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Multi-View Collaborative Network Embedding

SEZIN KIRCALI ATA, Nanyang Technological University

YUAN FANG, Singapore Management University

MIN WU, Institute for Infocomm Research

JIAQI SHI, Singapore Management University

CHEE KEONG KWOH, Nanyang Technological University

XIAOLI LI, Institute for Infocomm Research and Nanyang Technological University

Real-world networks often exist with multiple views, where each view describes one type of interaction

among a common set of nodes. For example, on a video-sharing network, while two user nodes are linked,

if they have common favorite videos in one view, then they can also be linked in another view if they share

common subscribers. Unlike traditional single-view networks, multiple views maintain different semantics to

complement each other. In this article, we propose Multi-view collAborative Network Embedding (MANE), a

multi-view network embedding approach to learn low-dimensional representations. Similar to existing stud-

ies, MANE hinges on diversity and collaboration—while diversity enables views to maintain their individual

semantics, collaboration enables views to work together. However, we also discover a novel form of second-

order collaboration that has not been explored previously, and further unify it into our framework to attain

superior node representations. Furthermore, as each view often has varying importance w.r.t. different nodes,

we propose MANE+, an attention-based extension of MANE, to model node-wise view importance. Finally,

we conduct comprehensive experiments on three public, real-world multi-view networks, and the results

demonstrate that our models consistently outperform state-of-the-art approaches.
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1 INTRODUCTION

Large-scale network data are ubiquitous in many domains, including social networks, biological
networks, and transportation networks. Practical applications on these networks, such as personal-
ized recommendations [44] and disease protein predictions [1], can often be cast as link prediction
and node classification tasks. Naturally, an important step toward solving these problems is to de-
rive effective representations from the networks. In particular, network embedding has emerged as
a promising direction and achieved considerable success, which aims to learn a low-dimensional
and continuous vector representation for each node on the network.

While many prior studies [27, 32] deal with single-view networks, multiple views naturally
arise in real-world scenarios. They are known as multi-view or multiplex networks [28, 41], as
shown in Figure 1. The toy example comprises three views: The same set of users can be linked in
three different ways, through sharing common favorite videos, subscribers, or friends on a video-
sharing platform. Since a single view is sometimes sparse and noisy, it becomes beneficial to exploit
multiple views jointly for learning more effective and robust representations.

Prior work. In this article, we study the problem of multi-view network embedding. Although
numerous multi-view learning algorithms exist [39] in various contexts such as classification [3,
19] and clustering [6], fewer research studies have investigated multi-view network embedding
[28, 41]. Existing multi-view network embedding approaches typically leverage two common char-

acteristics on multi-view data, namely, diversity and collaboration. In terms of diversity, as each view
is constructed from different semantics, view-specific representations should be learned for each
view in order to retain the diverse semantics of various views. For instance, in Figure 2(a), users
a and c are connected in view 1 as they share common favorite videos, but they have no common
subscribers in view 2. Thus, a and c’s representations should be close to one another in view 1 but
not necessarily close in view 2. This can be addressed by learning one set of node representations
in each view. In terms of collaboration, as the same node in different views ultimately describes the
same instance (e.g., a particular user on a social network), its behaviors across views are not com-
pletely independent. Thus, for the same node, its view-specific representations for different views
should be synergistic and collaborate with each other, as illustrated by the cross-view alignment
in Figure 2(b).

Our insight. While the above form of collaboration has been adopted in several state-of-the-art
approaches [28, 29, 41], it does not adequately address the collaboration of multiple views. Specifi-
cally, for every node, its representations across views are aligned (i.e., made close) indiscriminately,
regardless of its associations (or the lack thereof) with other nodes. However, such associations
are often important to multi-view collaboration—two nodes associated in one view have a better
chance to also associate with each other in a different view. Our analysis of three real-world multi-
view networks reveals that two nodes linked in one view are 2.5–27.8 times more likely to also
form links in a second view than two nodes not linked in the first view.1 In other words, two nodes
associated in at least one view are more likely to lead to multi-view collaboration. Taking Figure 1
as an example, users d and e have common subscribers in view 2, implying that they are likely also
to be “favorite” common videos in the future, even though they are currently not linked in view 1.
Thus, it is reasonable to pay more attention to d and e for multi-view collaboration. On the other
hand, b and e are not linked in any view, which are therefore less crucial to collaboration. We call
this phenomenon the second-order collaboration, since it deals with a pair of nodes across views.
In contrast, the collaboration shown in Figure 2(b) is first-order, as it deals only with individual
nodes.

1The three multi-view networks will be elaborated in our experiments in Section 5, and more details of the analysis will

be presented in Section 4.
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View 1: Favorite videos View 2: Subscribers View 3: Friends

Fig. 1. A toy video-sharing network with three views.

(a) Diversity
(c) Second-order 

collaboration(b) Collaboration

Fig. 2. Three characteristics of a multi-view network.

