
2 loops do exist; however, we believe that such loops are
difficult to understand and maintain, and the developers
typically do not write such code.

The last row of the table summarizes the results for all
the benchmarks, and the 8782 loops can be classified in less
than five minutes. We show that for the five projects under
study, we found that 21.5% of the loops belong to Type 1,
65.7% is Type 3 and 12.8% belong to Type 4. The result of
the classification depends on the category of the project. For
example, gmp is an arithmetic library and many of its loops
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TABLE 4: Loop Bound Analysis Results of Real-Life Loops

Projects Total Type1 Type3 Type4
coreutils 1006 (30.0%) 657 (100%) 349 (15.5%) 0

gmp 1246 (88.3%) 641 (100%) 605 (81.2%) 0
pcre2 57 (27.3%) 22 (100%) 35 (23.2%) 0
libxml 665 (25.1%) 498 (100%) 167 (9.9%) 0
httpd 122 (7.6%) 69 (100%) 53 (5.2%) 0
Total 3096 (35.3%) 1887 (100%) 1209 (21.0%) 0

belong to Type 1. Proteus is able to handle such category.
For the project httpd which contains many complex data
structures. Hence, the conditions in the loops are usually
NIV conditions and most of the loops belong to Type 3 and
Type 4. By further investigating these loops manually, we
found that when a multi-path loop contains NIV conditions,
the loop execution is often irregular (Type 4 loops); and
when the conditions of a loop are only IV conditions,
the loop execution is either sequential or periodic (Type 1
loops). There is often a correlation between NIV condition
and irregular execution.

Based on these sliced loop programs, we can compute
the bounds for 3096 (35.3%) loops in the projects. Table 4
provides detailed results for each benchmark. Under Type1,
Type3 and Type4, we list the percentage of the loops where
we successfully compute the loop bounds. Under Total,
we show the percentage of all the loops where we can
compute the loop bounds. For the Type 1 loops which can
be summarized, we can compute the bound for all of them.
We can also compute the bound for some of the Type 3
loops because we use the approximation. For example, in
loop while(i<100 && node.index>0) i++, it belongs
to Type 3 because node.index > 0 is a NIV condition.
However, we can also compute a bound by the IV condition
i < 100. All these loops are summarized in less than 10
minutes totally.

We investigated the cases where we are not able to
compute the loop bounds. We found the following reasons:
• NIV Condition. The loops contain non-induction variables,

e.g., for conditions that contain function calls, data struc-
tures. Note that many of the loops we can handle also
contain function calls, but they do not affect loop condi-
tions and can be removed via slicing.

• Irregular Execution. The loops have irregular interleav-
ing of the loop paths, and the execution order of the
paths affects the bounds. For example, in the loop
while(i<n) {if(a[i]==0) i++;else i-=2;}, the
value change of i depends on the execution order of
the paths. Thus, we cannot summarize it, and the bound
cannot be computed by our approach.

We also tried to compare our loop bound analysis re-
sults with the current techniques [9], [10], [11]. However,
their tools are currently not publicly available. Instead, we
compared our approach with these techniques based on
the examples used in their work. Generally, our approach
has three advantages: 1) When the variable in one path
is not increased or decreased by one, we can compute a
more precise bound than them. For example, in the loop
while(i<n) i +=2 (suppose i = 0 and n > 0), the tech-
nique in [9] computes the bound as n while we compute the
bound as ⌈n/2⌉. 2) Our approach can compute a more fine-

grained bound for each trace with the disjunctive summary.
3) Our approach not only can compute the bound for the
loop, but also can compute the bound for each path. This
is crucial and useful in some applications. For example, in
the worst case execution time (WCET) analysis [25], we can
extend it to compute the whole execution time based on
different path bounds easily (given the estimated execution
time for each path).

In addition, we found one incorrect loop bound com-
puted by [11] (i.e., Example 3 in Fig.4 in [11]). That loop is
shown in Fig. 13(a), which contains interleaving among its
multiple paths.

