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Update Recovery Attacks on Encrypted
Database within Two Updates using Range

Queries Leakage
Jianting Ning, Geong Sen Poh, Xinyi Huang, Robert H. Deng, Fellow, IEEE , Shuwei Cao,

and Ee-Chien Chang

Abstract—Recently, reconstruction attacks on static encrypted database supporting range queries have been proposed. However,
attacks on encrypted database within two updates in the similar setting have not been studied extensively. As far as we know, the only
work is the update recovery attack presented by Grubbs et al. (CCS 2018). Following their seminal work, we present new update
recovery attacks for dense dataset (i.e. at least one record corresponding to each value in the range), which enable a deeper
understanding of the impact caused by leakages due to updates on dynamic encrypted database. Our first attack aims at recovering
the value of a newly added record in the case of one database update. We further demonstrate that the attack can fully reconstruct the
database counts if the updated value is either the minimum or maximum in the range. We then consider a setting where two distinct
records are added separately, which leads to our second attack. We next extend our attacks to the setting where the update operation
is deletion. To the best of our knowledge, update recovery attack on database supporting deletion has not been considered before. We
demonstrate practicality of our attack via extensive simulations using real dataset.

Index Terms—Dynamic encrypted database, update recovery attacks, range query, information leakage.

F

1 INTRODUCTION

IN recent years, novel and practical attacks on secure
outsourced database based on volume leakage have been

proposed. In these attacks, an attacker learns only the
number of records returned from a range query. Kellaris
et al. [23], in a seminal work, introduced and demonstrated
such attack on secure outsourced database supporting range
queries. In their attack, the exact number of records for each
value in the range, or termed as the database counts [15], can
be recovered. This is in contrast to many existing works,
where the attacker is assumed to have knowledge of the
access pattern leakage [24] or reference distribution of the
database [18]. Most recently, Grubbs et al. [15] improved
the work of Kellaris et al. by presenting a more practical
database reconstruction attack for recovering the database
counts. Besides their main result, a new attack termed update
recovery attack is presented. The setting is such that given
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the knowledge of the reconstructed database counts, the
attacker is able to approximate the value of a new record
added to the database.

Attacks based on volume leakage can be mounted quite
easily and may have serious consequences as were stated
in [15], [23]. For instance, in the case whereby the server is
compromised for a period of time, the attacker will be able
to learn the volume of each range query. The same reasoning
is applicable if the server is the attacker itself, even when the
outsourced database deploys advanced techniques that hide
other auxiliary information. By learning database counts, an
attacker may be able to learn the underlying value of an
added record. We refer reader to [15], [23] for additional,
detailed discussions and motivation on attacks based on
volume leakage.
Existing work. As mentioned above, Kellaris et al. [23]
constructed the first attack using volume leakage on secure
outsourced database supporting range queries. However, as
stated in [15], Kellaris et al.’s attack can only work in the
setting where the range queries are drawn at random in an
independent and uniform manner. Furthermore, their attack
requires observation of O(N4logN) queries, where N is
the maximum value in the range. These limit practicality of
their attack. Aiming at a more practical attack, Grubbs et al.
[15] (GLMP) presented a new novel database reconstruction
attack for range queries.

The series of recent attacks [15], [23] demonstrated the
devastating effect of volume leakage on static encrypted
database supporting range queries, but the effect of these
attacks on dynamic setting has not been fully studied. As far
as we know, the only work targeted on dynamic database is
the update recovery attack proposed by GLMP [15], which
aims to recover the value of a newly added record. For the
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attack to succeed, they assume that the attacker knows the
exact database counts, which can only be achieved assuming
the database is dense in the sense that there exists at least one
record corresponding to each value in the range. Given the
knowledge of the database counts, their update recovery
attack adopts a probabilistic algorithm that approximate
the value of newly added record for general setting. In
the event of record deletion during an update operation,
it is not known how their attack would work, especially
for the case when the database becomes non-dense after
deletion. Taking the above limitations into consideration,
two questions arise naturally:
• Is there any approach that can launch the update recovery attack

directly (i.e., without first performing the complex reconstruc-
tion of the database counts), and that could deterministically
recover the value of the added record (up to reflection1)?

• Does there exist any update recovery attack on dynamic en-
crypted database supporting deletion?

We believe it is crucial to investigate the effect of update
since for secure outsourced database, adding or deleting a
record are routine operations. Because of database update,
more information may be leaked. The consequences due to
such leakage should be carefully studied in order to under-
stand what type of attacks a dynamic encrypted database
will encounter. This is what motivates us in this work.

Our results. We develop two new update recovery attacks
for dynamic encrypted database supporting range queries
that could recover the value of newly updated record.
Following the two update recovery attacks, we present their
extensions that work in the case where the update operation
is deletion. As far as we know, these are the first attacks
against dynamic encrypted database supporting deletion.
Our work highlights the security impact of information
leakage incurred by the update operations over dynamic en-
crypted database supporting range queries. All our attacks
operate under a rather weak passive adversarial model, in
which we do not make any assumption on the query or data
distribution. What is needed, is just the observation that
covers the volume and access location of each range query
at least once. Access location, which we explain in Section
2.2, is a weaker source of leakage than access pattern.

In more details, we study the problem of update re-
covery attack for dynamic encrypted database given only
leakages of volume and access location. Our main results
are summarized as below:
• We present a new update recovery attack for the scenario

where one record is added. Our attack can recover the
value of the added record directly (i.e., without first recov-
ering the database counts as in [15]), up to reflection. This
attack stems from several observations we present. Based
on our observations, we can further recover the database
counts. In particular, for the case when the value of the
added record is either the minimum or the maximum
value in the range, we can fully reconstruct the database
counts.