Present work. We aim to capture a novel form of second-order collaboration, the third char-
acteristic of multi-view networks in addition to the previously studied diversity and first-order
collaboration. To achieve the first-order collaboration for a given node, say, d , its view-specific
representations are aligned across all views, as illustrated in Figure 2(b). To model the second-
order collaboration for d , we further take into account d’s associations with other nodes. Using
the earlier example, d’s representation in view 1 should exploit the knowledge that d is linked to b
and e in view 2. Unlike the first-order, which directly moves d’s representation in view 1 toward its
representation in view 2, we move it toward the representations of b and e in view 2 to achieve the
second-order multi-view collaboration, as illustrated in Figure 2(c). The advantage of this design
is twofold. First, it explicitly exploits the associations between nodes for multi-view collaboration,
which carry valuable information. Second, it results in node-wise differentiation, since the extent
of collaboration a node can leverage in one view depends on its associations in other views. Both
elements are neglected by the first-order collaboration in existing work.

In this article, we unify the three characteristics of a multi-view network into one framework,
and propose a new unsupervised algorithm for Multi-view collAborative Network Embedding
(MANE). Furthermore, in a multi-view network, not all views are equally important. However,
their importance to the nodes is often non-uniform, varying from node to node. Inspired by the
neural attention mechanism [2], we develop an approach called MANE+, which is an extension of
MANE, to consider node-wise view importance. The attention-based approach enables each node
to locate and focus on its most important and relevant view.

We summarize the main contributions as follows. (i) We discover a new form of second-order
collaboration on multi-view networks. (ii) We propose a novel multi-view network embedding
algorithm MANE, integrating different characteristics in a unifying framework. (iii) We further
develop MANE+ to capture node-wise view importance through an attention mechanism. (iv) We
conduct extensive experiments on three public datasets, and empirically demonstrate the superi-
ority of our approaches.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 3, Article 39. Publication date: April 2021.
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2 RELATED WORK

Network embedding has been extensively studied for its importance in real-word applications.
Earlier studies [27, 32] have primarily devoted to preserving network structures through neighbor-
hood sampling, such as random walks and first- or second-order proximity. More recent algorithms
adopt different paradigms toward the same goal, such as GraphGAN [35] based on generative ad-
versarial nets and EP [12] based on message passing on the network. Meanwhile, graph neural
networks [17, 34] have recently emerged as competitive end-to-end approaches.

While the above algorithms have achieved promising results, they are designed only for single-
view networks, as opposed to multi-view networks investigated in this article. In multi-view net-
works, each view describes one form of interaction among a common set of nodes. This is analo-
gous to traditional multi-view data, where each view forms a distinct feature set for a common set
of instances [39], which have been studied in various contexts [3, 6, 9, 13, 19, 21, 23]. Learning on
multi-view networks has also been studied, such as spectral clustering [18, 22, 24] and classification
[14, 38].

Recent approaches such as multi-view embedding (MVE) [28], multi-view network embedding
(MVNE) [30], mvn2vec [29], and multiplex network embedding (MNE) [41] intend to be more gen-
eral, which aim to learn low-dimensional representations that preserve the structures of multiple
views. The learned representations are often generic enough to support various applications such
as node classification and link prediction. However, in addition to the characteristic of diversity,
these multi-view network embedding methods account only for the first-order collaboration to
align the representations of each node across views. In our approach, we discover and leverage
the second-order collaboration, which promotes cross-view reinforcement based on how nodes
associate with others. Most notably, Ni et al. [25] have proposed the concept of proximity dis-
agreement, which requires the instances of the same node across views to have similar proximity
to all other nodes. While this is a weaker assumption than the first-order collaboration, it is still
different from our second-order collaboration as it does not leverage valuable node associations
for fine-grained collaboration, which varies from node to node. Moreover, a few attention-based
algorithms exist [28, 37] to differentiate the importance of views in multi-view networks, and a
more general definition of multi-view network has also been explored to model many-to-many
node mappings across views [25]. In a related but different formulation, network structures have
also been studied in conjunction with content features, where the network structure can be treated
as one view and node contents as another view [16, 40, 42].

On another line, network embedding algorithms have also been designed for heterogeneous
information networks (HINs) [31]. An HIN consists of multiple types of nodes and edges, carry-
ing different semantics similar to multiple views. However, HIN embedding [5, 10, 11, 15, 43, 45]
typically fuses and merges different types into only one view, and only one set of node embed-
dings are learnt without view-specific representations. Thus, they are fundamentally single-view
models, and do not work well empirically on multi-view networks, as demonstrated in our exper-
iments. A recent study using General Attributed Multiplex HeTerogeneous Network Embedding
(GATNE) [4] employs a more general form of MNE [41] to further explore representation learning
on multi-view HINs. Again, GATNE does not consider the second-order collaboration.