Assume that path σ1 takes the if branch (the true
branch ), σ2 takes the else branch (the false branch), and
σ3 is the exit path. The loop has only one execution trace
(σ1, (σ2, σ1)

∗, σ2, σ3), whose summary is (i = 0 ∧ j =
0 ∧ 0 < m < n, k12 = m ∧ kc2 = n − 1 ∧ k23 = 1
∧j′ = 0 ∧ i′ = n ∧ m′ = m ∧ n′ = n), where kc2 is
the state counter of the dummy state σc that is merged
from the cycle (σ2, σ1). In each execution of σc, it exe-
cutes σ1 for m times and σ2 once. Thus, the bound is
m + (m + 1) ∗ (n − 1) + 1 = n × m + n. However, the
result in [11] is n×m.

In summary, using DLS, we can compute a fine-grained
loop bound than the existing loop bound analysis tech-
niques since we can compute different bounds for loop
paths.

7.2 Application to Program Verification
With the disjunctive loop summary, we can prove the prop-
erty (denoted as ρ) in the program. Specifically, there are
two cases.
• The checked properties are after the loop. For each feasible

trace τ , we check whether ϕ(X,Xτ ) ∧ ¬ρ is satisfiable. If
there exists one trace that makes ¬ρ satisfiable, a counter-
example is found; otherwise, the property ρ is proved.

• The checked properties are inside the loop. The property
inside the loop can be regarded as an if-else statement
that can lead to branch ρ and branch ¬ρ. The property
is changed as if(¬ρ) err(). Hence there are some states
including the branch ¬ρ in the PDA. The problem is
transformed to find a feasible trace (in Algorithm 2) that
reaches the state containing the branch ¬ρ. If we can find
it, a counter-example is found; otherwise, the branch ¬ρ
is unreachable and the property is proved. Specially, we
can extend Algorithm 2 by checking whether qj contains
err() between Line 6 and Line 7. If qj contains err(),
then the property is not satisfied. If err() is not reachable
after the summarization, then the property is satisfied.
The approach is also general for the properties inside non-
terminating loops.

In general, both cases can be regarded as the reachability
problem in the PDA. The difference is that when the prop-
erty is after the loop, we check whether ¬ρ is reachable
from the accepting states; and when the property is inside
the loop, we check whether ¬ρ is reachable from any non-
accepting state in the PDA.

We used the benchmark Loops in Competition on Soft-
ware Verification 2016 (SV-COMP’16) [13] and the bench-
mark in [19]. The programs in these benchmarks are small
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TABLE 5: Program Verification Results of Benchmark Loops When Comparing Proteus with the state-of-the-art tools

Benchmark LNum Type1 Type2 Type3 Type4 PNum Summ Proteus CPAchecker SMACK+Corral SeaHorn
C T(s) C T(s) C T(s) C T(s)

loops 136 69 9 35 23 64 40 37 24 32 2073 37 5211 31 19
loopacc 35 33 0 2 0 35 29 29 18 19 9205 17 14183 15 6683
looplit 18 14 2 1 1 16 14 14 8 13 208 13 7053 13 768

loopnew 8 7 0 1 0 8 8 8 4 4 1827 6 660 5 1712
prog. [19] 51 34 16 1 0 46 45 45 10 36 8152 43 989 33 1814

Total 248 157(63%) 27(11%) 40(16%) 24(10%) 169 136 133 64 104 21465 106 28096 97 10996

1 assume (0<m<n ) ;
2 i := 0 ; j := 0 ;
3 while ( i<n && nondet )
4 i f ( j<m) j ++;
5 else { j := 0 ; i ++};

(a)

i n t SIZE =*+1 , a [ SIZE ] , j =0 ;
a [ SIZE /2]=3 ;
while ( j<SIZE && a [ j ] ! = 3 )

j ++;
a s s e r t ( j<SIZE ) ;

(b)

Fig. 13: Loop Examples for Evaluation

but contain non-trivial loops. Note that the loop-inv cate-
gory in Loops contains many assertions that are not relevant
to loops, and thus we used the other four categories.