• We consider a more generic scenario where two different
records are added separately. Again, we present a series of

1. It means for any value r, the recovered value could be for r or
N + 1− r.

observations for this setting. Stems from the observations,
the attack can recover the values of the two added records,
up to reflection. We can further recover the database
counts from our observations. In particular, for the case
when the values are consecutive numbers or one of the
values is either the minimum or the maximum value in
the range, the database counts can be fully reconstructed.

• We further present extensions to the above two attacks
for the scenario where the update operation is deletion,
in which the database may become non-dense after delec-
tion. As far as we know, these are the first attacks that
consider this scenario.

Our attack outperforms the work of GLMP in terms of
recovery precision. In particular, in the scenario where one
record is added, our attack can deterministically recover
the value of newly added record (up to reflection), while
GLMP’s attack is sometimes only able to approximate this
value. This fact is reflected in our experiments for most
of the attributes selected from the medical dataset that
were tested. In the scenario where two different records
are added, our attack can fully recover the updated values,
while GLMP’s attack does not consider this scenario. In
addition, deletion is also not considered in GLMP’s attack.
All of our attacks require leakages of volume and access
location, but do not need the knowledge of the maximum
value in the range and the total number of records, when
compared to GLMP’s attack. Nevertheless, GLMP’s attack
can start with fewer range queries once the database counts
are known, but with less recovery precision.

Overall, from the point of recovering the value of the
added record, our attacks provide a more direct, efficient
and general way when compared with GLMP’s attack. All
our attacks stem from a series of observations we present,
some of which are non-trivial as they provide new insights
into further understanding the leakage of dynamic encrypt-
ed database. Our work shows that volume leakage, as well
as access location leakage, should be considered a serious
concern in practice, for the dynamic setting of encrypted
database. The observations we presented could serve as
important guidelines for database encryption scheme de-
veloper. Our work also serves as a reminder for researchers
to seriously consider update leakage when developing new
database encryption schemes.

Limitation of attack. Our attack has several limitations. The
first limitation is that our attacks require the collection of
the full-cover volume set or full-cover access-volume pair set that
covers each range query at least once (before and after the
update). We note, however, this is the same setting as in
GLMP. As stated in [15], this is a strong assumption, but a
weaker one compared with Kellaris et al.’s attack [23]. The
assumption of Kellaris et al.’s attack needs each range query
to be collected multiple times. The second limitation is that
our attacks will not work in the case where the database is
non-dense before any update. Again, this is the same as in
GLMP. In particular, in GLMP’s attack, the exact volume of
each value in [N ] must first be recovered, which only works
when the database is dense. In addition, our attack cannot
work in the following cases: (1) multiple tuples related to
different existing values will be inserted in the dataset (i.e.,
in the case of bulk insertion), which includes the extreme
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case where the exact number of records for each value in
the range are the same; (2) insert and delete operation will
be executed simultaneously; (3) insert operation will insert
new values in the dataset that increase domain size (which
is similar to the case of non-dense setting).

Countermeasures. The main idea of protecting dynamic
encrypted database against our attacks is to prevent the
attacker from obtaining the exact volume and access location
information. In terms of volume leakage, the aim is to hide
the volume information of each range query. As stated in
[15], one can batch several range queries together to hide
the individual volume. Another approach is to add noise
in the sense that some dummy records will be returned
for each range query. However, these will inevitably incur
bandwidth overhead or server storage overhead. In addi-
tion, the “bucketed” method suggested in [15] can prevent
our attack to some extent in that the actual counts of indi-
vidual record are not revealed. In brief, this means records
with values that are close to one another are grouped as
one logical value. In terms of access location, one possible
countermeasure is to add noise such that the access loca-
tions of range queries are the same. In this case, advanced
cryptographic techniques (such as ORAMs [6], [13], [34],
fully homomorphic encryption [12], [35], secret sharing [4],
[5]) should be employed. As one of the countermeasures,
Kellaris et al. [22] combines ORAM and differential privacy
to prevent database reconstruction attacks. However, this
will inevitably incurs additional bandwidth and response
time costs [3], [30].

2 BACKGROUND

2.1 Preliminaries

We first present the abstract model of encrypted outsourced
database, which is based on the model in [23], [27].

An encrypted database is a collection of records associat-
ed with search keys: E = {(R1, k1), ..., (Rl, kl)}. All records
are assumed to have fixed length λ, and the search keys
are belong to a domain K. In essence, we can view the
search keys as the indexing information for the database.
A query is a predicate Q : K → {0, 1}. Executing a query Q
to an encrypted database E results in all records satisfying
Q(E) = {Ri : Q(ki) = 1}. An encrypted outsourced
database system for a collection of queries Q consists of
the following two protocols between a client and a server.
The first is the setup protocol, where the input of the client
is E = {(R1, k1), ..., (Rl, kl)} and the server has no input.
After the setup protocol, the output of the client is a key K
for query and the output of the server is a data structure
S . The second is the query protocol, where the input of the
server is S and the input of the client is a query Q ∈ Q
and the key K. After the query protocol, the server has no
formal output and the output of the client is Q(E).