3 PRELIMINARIES

We begin with a formal definition of multi-view network, followed by the problem formulation.
The main notations are listed in Table 1.

Definition 1. A multi-view network consists of a set of nodes U and a set of views V , where

each view v ∈ V contains a set of edges E (v ) between the nodes in U . Specifically, an edge

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 3, Article 39. Publication date: April 2021.
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Table 1. Summary of Main Notations

Notation Definition
U the set of nodes U
V the set of views V
E (v ) the set of edges E (v ) in view v

f
(v )
i
, f̃

(v )
i

center and context embeddings of node i for view v
fi final (output) embedding of node i
Ω(v ) the set of intra-view pairs in view v
i (v ) the instance of node i in view v

a (v )
i

attention-based weight of view v w.r.t. node i
f

a
i

attention-based embedding of node i
α , β,γ hyperparameters to balance loss components

e (v )
i j
∈ E (v ) links nodes i, j ∈ U in view v ∈ V . We denote this multi-view network as G = (U ,

V , {E (v ) : v ∈ V }).

Given such a network G, the goal of multi-view network embedding is to learn a low-
dimensional vector representation fi ∈ RD for each node i ∈ U , where D is the dimension of the
embedding space. More specifically, to maintain the diversity of views, for each node i ∈ U and

each view v ∈ V , we learn an intermediate view-specific representation f
(v )
i
∈ R �D/ |V | � . The final

representation fi is aggregated from these intermediate representations:

fi = ⊕v ∈V f
(v )
i
, (1)

where ⊕ denotes some form of aggregation, such as vector concatenation as adopted in our formu-
lation. The final representations can be used as features in a variety of applications such as node
classification and visualization, relationship mining, and link prediction.

4 PROPOSED APPROACH

In this section, we introduce our models MANE and MANE+ for multi-view network embedding.

4.1 Overall Framework

To start, we present the overall framework in Figure 3. The three characteristics of a multi-view
network can be unified by three categories of node pairs.

In the first category, we consider intra-view pairs, which can be generated using random walks
in each view [27]. By modeling intra-view pairs in each view, we are able to capture the diversity
of different views. In the second category, we consider cross-view, intra-node pairs, where instances
of the same node (i.e., intra-node) across two views (i.e., cross-view) form pairs. By aligning node
representations in such a pair, the first-order collaboration can be captured. In the third category,
we consider cross-view, cross-node pairs, where a node in one view forms pairs with different nodes
(i.e., cross-node) in another view (i.e., cross-view) based on their associations in each view, to
capture the second-order collaboration.

The three categories of node pairs are jointly trained to derive one set of embeddings for each
view, which are further aggregated to produce the final embeddings. In particular, during aggre-
gation, MANE assumes equal weight across views, and MANE+ learns a different weight for each
view.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 3, Article 39. Publication date: April 2021.
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Fig. 3. Overall framework of MANE.

4.2 Characteristics of Multi-View Networks

In the following, we delve into each characteristic and its corresponding node pairs.
Diversity: intra-view pairs. To retain the diversity of each view, each node has a view-specific

representation such that two nodes associated in the same view should have similar representa-
tions for that view. Following the DeepWalk model [27], for each view, we generate topologically
associated node pairs from random walks. Such pairs are also intra-view, as each pair is generated

within one view. As shown in Figure 3, we consider intra-view pairs such as (b (1), c (1) ) in view 1

and (a (2),d (2) ) in view 2, where the superscripts indicate the views from which the node instances
are observed.

Formally, for a given view v ∈ V , we assume a set of intra-view pairs Ω(v ) ⊂ U ×U . Adopting

the well-known skipgram model [27], a pair (i (v ), j (v ) ) ∈ Ω(v ) consists of a center node i (v ) and

a context node j (v ) . Given a center node, the task is to predict its context node, i.e., to maximize

P (j (v ) |i (v ) ). Subsequently, we optimize the following loss for some model parameters Θ:

LDiv (Θ) = −
∑

v ∈V

∑

(i (v ), j (v ) )∈Ω(v )

log P (j (v ) |i (v ) ; Θ). (2)

Here P (j (v ) |i (v ) ; Θ) is further defined with a softmax function:

P (j (v ) |i (v ) ; Θ) =
exp
(
f̃

(v )
j
· f (v )

i

)

∑
u ∈U exp

(
f̃

(v )
u · f (v )

i

) , (3)

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 3, Article 39. Publication date: April 2021.



Multi-View Collaborative Network Embedding 39:7

where f
(v )
i
, f̃

(v )
i
∈ R �D/ |V | � , respectively, denote the center and context embeddings of node i spe-

cific to view v . Thus, the model parameters consist of the center and context embeddings of all

nodes in all views, i.e., Θ = {f (v )
i
, f̃

(v )
i

: (i,v ) ∈ U ×V }. Essentially, the views are decoupled from
each other to capture the diversity of each view, as no cross-view pairs are involved.