We compared our verification results with several tools:
SMACK+Corral [12], CPAchecker-LPI [26] and SeaHorn [27]
are the top tools with respect to correct rate in SV-COMP’16
(CPAchecker-LPI achieved the best score in SV-COMP’16 for
Loops). Note that we selected the tools based on their correct
rate rather than their score in SV-COMP’16 since we com-
pare the number of correctly verified loop programs. The
tools are configured in the same as in the competition [13].
All of them were configured with a timeout of 15 minutes.

Table 5 shows the verification results of those tech-
niques together with the loop classification and summa-
rization statistics. Column Benchmark shows the involved
loop categories. Columns LNum and Type1, Type2, Type3,
Type4 respectively list the total number of the loops and the
loop classification for each benchmark. Column PNum and
Summ list the number of programs and the number of loops
that can be summarized, respectively. Columns C reports
the number of programs that can be correctly verified by
the techniques, while columns T lists their time overhead.
Here we only compared the programs whose loops can be
summarized to show that the loop summary is complement
to these tools to improve their capability on loops.

In the five benchmarks, there are totally 248 loops in 169
programs. Among them, 63% loops belong to Type 1, 11%
loops belong to Type 2, 16% loops belong to Type 3 and
10% loops belong to Type 4. There are some Type 2 loops
because we abstracted the conditions containing unknown()
and VERIFIER nondet int() as true. Hence, variables in the
paths are IVs but the interleaving between the paths is
irregular. The classification also shows most of them are
Type 1 loops which can be summarized by Proteus. For
other types of loops, we perform the approximation to
summarize it.

Totally, Proteus can summarize 136 (80.5%) programs.
The programs in SV-COMP’16 [13] mainly contain unnested
loops while the benchmark [19] contains 12 programs with
nested loops. Even for these 12 programs, Proteus can
summarize and verify the property correctly. With DLS,
Proteus can correctly verify 133 (97.8%) loops within 64

seconds. Note that in Table 5, the time reported for Proteus
includes both the time for computing DLS and the time for
proving properties with DLS. Compared with other tools,
104 (76.5%) loops can be correctly verified in 21456 seconds
for CPAChecker. SMACK+Corral can correctly verify 106
(77.9%) loops in 28096 seconds. SeaHorn takes 10996 sec-
onds to correctly verify 64 (71.3%) loops. The time over-
head of CPAchecker, SMACK+Corral and SeaHorn is very
high because CPAchecker has 23 timeouts, SMACK+Corral
has 28 timeouts and SeaHorn has 10 timeouts. The results
indicate that our technique slightly outperforms these top
tools on effectiveness, and significantly outperforms them
on performance.

In the category loops, there are 40 programs we can
handle. However, we obtained incorrect verification results
for three programs, linear sea.ch true-unreach-call.c,
linear search false-unreach-call.c and string true-
unreach-call.c. For linear sea.ch true-unreach-call.c, the
incorrect verification result is caused by the unsound
summaries with approximation. The program in Fig. 13(b) is
a simplified version of linear sea.ch true-unreach-call.c.
Our technique approximates the condition a[j]!=3 as true
and finds a counter-example j==SIZE. Actually, the content
of array a is changed at Line 2, which makes the loop
exit before j==SIZE. Thus, the property j<SIZE is always
correct. For the other two programs, our result seems to be
correct since Proteus reports true for string true-unreach-
call.c and false for linear search false-unreach-call.c.
However, for linear search false-unreach-call.c, the
counter-example we found is not the correct one but is
caused from the over-approximation. For string true-
unreach-call.c, we got the correct result since the assertion
(found == 0 || found == 1) is always true, where found
is a boolean variable.

In summary, using DLS, Proteus can correctly verify
more programs with less time overhead than existing tools
for those unnested and nested loops that we can summarize.
Therefore, our loop summary can be an effective comple-
ment to the existing tools.