An example of range query for encrypted outsourced
database is described as follows. K is an ordered domain
of M elements {1, ..., N} for N ∈ N. The family of range
queries Q = {[i, j]q}1≤i≤j≤N , where [i, j]q(c) = 1 if i ≤
c ≤ j. Overall, there are N(N + 1)/2 (i.e.,

(N
2

)
+N ) queries

in Q. Executing [i, j]q on a database E results in all records
with search keys in the range [i, j], that is, [i, j]q(E) = {Ri :

i ≤ ki ≤ j}. For instance, for an employee relation with
age column, K can be essentially viewed as the indexing
information of range queries for age. In other words, these
keys can be viewed as encrypted indexes for the contents of
age, and supports comparisons over encrypted values.

Throughout this paper, for L, a, b ∈ N, let [L] denote the
set {1, 2, ..., L}, and [a, b] denote the set [a, a+ 1, ..., b]. This
work applies to the general setting of range query scheme
as follows. There are two entities: a server and a client. The
server stores an encrypted (outsourced) database EDB that a
client can query. Let {1, 2, ..., N} be the set of possible range
query values, that is, N is the maximum value in the range.
We denote EDB as a sequence of records corresponding to
values in [1, N ], and N as the domain size of EDB. For an
EDB, if there exists at least one record corresponding to
each value in [1, N ], we say that the EDB is dense; other-
wise, we say that the EDB is non-dense. Given N , there are
N(N+1)/2 possible range queries. Let [i, j]q denote a range
query issued by a client, where i, j are both integers. Upon
receiving a query [i, j]q from a client, the server returns all
records that correspond to the values in [i, j]. We assume
no information is revealed from the range queries and the
corresponding responses between the client and the server,
except for the number of records in the response and the
access location in the server. The number of records in a
response is also called communication volume in [23]. In this
work, we define the volume of a range query [i, j]q to be
the number of records corresponding to the values in [i, j],
denoted by vol([i, j]q). We also define the count of a value i
in [N ] to be the number of records corresponding to value i,
i.e., vol([i, i]q).

2.2 Access location leakage

Access location leakage is a weaker notion than access
pattern leakage. As defined in [23], [24], access pattern refers
to the information on which records are returned corre-
sponding to a range query. In contrast, access location refers
to the attacker learning only the segments of storage when
retrieving the group of records corresponding to a range
query2. For example, in order to rule out access pattern
leakage, the client may package the records for each distinct
range query as a whole and upload them to the server.
However, two identical range queries may still prompt the
server to access the same segments of its storage. In a similar
manner, for different range queries, the server will access
different segments of the storage. Fig. 1 illustrates the dif-
ference between the two leakages, in which for two distinct
range queries, access location leakage reveals two distinct
segments of storage but not the individual records (i.e., Rs
in Fig. 1). As an example of the difference between these
two leakages, if only access location leakage is available
instead of access pattern leakage, the reconstruction attack
proposed in [24] may no longer work. To the best of our
knowledge, most of known efficient searchable encryption
schemes supporting range queries leak access location. In

2. For an adversarial server, it can store the (encrypted) records of a
client in a way it preferred such that it can distinguish two different
queries by access location leakage. For a scenario where the server
honestly stores all the records of a client in a page, if the number
of returned tuples for each query is different, the server can still
distinguish two distinct queries.
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this work, we employ access location leakage to distinguish
between different range queries.

Segments 1

Segments 2

Query 1

Query 2

Leakage 1: (Segments 1, Ra1,Ra2,…,Ran)
Leakage 2: (Segments 2, Rb1,Rb2,…,Rbn)

Leakage 1

Leakage 2

Access	pattern leakage

Segments 1

Segments 2

Query 1

Query 2

Leakage 1: (Segments 1)
Leakage 2: (Segments 2)

Leakage 1

Leakage 2

Access	location leakage

DB Storage DB Storage

Fig. 1 Comparison between access pattern leakage and access
location leakage.

2.3 Adversarial model
An attacker can be the server, or an entity who is able to
compromise the server for a period of time. The attacker
is passive in the sense that it attempts to learn more in-
formation than is allowed by examining the information
it can observe, but not inject new records as the active
attacker in [39]. We assume the attacker does not know the
underlying range of any issued query. Similar to [15], the
attacker learns how many records are returned in response to
a query. We note that this assumption is reasonable [9], [33].
For the case where the attacker is the server, it can obtain
the above information naturally [15]. For the case where
the attacker is the one located on the network between the
server and the client, as noted in [15], [23], the amount of
data being transmitted or the directionality in typical secure
communication protocols like TLS are not hidden [9], [33].
For example, the plaintext lengths in ciphertexts are directly
leaked in modern TLS cipher suites like those based on AES-
GCM [15]. In addition, the attacker can distinguish different
query requests via access location leakage (as we assume
that it can identify whether a range query is repeated via
access location). If the attacker is the server, naturally it
has this knowledge. If an attacker is one who compromises
the server, it would be able to access this information for
the period that the server is compromised. In our attacks,
the attacker does not need any knowledge of the database
distribution or the query distribution. Since our attacks re-
quire every range query to be issued at least once, different
query distributions affect the performance of our attacks.
This will be discussed during the analysis of our attacks.
In addition, different from [15], the attacker in this work
does not need to know the total number of records and the
domain size (as prior knowledge) 3. We also do not deal
with the query workload attack shown in [14], [25], which
allows an attacker to distinguish different query ranges.

3 PASSIVE UPDATE RECOVERY ATTACK WITH ONE
DATABASE UPDATE

In this section, we present our first attack, namely a practical
passive update recovery attack against encrypted database
supporting range queries.