First-order collaboration: cross-view, intra-node pairs. While different views exhibit diversity, they
ultimately converge on a common set of nodes. Since the instances of the same node across differ-
ent views fundamentally describe the same entity, such as a particular user on a social network,
its view-specific representations should collaborate with one another. As shown in Figure 3, we

consider cross-view, intra-node pairs such as (a (1),a (2) ) and (c (1), c (2) ), which can be generated
across different views for the same node. In each pair, the two view-specific embeddings of the
same node should become similar, by optimizing the following loss:

LC1 (Θ) = −
∑

v ∈V

∑

(i (v ), ·)∈Ω(v )

∑

v ′�v

log P (i (v ′) |i (v ) ; Θ)

= −
∑

v ∈V

∑

(i (v ), ·)∈Ω(v )

∑

v ′�v

log
exp
(
f

(v ′)
i
· f (v )

i

)

∑
u ∈U exp

(
f

(v ′)
u · f (v )

i

) . (4)

Note that we form a cross-view, intra-node pair (i (v ), i (v ′) ) for the center node i in every intra-

view pair (i (v ), ·) ∈ Ω(v ) . Thus, a frequently observed center node in a view, which has more topo-
logical importance in that view, will also be updated more in the first-order collaboration to ensure
a balanced optimization.

Second-order collaboration: cross-view, cross-node pairs. As motivated in Section 1, our key intu-
ition is that two nodes linked in one view are often more likely to also link with each other in
another view. Given two views v � v ′, this intuition can be quantified by the following ratio:

P
(
e (v ′)

i j
∈ E (v ′) |e (v )

i j
∈ E (v )

)

P
(
e (v ′)

i j
∈ E (v ′) |e (v )

i j
� E (v )

) . (5)

The larger the ratio, the more likely that two nodes linked in one view will also form a link with
each other in another view; a ratio of 1 would imply that whether two nodes are linked in one view
has no bearing on their link formation in another view. On the three real-world multi-view net-
works used in our experiments, namely, Alzheimer’s, LinkedIn, and YouTube (details in Section 5),
the above ratio for all pairwise views ranges from 2.5 to 27.8 with a median of 7.0, as shown in
Table 2. That means on these networks, node pairs linked in one view are significantly more likely
than those not linked to also form links in another view. Thus, the second-order collaboration is a
fair assumption on many multi-view networks, although it is not universal. As we shall see later,
our model is flexible to adjust the contribution from the second-order collaboration.

Using Figure 3 as an example, nodes d and e are topologically related in view 2 but not in view
1. Under the second-order collaboration, the two nodes may entail a latent, unknown association
in view 1, which is not currently manifested, possibly due to incomplete and noisy data, or a time
delay—they may develop an explicit link in future. It is important to note that this assumption
merely suggests a tendency. Thus, it is not appropriate to directly or explicitly make d and e’s
representations closer in view 1. Instead, we propose an implicit mechanism to enable such collab-

oration across views. As shown in Figure 3, we consider cross-view, cross-node pairs like (d (1), e (2) )
and (d (1),b (2) ). That is, we move d’s representation in view 1 toward e and b’s in view 2, enabling
the two views to collaborate depending on d’s associations with other nodes. In contrast, the first-
order collaboration simply makes d’s representations in both views closer without the knowledge
of d’s associations.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 3, Article 39. Publication date: April 2021.



39:8 S. K. Ata et al.

Table 2. Second-Order Collaboration between

Pairwise Views (v,v ′) in Three Multi-View Networks

v \v ′ GO PPI
GO - 27.8
PPI 27.7 -

(a) Alzheimer’s

v \v ′ College Employer Friend
College - 6.4 27.8

Employer 6.6 - 12.6
Friend 15.7 9.1 -

(b) LinkedIn

v \v ′ Friend Subscriber Video
Friend - 6.6 4.5

Subscriber 7.5 - 2.5
Video 5.1 2.6 -

(c) YouTube

Formally, suppose there exists an intra-view pair in viewv , say, (i (v ), j (v ) ) ∈ Ω(v ) , which means
node i is topologically associated with j in view v . Given such an association, we can form a

cross-view, cross-node pair (i (v ′), j (v ) ), to move i’s representations in another view v ′ toward j’s
representation in view v . Thus, we optimize the following loss:

LC2 (Θ) = −
∑

v ∈V

∑

(i (v ), j (v ) )∈Ω(v )

∑

v ′�v

log P (i (v ′), j (v ) ; Θ)

= −
∑

v ∈V

∑

(i (v ), j (v ) )∈Ω(v )

∑

v ′�v

exp
(
f̃

(v )
j
· f (v ′)

i

)

∑
u ∈U exp

(
f̃

(v )
u · f (v ′)

i

) . (6)

4.3 The MANE Algorithm

With the losses based on the three categories of node pairs, we further present the proposed ap-
proach MANE.