7.3 Application to Test Case Generation
In this experiment, we show the effectiveness of loop sum-
mary in test case generation. We compared the perfor-
mance of our technique with the symbolic execution tools
KLEE [14] and Pex [15] using some of the programs from
loop-acc and [19], which contain deep loops (with large
loop iterations). For each program, we added an if branch
after or in the loop and generate a test case which can
reach the if branch with KLEE [14], Pex [15] and Proteus.
Consider the condition in the if branch as a checked prop-
erty, then the detail about generating the test case with DLS



0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2788018, IEEE
Transactions on Software Engineering

17

1 i n t main ( void ) {
2 i n t x = VERIFIER nondet uint ( ) ;
3 i n t y = x + 1 ;
4 while ( x < 1024) {
5 x ++;
6 y++;
7 }
8 / / VERIFIER assert ( x == y ) ;
9 i f ( x != y )

10 a s s e r t ( 0 ) ;
11 }

Fig. 14: The Loop in multivar false-unreach-call1.c

is similar to program verification (see the first paragraph
in Section 7.2). Notice that our goal is not to compare the
tools but to show DLS can be potentially used to scale
symbolic execution.

Table 6 shows the results for seven programs. The first
four programs are from loop-acc, and the condition in the
if branch we added is from the assertion in the program.
For example, Fig. 14 shows a program which contains the
assertion statement at Line 8. We replace the statement with
the if branch at Line 9-10 and try to generate a test case
which can reach the if branch. The other three programs are
from the benchmark [19] and contain some nonterminating
functions. We manually modified the nonterminating func-
tions and added the if conditions that need deep iterations.
Among them, P6.c and P10.c are nested loops. In the selected
programs, the loops in P06.c and P10.c are Type 3 and the
loops in other programs belong to Type 1. All the modified
programs can be found in the supplemental material. In the
table, T/O represents that the tools cannot generate a test
case within 30 minutes and times out; and F means that Pex
fails to generate a test case and throws an “out of memory”
exception for the large branches.

The results show that even for the simple loops, KLEE
timed out for three programs and took much more time for
three programs. Pex failed to generate test cases for four
programs and timed out for one program. This is because
symbolic execution consumes much time to keep unfolding
the deep loop. On the contrary, Proteus generated test cases
for all the programs in less than one second.

In summary, the state-of-the-art symbolic execution tools
KLEE and Pex can take much time or throw exceptions
when a loop has many iterations. In such cases, DLS can
be helpful to improve the performance of these tools by
utilizing the summary during symbolic execution. It also
shows that the loop summary can be potentially used to
find the corner case, which usually involves many iterations
of a loop and is difficult to detect. We will leave the future
work to integrate the loop summarization into the existing
symbolic execution tools.

8 RELATED WORK

Loop invariants are the properties that hold at each loop
iteration. Loop summarization focuses on capturing the
relations of variables at the entry of the loop and at the exit
of the loop, and can generate symbolic constraints which
hold at the exit of the loop. In this section, we first introduce
the related work in these two areas, and then discuss the

loop analysis in different applications as well as the relevant
work in control-flow refinement.

8.1 Loop Invariant Detection
A number of advances have been made on loop invariant
inference [28], [29], [30], [31], [32], [33], [34], [35], [36],
[37], [38]. Most of them are based on abstract interpreta-
tion [4], which iterates the loop until a fixpoint is reached.
To ensure the termination, they often use the widening
operator, which can lead to imprecision. Techniques [32],
[39], [40], [41], [42] are proposed to accelerate the iteration
and reduce imprecision. These approaches mainly focus on
conjunctive invariants, which cannot represent disjunctive
program properties.