3. If the attacker knows the domain size, it will be easier for the
attacker to launch the attack since it can be used as prior knowledge
directly, and there is no need to recover the domain size N during the
second step of the attacks (in Section 3 and Section 4).

Setting of Attack. There is a new record added into the
database, and the attacker learns this information. Before
and after the addition of the new record, the attacker could
collect a set of volumes that covers each possible range
query (at least) once, respectively. The database is dense.
Since the database is dense, the inserted record is for a value
that already exists in the encrypted dataset.
Knowledge of Attacker. Let T be the time of adding a new
record into the database. The knowledge of the attacker
includes: (1) the information that a new record is added into
the database at time T; (2) the volume set that covers each
possible range query once before and after T, respectively.
Goal of Attack. There are two goals of our attack. The main
goal is to recover the value of newly added record. The
second is database reconstruction, i.e., to recover the count
of each value in [1, N ] (before the update of the database).

3.1 Problem Formalization

To better illustrate our attack, we first formalize the under-
lying problem of our attack setting as follows.
Problem 1. Alice chooses a random integer N , where N > 1.
For i ∈ [N ], Alice chooses a random integer xi and sets xi =
vol([i, i]q), where xi > 0. Alice computes vol([i, j]q) = xi +
xi+1 + ... + xj = A[i,j] for i, j ∈ [N ] s.t. i ≤ j, and sets
A={A[i,j]}i,j∈[N ] s.t. i≤j . Alice then chooses a random r ∈ [N ]
and sets xr = xr + 1 (i.e., increase xr by 1). After that, Alice
computes vol([i, j]q) = xi + xi+1 + ...+ xj = B[i,j] for i, j ∈
[N ] s.t. i ≤ j, and sets B={B[i,j]}i,j∈[N ] s.t. i≤j . Finally, Alice
gives (A,B) to Bob. Bob attempts to obtain (1) the value of r; (2)
the value of xi for i ∈ [N ].
Example 1. Fig. 2 gives an example of our attack setting. As
shown in the figure, in the database EDB with domain size
N = 6, the database counts corresponding to each value
in [N ] are {2, 2, 15, 5, 3, 3}. There are a total of 21 distinct
range queries. The knowledge of an attacker (for “Case 1
(Step 3)”) includes: (1) the volumes of all 21 range queries
before and after time T, i.e., Knowledge III and Knowledge
VI-1 in Fig. 2; (2) a new record is added into EDB at time
T, i.e., Knowledge IV-1 in Fig. 2. The attacker aims (1) to
recover the value of the added record, i.e., Knowledge V-1
in Fig. 2; (2) to recover the exact count of each value in [1, 6],
i.e., Knowledge II in Fig. 2.

3.2 Definition and Observation

Full-cover volume set. For a volume set that covers each
possible range once, we call it full-cover volume set. Since the
attacker can identify whether a query is repeated if there is
no database update happens, we can obtain two full-cover
volume sets. By A, B we denote the full-cover volume sets
before and after the database update.
• Observation 3.1: Since there is only one record being

added, the volumes in A will only increase by 1 if change.
• Observation 3.2: Since the database is dense, given A and

B, the following equation holds: |A| = |B| = N(N +1)/2.
Update-volume set and update-volume count. For our
setting of attack, after the database updates, some of the
volumes will change. Let U be the set containing all volumes
that will change when the database update occurs. U is
called the update-volume set, and the size of U is called

Authorized licensed use limited to: Cornell University Library. Downloaded on August 20,2020 at 00:28:51 UTC from IEEE Xplore.  Restrictions apply. 



1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3015997, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. , NO. , 2020 5

Knowledge I: the domain size N=6.

Knowledge II:

Knowledge III: volume set {2,2,3,3,4,5,6,8,11,15,17,19,20,22,23,24,25,26,27,28,30}.

Knowledge V-1: the value of newly added record is 2.
Knowledge VI-1: volumes set {2,3,3,3,5,5,6,8,11,15,18,20,20,23,23,25,26,26,28,29,31}.

Case 1 (Step 3): a new record is added into EDB at Time T, whose value is 2.
Knowledge IV-1 : a new record is added into EDB at T.

Knowledge V-2: the value of newly added record is 1.
Knowledge VI-2: volumes set {2,3,3,3,5,5,6,8,11,15,17,20,20,22,23,25,25,26,28,28,31}.

Subcase1 of Case 2 (Step 3): a new record is added into EDB at Time T, whose value is 1.
Knowledge IV-2: a new record is added into EDB at T.

Knowledge V-3: the value of newly added record is 6.
Knowledge VI-3: volumes set {2,2,3,4,4,5,7,8,12,15,17,19,20,22,23,24,25,27,27,29,31}.

Subcase2 of Case 2 (Step 3): a new record is added into EDB at Time T, whose value is 6.
Knowledge IV-3: a new record is added into EDB at T.

Fig. 2 Example of attack setting for passive update recovery
attack with one database update.

the update-volume count. Given the update-volume count,
denoted by C, we have the following observations:

• Observation 3.3: Let the value of newly added record be
r, then the following equation holds: C = r(N + 1− r).

• Observation 3.4: The smallest element in U is vol([r, r]q).