Loss function. We combine the losses of the three characteristics in Equations (2), (4), and (6)
into the following, as the overall loss for a multi-view network:

L = LDiv + α · LC1 + β · LC2, (7)

where α , β ≥ 0 are hyperparameters to control the relative importance among the three compo-
nents. This is an unsupervised formulation, where we maximize the likelihood of the parameters
Θ based only on the three categories of node pairs, and produce final embeddings as features for
downstream applications. However, depending on the application, supervision may still be lever-
aged, such as node class labels in node classification.

As a further remark, when α = β = 0, MANE reduces to Skip-gram models such as DeepWalk
[27] on individual views in a decoupled manner, without leveraging any collaboration between
views. When α > 0 and β = 0, MANE captures only diversity and first-order collaboration.

Algorithm. Our approach is summarized in Algorithm 1. We first initialize the parameters ran-
domly (line 1). Next, for each view v , we sample random walks starting from every node, and

further generate intra-view node pairs Ω(v ) based on the sampled random walks (lines 2–4). In

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 3, Article 39. Publication date: April 2021.
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ALGORITHM 1: Training of MANE

Input: G = (U ,V , {E (v ) : v ∈ V }), α , β
Output: final embeddings {fi : i ∈ U }

1 Randomly initialize parameters Θ

2 for each view v ∈ V do

3 R (v ) = SampleRandomWalks (U ,E (v ) )

4 Ω(v ) = GenerateIntraViewPairs (R (v ) )

5 while not converged do

6 for each view v ∈ V do

7 Shuffle pairs in Ω(v )

8 for each intra-view pair (i (v ) , j (v ) ) ∈ Ω(v ) do

9 Update f
(v )
i
, f̃

(v )
j , f̃

(v )
u based on Equation (2)

10 for each view v ′ � v do

11 Form a cross-view, intra-node pair (i (v ) , i (v ′) )

12 Update f
(v )
i
, f

(v ′)
i
, f

(v ′)
u based on Equation (4)

13 Form a cross-view, cross-node pair (i (v ′) , j (v ) )

14 Update f
(v ′)
i
, f̃

(v )
j , f̃

(v )
u based on Equation (6)

15 for i ∈ U do

16 fi = ⊕v ∈V f
(v )
i

17 return {fi : i ∈ U }

the succeeding block, we perform gradient updates on the parameters (lines 5–14). More specifi-
cally, we form intra-view node pairs to capture diversity (lines 8–9), cross-view, intra-node pairs to
capture first-order collaboration (lines 11–12), and cross-view, cross-node pairs to capture second-
order collaboration (lines 13–14). Finally, we concatenate the view-specific center embeddings of
each node to obtain the final embedding (lines 15–16).

To implement the algorithm, we follow DeepWalk [27] to perform truncated random walks
in each view, as well as to further generate center-context node pairs from the sampled random
walks. Such center-context pairs form the intra-view pairs. We also adopt negative sampling for
the softmax function in each loss component to accelerate the training process. To minimize the
overall loss function, we employ the Adam optimizer.

Complexity analysis. Based on existing work [28], learning view-specific embeddings over all

views takes O ( |E | · D/|V | · K ) time, where |E | = ∑v ∈V |E (v ) | denotes the total number of edges in
all views, �D/|V |� is the dimension for view-specific embeddings, and K is the number of negative
samples. This is equivalent to the time complexity of intra-view–cross-node consistency. On the
other hand, the complexities for cross-view–intra-node and cross-view–cross-node consistencies
are both O ( |E | · D/|V | · K · |V |). Thus, the overall time complexity is O ( |E | · D · K ). Thus, MANE
scales linearly in the total number of edges in all views.

4.4 Extension with View Attention

In MANE, we treat all views with equal importance during the final aggregation. However, in real-
world scenarios, the importance or relevance of each view is often non-uniform, and varies from
node to node. Thus, we propose MANE+, an extension of MANE, to account for node-wise view
importance.
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View attention. To allow a node to focus on the view most important to it, we adopt the neural
attention mechanism [2] to model view attention. We first define a score function s : U ×V → R
to compute the similarity between any node i and any view v :

s (i,v ) = z
(v )
2 · tanh

(
z

(v )
1 ◦ fi + b

(v )
1 1

)
+ b (v )

2 , (8)

where z
(v )
1 , z

(v )
2 ∈ RD ,b (v )

1 ,b
(v )
2 ∈ R are trainable parameters specific to view v , and ◦ denotes the

Hadamard product. The scores are further normalized to obtain the attention value a (v )
i

, i.e., the
weight of view v w.r.t. node i:

a (v )
i
=

exp s (i,v )∑
v ′ ∈V exp s (i,v ′)

. (9)

Subsequently, for every node i , we aggregate its view-specific embeddings into a vector f
a
i
∈ RD ,

weighted by its view attention:

f
a
i = tanh

(
⊕v ∈V a

(v )
i

f
(v )
i

)
. (10)