Several attempts have also been made to infer disjunc-
tive invariants. The techniques in [33], [34] propose a static
analysis to separate a loop into multiple phases and com-
pute more precise invariants. The technique in [35] decom-
poses a multi-path loop into several single loops and com-
putes invariants for each loop. However, these techniques
cannot handle the loop (e.g., Fig. 1) whose PDA contains
cycles because the interleaving in the cycle may make the
decomposition of phases or single loops infinite. The tech-
nique in [36] uses dynamic analysis to generate disjunctive
invariants over program trace points with algebras, e.g.,
min-plus and max-plus. Comparing with our approach, it
is more expensive to compute a convex hull with gener-
ating trace points, and it generates more approximations
than ours, especially for Type 1 loops. The template-based
technique [43] needs user-provided templates, and thus is
not fully automatic. In [44], a learning algorithm based on
counter-examples is proposed to synthesize the invariants
while the technique in [45] synthesizes invariants with a
template-based learning method.

Compared with loop invariants, Proteus considers the
relationship among paths, and computes disjunctive sum-
mary by summarizing the effect for each path. Invariants
inference, especially stronger invariants inference, is more
expensive than Proteus since it depends on the multiple
iterations of a loop, which has been demonstrated in our
experimental study. Besides, Proteus can compute symbolic
values for variables after a loop or one path, thus can be di-
rectly used in more applications such as symbolic execution.

8.2 Loop Summarization
Several techniques have been proposed to summarize the
effects of loops [2], [5], [6], [7], [46], [47]. LESE [2] introduces
a symbolic variable trip count as the number of times a loop
executes and uses it to infer the loop effect. The technique
in [5] detects loops and induction variables on the fly and
infers simple partial loop invariants and generates pre- and
post-conditions as loop summaries. However, both of trip
count and induction variable can only describe the update
in the loop iteration and not the update in multiple paths.
The technique in [46] also focuses on the loop with one
path and each variable being changed with a constant. Also,
it can handle some simple array variables with quantified
formulas. Compared with Proteus, these techniques mainly
focus on single-path loops and their induction variables are
only the style x := x+ c.
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TABLE 6: Test Case Generation Results When Comparing Proteus with Symbolic Execution Tools KLEE and Pex

Tool functions false.c phases false.c multivar false.c simple false1.c P06.c P10.c P24.c
KLEE 23 min T/O 11.97 s 22 min 7 min T/O T/O
Pex F F 0.5 s F F 4.10 s T/O

Proteus 0.06 s 0.18 s 0.05 s 0.03 s 0.48 s 0.26 s 0.31 s

APC [6] introduces path counter for each path to describe
the overall effect of variable changes in the loop. It sum-
marizes a loop by computing the necessary condition on
loop conditions. S-Looper [7] summarizes multi-path string
loops using path counters. It extracts the string pattern
from each path and then generates the string constraints.
The technique in [48] transforms the program by adding
a path to summarize the effect of a parametric number of
iterations of a loop to accelerate the detection of deep bugs.
Its result is an under-approximation which can be used to
detect bugs, but cannot prove properties. As an extension
of [48], the technique [47] presents trace automata to reduce
the executions and perform loop acceleration. However,
APC, S-Looper and trace automata cannot handle loops
with complex path interleaving, e.g., the loop in Fig. 1(a).

Proteus aims to model path interleaving of a multi-path
loop, and computes a fine-grained DLS, which cannot be
computed by any of the existing techniques. In addition,
the techniques [2], [7], [47] cannot summarize the variables
which are updated in nested loops. APC and APLS can
handle some of the nested loops but their result may cause
unsoundness. Furthermore, Proteus can summarize more
variables. For example, in APLS, the induction variable has
two limitations: 1) IV can only be modified by a nonzero
constant and 2) the change is the same in all the paths. In
Proteus, IV is the variable whose nth term can be calculated
in each path, and the change can be different in different
paths. The techniques above cannot support and summarize
the IVs in this paper.