Elementary and complemented elementary range queries.
Similar to [15], we call the range queries [1, 1]q, [1, 2]q, ...,
[1, N ]q the elementary range queries. We further denote the
range queries [1, N ]q, [2, N ]q, ..., [N,N ]q the complemented
elementary range queries. We have the following three obser-
vations:
• Observation 3.5: If the update-volume count equals the

domain size (i.e., C = N ), then the value of newly added
record is 1 or N (from Observation 3.3), and the update-
volume set must be the volume set of elementary range
queries or complemented elementary range queries.

• Observation 3.6: If one knows the volumes of all elemen-
tary range queries, then the count of value t (for t ∈ [2, N ])
is the difference between vol([1, t− 1]q) and vol([1, t]q).

• Observation 3.7: If one knows the volumes of all comple-
mented elementary range queries, then the count of value
t (for t ∈ [N − 1]) is the difference between vol([t,N ]q)
and vol([t+ 1, N ]q).

3.3 Attack Overview

Our attack consists of three steps. In Step 1, the aim is to
obtain the update-volume count. The task of Step 2 is to
compute the domain size N and the value of newly added
record. The aim of Step 3 is to recover the count of value
in [N ]. In particular, if the update-volume count equals N ,
Step 3 fully reconstructs the database counts, i.e., it recovers
the exact count of each value in [N ].

The first procedure in Step 1 is to collect the full-cover
volume set before and after the database update, denoted by
A and B, respectively. Taking Observation 3.1 into account,
we adopts the following approach to obtain the update-
volume count: first sort A and B in ascending order to ob-
tain two new sets A′={a1, a2, ..., an} and B′={b1, b2, ..., bn}
respectively, where n = |A| = |B|. Then count how many ai
satisfying bi − ai = 1 for i ∈ [n]. The number of such ai is
the update-volume count.

The second step stems from Observations 3.2, 3.3. In
particular, from Observation 3.2, we can recover the domain
sizeN . WithN and the update-volume count obtained from
Step 1, we can recover the value of the added record using
Observation 3.3.

The third step stems from Observations 3.4, 3.5, 3.6, 3.7.
For the case where C is not equal to N , from Observation
3.4, we can recover the volume of [r, r]q . While for the case
where C equals N , we can recover the exact count of each
value in [N ]. Specifically, based on Observation 3.5, we
first obtain the volume set of elementary range queries or
complemented elementary range queries. With the obtained
volume set, we can recover the whole database counts using
Observation 3.6 and Observation 3.7.

3.4 Description of Attack

We now present the description of our attack.
• Step 1: Obtain the update-volume countC. First initialize

an empty set S and collect all volumes. Let A, B be
the full-cover volume set before and after the update
of the database, respectively. After obtaining A and B,
sort A, B in ascending order to obtain two new set-
s A′={a1, a2, ..., an} and B′={b1, b2, ..., bn} respectively,
where n is the size of A (or B). For i ∈ [n], for each ai
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satisfying bi − ai = 1, add ai into S in ascending order.
Finally, obtain S = {a′1, a′2, ..., a′|S|} and C = |S|.

• Step 2: Recover the domain size N and the value of
newly added record r. With the knowledge of n = |A| =
|B|, obtain N from equation n = N(N + 1)/2. Then, with
the knowledge of C and N , obtain r from equation C =
r(N + 1− r).

• Step 3: Recover the count of value in [N ]. There are two
cases:
Case 1: C 6= N . Find the smallest value in S, denoted by
a, obtain vol([r, r]q) = a.
Case 2: C = N . Knowing C = N , we have that r = 1
or r = N from Step 2. Hence, S is the volume set of
elementary range queries or complemented elementary
range queries. For i ∈ [|S|], do: if i = 1, set s1 = a′1;
otherwise, set si = a′i − a′i−1. Finally, we have the follow-
ing two cases:
– Case 1: r = 1. For i ∈ [|S|], set vol([i, i]q) = si;
– Case 2: r = N . For i ∈ [|S|], set vol([N + 1− i,N + 1−
i]q) = si.

Example of attack. In the following, we present an example
from Fig. 2 to show the process of the attack in Section 3.
For “Case 1 (Step 3)” in Fig. 2:
• Step 1. We obtain A′ and B′, where A′ is Knowledge III in

Fig. 2 and B′ is Knowledge VI-1 in Fig. 2. With A′ and B′,
we can obtain S = {2, 4, 17, 19, 22, 24, 25, 27, 28, 30} and
C = |S| = 10.

• Step 2. With the knowledge of n = |A′| = |B′| = 21
and 21 = N(N + 1)/2 (from Observation 3.2), we obtain
N = 6. Knowing C = |S| = 10 and 10 = r(6 + 1 − r)
(from Observation 3.3), we can obtain two candidates of
r: 2 or 5.

• Step 3. Since C = 10 6= N = 6 and 2 is the smallest value
in S, we have that vol([2, 2]q) = 2 or vol([5, 5]q) = 2.

For “Subcase 1 of Case 2 (Step 3)” in Fig. 2:
• Step 1. We obtain A′ and B′, where A′ is Knowledge III in

Fig. 2 and B′ is Knowledge VI-2 in Fig. 2. With A′ and B′,
we can obtain S = {2, 4, 19, 24, 27, 30} and C = |S| = 6.

• Step 2. With the knowledge of n = |A′| = |B′| = 21
and 21 = N(N + 1)/2 (from Observation 3.2), we obtain
N = 6. Knowing C = |S| = 6 and 6 = r(6 + 1− r) (from
Observation 3.3), we can obtain two candidates of r: 1 or
6.