The attention-based embeddings, {fa
i

: i ∈ U }, can be used as features for downstream applica-
tions, where some supervision is often available to guide the learning of view-specific attention
parameters [28]. For example, we could minimize the following loss for node classification:

LAtt =
1

|Utrain |
∑

i ∈Utrain

CrossEntropy(yi ,h(fa
i )), (11)

whereUtrain is the set of training nodes, yi is the class of node i , and h(fa
i

) is the classification out-
put for node i using the attention-based embedding f

a
i

. Since Utrain ⊂ U , this is a semi-supervised
setting. Similarly, for link prediction, an alternative classification function h′(fa

i
, fa

j
) could be em-

ployed, using the attention-based embedding of two nodes.
Overall loss. We formulate the loss of MANE+ by extending the loss of MANE in Equation (7),

to include the attention component:

L+ = LDiv + α · LC1 + β · LC2 + γ · LAtt, (12)

where γ > 0 is a hyperparameter to control the contribution of the attention-based loss.
Due to the additional loss component, compared to MANE, an extra time complexity ofO (T · D ·
|V |) will be added to MANE+, whereT is the size of the training data. Since MANE is linear in the
number of edges |E |, andT is typically much smaller than |E | for node classification and comparable
in scale to |E | for link prediction, the extra complexity term does not present a significant overhead.

5 EXPERIMENTS

We evaluate the performance of our proposed methods and conduct an in-depth model analysis
on three real-world multi-view networks. Results demonstrate the superior performance of MANE
and MANE+ against a comprehensive suite of state-of-the-art baselines.

5.1 Experimental Setup

Datasets and tasks. Table 3 summarizes three public, real-world multi-view networks used in
our experiments, as follows.

Alzheimer’s. A protein network to identify causative genes for Alzheimer’s disease, which in-
cludes two views, namely, protein-protein interaction (PPI) and GO. The PPI view captures the
protein–protein interactions from the IntAct database [26], whereas the GO view captures the
functional associations between proteins based on their Gene Ontology (GO) annotations [36].
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Table 3. Summary of Datasets

Dataset # Nodes # Edges in each view

Alzheimer’s 12,901
PPI GO

96,845 107,508

LinkedIn 10,196
College Employer Friend

1,527,681 1,765,927 29,434

YouTube 7,558
Friend Subscriber Video

1,003,923 1,547,091 1,918,208

For the GO view, we first calculated the pairwise functional similarity between proteins, and, sub-
sequently, built a k-nearest neighbor similarity graph with k = 10. In this two-view protein net-
work, each node has a binary label to show whether it is a causative gene for Alzheimer’s disease.
In other words, the task of disease gene identification for Alzheimer’s can be cast as a binary classi-
fication problem. In particular, this is a highly skewed dataset with fewer than 1% positives. Thus,
we have also tried to over-sample with Synthetic Minority Over-sampling TEchnique (SMOTE)
[7], although it yielded similar results.

LinkedIn [20]. A professional social network with three views, namely, college, employer, and
friend. Edges in the college or employer view indicate common college or workplace between
users, respectively. Edges in the friend view represent LinkedIn connections. Our task deals with
relationship mining to uncover latent relationship types between two nodes. Some of the node
pairs have a label to indicate their relationship, such as personal community or professional con-
tact. In total, there are eight classes of relationship, and is thus a multi-class problem. Note that the
relationship classes are latent and are independently labeled by the users, which do not directly
correspond to existing edges in any of the three views.

YouTube [33]. A video-sharing network with three views, namely, friend, subscriber, and video,
where two users are linked if they have common friends, subscribers, and favorite videos, respec-
tively. Our task is to perform link prediction on an additional contact network, and can be formu-
lated as a binary classification problem. Note that the friend view excludes all the contacts from
the GroundTruth contact network. To provide negative instances, we randomly sample five times
as many non-contact users for each positive contact.

Evaluation metrics. For binary classification on Alzheimer’s and YouTube, we employ areas un-
der the Receiver Operating Characteristics (ROC) and the Precision–Recall (PR) curve; for multi-
class classification on LinkedIn, we use micro- and macro-F scores.

Baselines. We compare with several common strategies (Single, Decoupled, and Merged), as well
as state-of-the-art methods for heterogeneous information network embedding (HIN2Vec and
HeGAN) and multi-view network embedding (MVE, mvn2vec, MNE, and GATNE).

Single: A Skip-gram model equivalent to DeepWalk applied to a single view. For each task, we
run the model on every view, and report the average performance.

Decoupled: Each view is independently trained by the single-view Skip-gram model, with the
number of dimensions set to �D/|V |�. All views’ embeddings are then concatenated to form the
final embedding for each node.

Merged: All views are merged into one network by taking the union of the edges in all views.
The single-view Skip-gram model is then trained on the merged network.