PIPS [49] computes the transitive closure of the trans-
former that is similar to our summary. The iterative re-
finement process is based on discrete differentiation and
integration but not abstract interpretation. However, it does
not always converge and may lead to a precision loss due to
magnitude overflows. Loopfrog [1] computes the symbolic
abstract transformers, which does not depend on the expen-
sive iterative fixpoint computation. However, it needs the
candidate invariants, which is an art and usually abstract
interpretation is used. Compared with Proteus, these tech-
niques [1], [49] are more generic, while Proteus performs
more specific algorithms for different types of loops. Hence,
Proteus can compute more precise results for specific loops
such as Type 1 loops. Besides, Proteus does not rely on the
iterative refinement process and invariants.

Some abstract acceleration techniques [32], [50] are pro-
posed to compute a more precise abstract effect of a loop
without widening if possible. Otherwise, they use standard
abstract interpretations. These techniques are limited in
the computation of the eigenvalues of the transformation
matrix, which is a challenging problem; and they can only
accelerate the inner loops of nested loops. For example,
for the variable m in the nested loop in Fig 2(a), all the
techniques above cannot compute such a precise summary

that is computed by Proteus.

8.3 Loop Analysis for Different Applications

Loop analysis can be applied to various domains. Here we
focus our discussion on loop bound analysis and program
verification.

Loop Bound Analysis. Lokuciejewski et al. [8] compute
the loop iteration counts based on abstract interpretation [4].
Their polytope-based approach assumes that the variable in
the loop exit condition must increase in each loop iteration.
Gulawani et al. [51] compute bounds for multi-path loop
based on user annotations. Gulwani et al. [10] use counter
instrumentation strategies and a linear arithmetic invariant
generation tool to compute the bound. However, it is limited
for multi-path loops when disjunctive invariants are needed.
It also fails to compute the bound for the loop in Fig. 1(a).

Gulwani et al. [11] use control-flow refinement and
progress invariants to estimate loop bounds. Its bound
computation relies on a standard invariant generator and
the result is usually inequalities. Gulwani et al. [9] also pro-
pose a two-step solution (computing disjunctive invariants
and a proof-rule based technique) to compute the bound.
However, if the variables are not increased (or decreased) by
one in each iteration, their result is an upper bound and not
precise. Differently, Proteus can compute a precise bound
with the disjunctive summarization on the PDA.

Program Verification. Bound Model Checking (BMC) is
a technique to check the properties with bounded iterations
of loops (e.g., [52], [53], [54]). It is mainly used to find
property violations based on SMT solvers such as [24],
[55], [56], but it can not prove safety properties soundly.
Kroening et al. [47] overcome this problem by introducing
trace automata to eliminate redundant executions after per-
forming loop acceleration, which is limited for multi-path
loops whose accelerated paths interleave with each other.
The techniques in [57], [58] combine predicate analysis with
counterexample-guided abstraction refinement. However,
it depends on the discovered predicates, which are often
difficult to control.

Several techniques propose to handle loops by com-
bining BMC with k-induction. SCRATCH [59] supports
combined-case k-induction [60] but needs to set k manually.
However, split-case k-induction [61], [62] can change k itera-
tively. ECBMC [61] assigns non-deterministic values to loop
termination condition variables, making induction hypoth-
esis too weak and unsound. PKIND [63], CPAchecker [62]
and KIKI [64] strengthen the induction hypothesis with
auxiliary invariants. However, their effectiveness and per-
formance depend on the inferred invariants. k-induction
technique may consume much more time to get a better
k. Proteus can help verify programs with loop summaries
effectively, as shown in our experimental results.
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In [65], the authors propose a framework to optimize the
monitoring of the loops related to a property. Their goal is
to find one shorter trace that is stuttering equivalent with
the complete trace (obtained through loop unrolling) for
checking the property. Thus, the cost of the monitoring is
reduced. Differently, loop summarization is to compute the
constraints, which represent the semantics of a loop and can
be used to check the property statically.