• Step 3. Since C = N = 6. For i ∈ [6], do: if i = 1, set
s1 = 2; otherwise, set s2 = a′2−a′1 = 2, s3 = a′3−a′2 = 15,
s4 = a′4−a′3 = 5, s5 = a′5−a′4 = 3, and s6 = a′6−a′5 = 3.
We have the following two cases:
– Case 1: r = 1. For i ∈ [6], set vol([1, 1]q) = s1 = 2,
vol([2, 2]q) = s2 = 2, vol([3, 3]q) = s3 = 15,
vol([4, 4]q) = s4 = 5, vol([5, 5]q) = s5 = 3, and
vol([6, 6]q) = s6 = 3.

– Case 2: r = 6. For i ∈ [6], set vol([6, 6]q) = s1 = 2,
vol([5, 5]q) = s2 = 2, vol([4, 4]q) = s3 = 15,
vol([3, 3]q) = s4 = 5, vol([2, 2]q) = s5 = 3, and
vol([1, 1]q) = s6 = 3.

For “Subcase 2 of Case 2 (Step 3)” in Fig. 2:
• Step 1. We obtain A′ and B′, where A′ is Knowledge III in

Fig. 2 and B′ is Knowledge VI-3 in Fig. 2. With A′ and B′,
we can obtain S = {3, 6, 11, 26, 28, 30} and C = |S| = 6.

• Step 2. With the knowledge of n = |A′| = |B′| = 21
and 21 = N(N + 1)/2 (from Observation 3.2), we obtain
N = 6. Knowing C = |S| = 6 and 6 = r(6 + 1− r) (from
Observation 3.3), we can obtain two candidates of r: 1 or
6.

• Step 3. Since C = N = 6. For i ∈ [6], do: if i = 1, set
s1 = 3; otherwise, set s2 = a′2− a′1 = 3, s3 = a′3− a′2 = 5,
s4 = a′4−a′3 = 15, s5 = a′5−a′4 = 2, and s6 = a′6−a′5 = 2.
We have the following two cases:
– Case 1: r = 1. For i ∈ [6], set vol([1, 1]q) = s1 =
3, vol([2, 2]q) = s2 = 3, vol([3, 3]q) = s3 = 5,
vol([4, 4]q) = s4 = 15, vol([5, 5]q) = s5 = 2, and
vol([6, 6]q) = s6 = 2.

– Case 2: r = 6. For i ∈ [6], set vol([6, 6]q) = s1 =
3, vol([5, 5]q) = s2 = 3, vol([4, 4]q) = s3 = 5,
vol([3, 3]q) = s4 = 15, vol([2, 2]q) = s5 = 2, and
vol([1, 1]q) = s6 = 2.

3.5 Explanation and Analysis

Explanation and analysis of Step 1. Step 1 consists of three
procedures, we present the analysis of each procedure as
follows.
• The first procedure is to collect all volumes. Since the

attacker could identify whether the same query has been
issued via the access of storage and the database is dense,
the attacker needs to observe N(N + 1)/2 distinct range
queries (and obtain the corresponding volumes). Similar
to [15], if we assume the query distribution is uniform,
the volume collection procedure is the classic coupon col-
lector’s problem. In our setting, there are O(N2) possible
range queries, coupon collection implies thatO(N2 logN)
range queries suffice. Otherwise, if the query distribution
is non-uniform, as noted in [15], O(α−1N2 logN) range
queries suffice if the least likely range has probability

α
N(N+1)/2 .

• The second procedure is to sort A and B in ascending
order. The complexity is O(n log n) if Heap Sort or Merge
Sort is used.

• The third procedure is to extract each ai satisfying
bi − ai = 1 from A. The complexity is O(n). Based on
Observation 3.1, this procedure can help us identify the
set of volume that will change when the database update
occurs.

Explanation and analysis of Step 2. There are two pro-
cedures in Step 2, we now present the analysis of each
procedure as follows.
• The first procedure is to recover N . Since the attacker can

identify whether the same range query is repeated and
the database is dense, it can obtain exactly N(N + 1)/2
volumes corresponding to distinct range queries. Based
on Observation 3.2, this equals the size of A (or B). Hence,
it is easy for the attacker to compute N . The complexity is
to solve a quadratic equation.

• The second procedure is to obtain r. From Observation
3.3, we have C = r(N + 1 − r). Since the attacker
knows C (from Step 1) and N (from the first procedure
shown above), it is easy to compute the value of r. The
complexity is to solve a quadratic equation. Note that the
value of newly added record can only be recovered up
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to reflection, that is, for any value r, the recovered value
could be for r or N + 1− r.

Explanation and analysis of Step 3. This step consists of
two cases. We give the analysis of each case as follows.
• Case 1: In this case, based on Observation 3.4, the volume

of [r, r]q is the smallest one in S.
• Case 2: Since C = N , from Step 2, we have that r = 1

or r = N . Based on Observation 3.5, we conclude that
S is the volume set of elementary or complemented
elementary range queries. If r = 1, from Observation
3.6, we have that a′i − a′i−1 must be the volume of [i, i]
for 1 < i ≤ N . Likewise, if r = N , from Observation
3.7, we have that a′i − a′i−1 must be the volume of
[N + 1 − i,N + 1 − i] for 1 ≤ i < N . The complexity
is O(N).