HIN2Vec [11]: A heterogeneous network embedding approach, which samples various meta-
paths and feeds them into a neural network. We merged all views to form a heterogeneous graph,
where edges from different views belong to different types of relation.
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HeGAN [15]: A heterogeneous network embedding approach, which employs the adversarial
principle to learn more robust relationships between nodes. Similar to HIN2Vec, it works on a
heterogeneous graph as constructed above.

MVE [28]: A multi-view network embedding approach, which promotes the first-order collab-
oration by regularizing the distance between view-specific embeddings and the final embedding.
It also has a semi-supervised variant to learn view attention, which we denote as MVE+.

mvn2vec [29]: A multi-view embedding approach with two variants mvn2vec-c and mvn2vec-

r. To enforce first-order collaboration, the mvn2vec-c variant employs partial parameter sharing
across views, whereas mvn2vec-r regularizes the distance between view-specific embeddings.

MNE [41]: A multi-view network embedding algorithm. For each node, the model learns a fi-
nal embedding consisting of a common embedding for first-order collaboration, and view-specific
relation-based embeddings.

DMNE [25]: A multi-view network embedding algorithm with potentially many-to-many node
mappings across views, although in our setting, only one-to-one mappings exist. We adopted
their proximity disagreement formulation, due to its weaker assumption and better empirical
performance.

GATNE [4]: An embedding algorithm for an attributed multi-view heterogeneous network
based on MNE, although in our setting, we consider only one node type with multiple edge types
(i.e., views). Moreover, we used their transductive version since we do not consider node attributes
in our setting. We compare with its variants both with and without the attention mechanism, and
denote the attention-based version as GATNE+.

Implementation details. To sample random walks for all Skip-gram models, we applied a walk
length of 10, 5 walks per node, windows size of 3, and 10 samples per negative sampling. All
methods adopt D = 128 as the dimension of the final embedding. For the baselines, we used the
implementations from their respective authors, and extensively tuned their main hyperparameters.
Specifically, we chose η = 0.05 for MVE, θ = 0.8 for mvn2vec-c and γ = 0.01 for mvn2vec-r, and
r = 1000 for MNE, which give competitive results empirically. Our methods are implemented in
Python using PyTorch. We set α = β = 1 for an equal weight between the three characteristics. We
further set the attention hyperparameter γ = 1000 for LinkedIn and YouTube, which is generally
robust and insensitive to small changes. On the highly skewed Alzheimer’s dataset, we set a smaller
γ = 0.1 to reduce reliance on the very skewed training nodes. Nonetheless, we also conducted a
sensitivity study to show the impact of these hyperparameters. Finally, for all methods, the learned
final embeddings are used as features to further train a logistic regression model using fivefold
cross-validation. For the semi-supervised attention-based methods, only the same training folds
from the downstream application are utilized during the training of node embeddings.

5.2 Performance Comparison

We first compare models without view attention, as most baselines do not differentiate the impor-
tance of views.

Without view attention. Table 4 reports the performance comparison between MANE and base-
lines without view attention, which treat all views uniformly. Our model MANE achieves the best
performance consistently, outperforming the runner-up by up to 35.9%, 2.0%, and 15.7% on the
three datasets, respectively. Among the baselines, no consistent winner emerges, with mvn2vec
and MNE being generally competitive.

We further visualize the embeddings generated by MANE and two competitive baselines in
Figure 4 on Alzheimer’s dataset. As the dataset is highly skewed with very few positive nodes, for
a clearer visualization, we uniformly sampled five times as many negative nodes as the positive
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Table 4. Performance Evaluation on Three Datasets without View Attention

Alzheimer’s LinkedIn YouTube
Metric ROC-AUC PR-AUC Micro-F Macro-F ROC-AUC PR-AUC
Single 0.6968 0.0221 0.4001 0.3468 0.6334 0.1565
Decoupled 0.8200 0.0735 0.4341 0.3739 0.6700 0.1649
Merged 0.7305 0.0075 0.4197 0.3724 0.6565 0.1763
HIN2Vec 0.5734 0.0030 0.3014 0.2175 0.6264 0.1258
HeGAN 0.6967 0.0104 0.3937 0.3467 0.6322 0.1520
MVE 0.6543 0.0161 0.4113 0.2867 0.6276 0.1650
mvn2vec-c 0.8617 0.0890 0.4326 0.3791 0.6633 0.1621
mvn2vec-r 0.8756 0.0275 0.4439 0.3717 0.6703 0.1669
MNE 0.9195 0.1676 0.4334 0.3538 0.6749 0.1604
DMNE 0.9357 0.0603 0.3473 0.2253 0.6056 0.1394
GATNE 0.9190 0.1227 0.3202 0.1619 0.6838 0.1624
MANE 0.9660 0.2277 0.4446 0.3865 0.6917 0.2039

Bold: best; underline: runner-up.