Techniques such as [66], [67] check safety properties on
flat counter automata (FCA) [68], where the guard condition
in the transition is limited to two variables. Thus, some
loops can be modeled by PDA but not by FCA. FAST [69] is a
tool to perform the analysis on the counter systems based on
symbolic representation and can handle unbounded integer
variables. Proteus can generate more fine-grained summary
than them by summarizing the effect of each trace, and can
be easily extended to support applications such as bound
analysis, the worst execution time analysis and testing.

Symbolic Execution. Symbolic execution [14], [15] sym-
bolically performs program operations on variables. When
symbolic execution reaches a branch, it performs a fork,
and creates a new branch in each iteration of a loop. If
the loop iteration count cannot be determined, it may keep
unfolding the loop without covering any new branches,
and fail to achieve a high coverage and detect bugs [3].
The techniques [2], [5], [6], [7] are proposed to improve the
symbolic execution, and they are compared in Section 8.2.
By replacing the loops with the summarized constraints, we
can make the program loop-free and improve the symbolic
execution very well.

8.4 Control-Flow Refinement

Several techniques [11], [35], [70], [71] are proposed to per-
form control flow refinement for precise program analysis.
Our approach is similar to the approaches [11], [70]. They
extract the paths from the control flow graph and the paths
can interleave in an arbitrary manner. Then the refinement
is constructed “bottom-up” in [11] and “top-down” in [70]
to refine the feasible interleaving. PDA is similar to these
two approaches. The differences include: 1) the path is more
specific than them in nested loops. In PDA, we split the
path from the outer loop to the inner loop into two paths:
the path from the outer loop to the header block of the inner
loop and the path in the inner loop. Consequently, PDA is
general for nested loops and unnested loops which is dis-
cussed in Section 2.2. Whereas, the inner loop is refined first
before refining the outer loop in [11], [70]. 2) the approach
of refinement is different. The abstract interpretation and
invariants are used in the refinement [11], [70], which can be
expensive as it needs to iterate a loop for many times while
Proteus does not. The approach [35] decomposes a loop into
multiple loops to compute the disjunctive loop invariants.
The approach [71] uses abstract interpretation to infer the
infeasible paths, and it helps minimize the impact of the
join operation. Our approach can also be used to check the
feasibility of the path by checking the satisfiability of the
path condition.

9 CONCLUSION AND FUTURE WORK

In this paper, we propose the path dependency automaton
(PDA) to model the dependencies between each two paths
of a multi-path loop. Based on the PDA, we propose a clas-
sification for multi-path loops to understand the difficulty
of loop summarization as well as a loop analysis framework
Proteus to compute disjunctive loop summary for different
types of loops. To the best of our knowledge, this is the
first work that can identify different execution patterns of
multi-path loops, and compute disjunctive loop summary
in multi-path loops with complex path interleaving. Based
on the PDA and loop summarization, we also perform the
loop termination analysis by checking whether each trace
always ends with one accepting state [17].

In the future, we plan to continue this line of research in
three aspects: 1) we plan to extend the PDA for recur-
sive function summarization. Actually, PDA can be eas-
ily extended for modeling functions by defining paths in
functions. For recursive function summarization, we can
handle the tail recursion since they can be transformed
to loops directly. For others, they can be transformed to
loops by adding the stack. Hence, we can extend PDA by
introducing stack (similar with pushdown automaton [72]).
2) we hope to propose a systematic summarization for
Type 2, 3 and 4 loops. In Section 6, we handle non-induction
variables which depends on other variables by adopting
some heuristics. We plan to develop a more systematic
approach through the combination of techniques such as
approximation, refinement techniques [73], [74] and ma-
chine learning. For other non-induction variables such as
those depending on alias, function call or content of files,
which we do not touch in the paper, we try to handle
them by using alias analysis, function summarization and
environment modeling. Furthermore, array is also a special
type but widely used variable and we will try to summarize
it with quantified formulas. 3) we plan to apply our loop
summarization to software engineering and security tasks,
such as vulnerability detection, compiler optimization and
program debugging.
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