Explanations of observations. Observations 3.1, 3.2, 3.4,
3.6, 3.7 are straightforward, in the following we mainly
present the explanations of Observation 3.3 and Observa-
tion 3.5.
• Explanation of Observation 3.3. Note that the update-

volume count reflects the number of range queries con-
taining the value of newly added record r. Hence, if we
can calculate the number of range queries containing r,
then we can obtain the update-volume count. For a range
query [a, b], if it contains r, then one of the following cases
must be satisfied: (1) Case 1: a = r and a ≤ b ≤ N ;
(2) Case 2: 1 ≤ a < r and r ≤ b ≤ N . In Case 1,
there are N + 1 − r possibilities. In Case 2, there are
(r − 1)(N + 1 − r) possibilities. Combining Case 1 and
Case 2, the total possibilities are r(N + 1 − r). Hence,
there are r(N + 1− r) range queries containing r.

• Explanation of Observation 3.5. For all range queries,
only [1, 1]q , [1, 2]q ,..., [1, N ]q contain value 1, which are
the elementary range queries. Hence, if the value of newly
added record r is 1, then the update-volume set must be
the volume set of elementary range queries. Likewise, for
all range queries, only [1, N ]q , [2, N ]q ,..., [N,N ]q contain
value N , which are the complemented elementary range
queries. Hence, if the value of newly added record r is
N , then the update-volume set must be the volume set of
complemented elementary range queries.

4 PASSIVE UPDATE RECOVERY ATTACK WITH TWO
UPDATES

The attack in Section 3 mainly deals with the case of only
one database update. In this section, we consider a setting
where there are two database updates.
Setting of Attack. The setting is the same with that of the
attack in Section 3, except that there is one more database
update in the sense that another record with a different val-
ue is added4. Since the database is dense, the two inserted
records are for two values that already exist in the encrypted
dataset.
Knowledge of Attacker. By T1, T2 we denote the times
of adding the first record and the second record into the
database, respectively. The knowledge of the attacker in-
cludes: (1) the information that two different records are

4. We note that the values of the two records are different since if
they are identical, the setting is the same as Section 3.

added into the database at T1 and T2, respectively; (2)
the volume set that covers each possible range query once
before T1, after T1 but before T2, and after T2, respectively.
Goal of Attack. There are two goals of the attack. The main
goal is to recover the values of newly added records. The
second is to recover the count of each value in [1, N ] before
the first update.

4.1 Problem Formalization

We formalize the underlying problem of our attack setting
in this section as follows.
Problem 2. Alice chooses a random integer N , where N > 1.
For i ∈ [N ], Alice chooses a random integer xi (where xi > 0),
N(N + 1)/2 distinct integers (each chosen integer is denoted by
ai,j for i, j ∈ [N ] s.t. i ≤ j), and sets xi = vol([i, i]q). Alice
then computes vol([i, j]q) = xi + xi+1 + ... + xj = A[i,j] for
i, j ∈ [N ] s.t. i ≤ j, and sets A={(ai,j , A[i,j])}i,j∈[N ] s.t. i≤j .
At time T1, Alice chooses a random r1 ∈ [N ] and sets xr1 =
xr1+1 (i.e., increase xr1 by 1). In addition, for i, j ∈ [N ] s.t. i ≤
j, she sets bi,j = ai,j if r1 /∈ [i, j] and chooses a new distinct
integer bi,j if r1 ∈ [i, j]. After that, she computes vol([i, j]q) =
xi + xi+1 + ... + xj = B[i,j] for i, j ∈ [N ] s.t. i ≤ j, and
sets B={(bi,j , B[i,j])}i,j∈[N ] s.t. i≤j . At time T2, Alice chooses a
random r2 ∈ [N ] and sets xr2 = xr2 +1 (i.e., increase xr2 by 1).
In addition, for i, j ∈ [N ] s.t. i ≤ j, she sets ci,j = bi,j if r2 /∈
[i, j] and chooses a new distinct integer ci,j if r2 ∈ [i, j]. After
that, she computes vol([i, j]q) = xi+xi+1+ ...+xj = C[i,j] for
i, j ∈ [N ] s.t. i ≤ j, and sets C={(ci,j , C[i,j])}i,j∈[N ] s.t. i≤j .
Finally, Alice gives (A,B,C) to Bob. Bob attempts to obtain (1) the
values of r1 and r2; (2) the value of xi for i ∈ [N ].
Example 2. Fig. 3 gives an example of the attack setting
in this section. The database EDB is the same with the
database in Fig. 2. In this example, the knowledge of an
attacker includes: (1) the volume pairs of all 21 range queries
before time T1, after time T1 but before time T2, and after
time T2, respectively, i.e., Knowledge III, Knowledge VI and
Knowledge IX in Fig. 3; (2) two new records are added into
EDB at time T1 and time T2 separately, i.e., Knowledge IV
and Knowledge VII in Fig. 3. The target of the attacker
include (1) to recover the value of each added record, i.e.,
Knowledge V and VIII in Fig. 3; (2) to recover the exact
count of each value in [1, 6], i.e., Knowledge II in Fig. 3.