(a) mvn2vec-c (b) MNE (c) MANE

Fig. 4. Visualization of proteins: Alzheimer’s positives ( ) and negatives ( ). Best viewed in color.

Table 5. Performance Evaluation on Three Datasets with View Attention

Alzheimer’s LinkedIn YouTube
Metric ROC-AUC PR-AUC Micro-F Macro-F ROC-AUC PR-AUC
MVE+ 0.8693 0.0067 0.4480 0.3414 0.6410 0.1544
GATNE+ 0.9719 0.1275 0.3258 0.1618 0.6813 0.1597
MANE+ 0.9226 0.3380 0.4538 0.3905 0.7214 0.2422

Bold: best; underline: runner-up.

nodes, while including all positive nodes. The plot of mvn2vec-c is visibly inferior, with several
dispersed positive nodes far away from the others (which is substantial given that this is a skewed
dataset with very few positives). MNE is improved with only one dispersed positive node, although
the remaining positives are only loosely clustered. In contrast, MANE forms a relatively dense and
well-defined cluster of positives.

With view attention. Table 5 reports the performance of the attention-based models. We make
two observations. First, methods with view attention generally outperform their non-attention
counterparts shown in Table 4. Second, MANE+ achieves the best performance in all cases except
for the ROC Area Under The Curve (ROC-AUC) on highly skewed Alzheimer’s dataset. However,
on the same dataset, MANE+ outperforms the runner-up in PR-AUC by a substantial margin. Note
that on highly skewed datasets, the PR curve gives a more informative assessment than the ROC
curve [8].
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(a) Alzheimer’s (b) LinkedIn (c) YouTube

Fig. 5. Impact of first- and second-order collaboration.

(a) Alzheimer’s (b) LinkedIn (c) YouTube

Fig. 6. Impact of hyperparameters α and β .

5.3 Model Analysis

We further investigate various aspects of our models, including model ablation, parameter sensi-
tivity, convergence, and scalability.

Ablation and impact of α, β . We examine the contribution from each order of collaboration in
Equation (7). Specifically, we evaluate (i) MANE\C1C2 without both orders of collaboration, i.e.,
α = β = 0; and (ii) MANE\C2 without the second order, i.e.,α = 1, β = 0. As Figure 5 shows, MANE
outperforms MANE\C2 on all three datasets, validating that the novel second-order collaboration
is beneficial. In particular, the effect of the second-order collaboration is the largest on Alzheimer’s,
which is consistent with our analysis in Table 2. Similarly, MANE\C2 also consistently outperforms
MANE\C1C2. Overall, the results justify the proposed unification of the three characteristics. For
a finer-grained analysis, we further vary α and β in Figure 6. The performance is generally robust
and stable in the range [0.5, 2] for both parameters.

Impact of γ . As discussed earlier, on highly skewed Alzheimer’s, we typically prefer a small γ , to
reduce dependence on the skewed supervision. As Figure 7(a) shows, the range [0.1, 10] exhibits
robust performance. On the other hand, on more balanced datasets YouTube and LinkedIn, a larger
γ is often useful. As Figure 7(b) and (c) shows, the range [102, 104] gives stable outcomes.
Convergence analysis. Figure 8 shows that our proposed objective functions for both MANE
and MANE+ converge quickly, typically between five and eight epochs. MANE+ often has a higher
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(a) Alzheimer’s (b) LinkedIn (c) YouTube

Fig. 7. Impact of hyperparameter γ .

(a) Loss of MANE. (b) Loss of MANE+.

Fig. 8. Convergence analysis.

(a) MANE. (b) MANE+.

Fig. 9. Scalability analysis.

loss as it entails an additional attention-based loss component. The actual evaluation scores also
demonstrate a similar convergence pattern, which are omitted for brevity. The fast convergence
implies that the different loss components work well together.

Scalability study. We sampled differently sized multi-view networks from the original datasets.
In Figure 9, we plot the time taken per epoch of training against the total number of edges in all
views. We observe that both MANE and MANE+ scale linearly in the total number of edges, which
is consistent with our complexity analysis in Section 4.3. Moreover, on the IntAct and LinkedIn
datasets, we observe that MANE+ incurs a training duration similar to or slightly higher than
MANE, as the size of training data on these two datasets is much smaller than the total number
of edges. On the other hand, on the YouTube dataset, MANE+ incurs a noticeably higher training
duration than MANE, due to its considerably larger training set.

6 CONCLUSION

In this article, we investigated an important problem of multi-view network embedding. In addition
to the traditional characteristics of diversity and (first-order) collaboration, we leveraged the newly
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discovered second-order collaboration. We systematically unified the three characteristics with
three categories of node pairs, and proposed MANE for multi-view collaborative network embed-
ding. We further extended it to capture node-wise view importance using the attention mechanism
in MANE+. Finally, we evaluated the performance of our proposed approaches, and demonstrated
their promising results in comparison to an extensive range of state-of-the-art baselines.
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