4.2 Notation

Let X, Y be pair sets consists of pairs (x1,i, x2,i)i∈[n],
(y1,i, y2,i)i∈[n] respectively, whereby if x1,i = y1,i then
x2,i = y2,i. By X ∩ Y we denote the intersection of X
and Y, i.e., X ∩ Y = {(x1,i, x2,i) or (y1,i, y2,i)|x1,i =
y1,i & x2,i = y2,i}i∈[n]. By X − Y we denote the subset
of X that is different from Y according to the first entry
of each pair, i.e., X − Y = {(x1,i, x2,i)|x1,i 6= y1,j}i,j∈[n].
Let X2 be the set containing the second entry of each pair
in X, i.e., X2 = {x2,i}i∈[n]. By X2(−1) we denote the set
containing the result of each element in X2 minus by 1, i.e.,
X2(−1) = {x2,i − 1|x2,i ∈ X2}i∈[n]. Similarly, by X2(+1) we
denote the set containing the result of each element in X2

increase by 1, i.e., X2(+1) = {x2,i + 1|x2,i ∈ X2}i∈[n]. By
X2 − Y2 we denote the set containing all elements in X2 but
not in Y2.

Authorized licensed use limited to: Cornell University Library. Downloaded on August 20,2020 at 00:28:51 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. , NO. , 2020 8

Knowledge I: the domain	size	N=6.
Knowledge II:

Knowledge III: volume pair set {(a1,1,2),(a1,2,4), (a1,3,19), (a1,4,24), (a1,5,27), (a1,6,30),
(a2,2,2), (a2,3,17), (a2,4,22), (a2,5,25), (a2,6,28), (a3,3,15), (a3,4,20), (a3,5,23),
(a3,6,26), (a4,4,5), (a4,5,8), (a4,6,11), (a5,5,3), (a5,6,6), (a6,6,3)}

Knowledge V: the value of newly added record at T1 is 2.

Time T1: a new record is added into EDB, whose value is 2.
Knowledge IV: a new record is added into EDB at T1.

Time T2: a new record is added into EDB, whose value is 3.

Knowledge VI: volume pair set {(a1,1,2),(b1,2,5), (b1,3,20), (b1,4,25), (b1,5,28), (b1,6,31),
(b2,2,3), (b2,3,18), (b2,4,23), (b2,5,26), (b2,6,29), (a3,3,15), (a3,4,20), (a3,5,23),
(a3,6,26), (a4,4,5), (a4,5,8), (a4,6,11), (a5,5,3), (a5,6,6), (a6,6,3)}

Knowledge VIII: the value of newly added record at T2 is 3.
Knowledge IX: volume pair set {(a1,1,2),(b1,2,5), (c1,3,21), (c1,4,26), (c1,5,29), (c1,6,32),

(b2,2,3), (c2,3,19), (c2,4,24), (c2,5,27), (c2,6,30), (c3,3,16), (c3,4,21), (c3,5,24),
(c3,6,27), (a4,4,5), (a4,5,8), (a4,6,11), (a5,5,3), (a5,6,6), (a6,6,3)}

Knowledge VII: a new record is added into EDB’ at T2.

Fig. 3 Example of attack setting for passive update recovery
attack with two database updates.

4.3 Definition and Observation

Full-cover access-volume pair set. Recall the attacker can
distinguish different range queries by observing the access
of its storage. Hence, given a range query, the attacker
knows the volume as well as its access of storage. We define
the pair (access location,volume) as a access-volume pair. For
a set consisting of access-volume pairs that covers each
possible range query once, we call it full-cover access-volume
pair set. Intuitively, we can obtain three full-cover access-
volume pair sets. By A, B, C we denote the full-cover access-
volume pair set before the first database update, after the
first database update but before the second database update,
and after the second database update, respectively.

• Observation 4.1: Similar to Observation 3.2, since the
database is dense, given A, B, C, the following equation
holds: |A| = |B| = |C| = N(N + 1)/2.

Update-access-volume set, update-access-volume coun-
t and update-intersection count. For our setting, some
access-volume pairs will change when the database update
occurs. For a set U containing all access-volume pairs whose
values will change once the database update happens, we call
it the Type-I update-access-volume set. For a set U containing
all access-volume pairs whose values have been changed after
the database update, we call it the Type-II update-access-
volume set. We call the size of Type-I or Type-II update-
access-volume set the update-access-volume count. If set U1

is the Type-II update-access-volume set for the first update
and set U2 is the Type-I update-access-volume set for the
second update, we call the intersection of U1 and U2 the
update-intersection set and the size of the update-intersection
set the update-intersection count.
• Observation 4.2: The set containing all the access-volume

pairs in A that are different from any access-volume pair
in B is the Type-I update-access-volume set for the first
update, and its size is the corresponding update-access-
volume count. The set containing all the access-volume
pairs in B that are different from any access-volume pair
in A is the Type-II update-access-volume set for the first
update, and its size is the corresponding update-access-
volume count. Similarly, the set containing all the access-
volume pairs in B that are different from any access-
volume pair in C is the Type-I update-access-volume set
for the second update, and its size is the corresponding
update-access-volume count. The set containing all the
access-volume pairs in C that are different from any
access-volume pair in B is the Type-II update-access-
volume set for the second update, and its size is the
corresponding update-access-volume count.

• Observation 4.3: Similar to Observation 3.3, let C be
the update-access-volume count and the value of newly
added record be r, the following equation holds: C =
r(N + 1− r).

• Observation 4.4: Let the value of the first added record
be r1, the value of the second added record be r2, U1,1 be
the Type-I update-access-volume set for the first update,
U1,2 be the Type-II update-access-volume set for the first
update, U2,1 be the Type-I update-access-volume set for
the second update, U2,2 be the Type-II update-access-
volume set for the second update. From Observation 4.3,
the recovered value of newly added record will have two
possible values, up to reflection. Without loss of generali-
ty, let r̂1 and N + 1− r̂1 be the two possible values of r1,
r̂2 and N +1− r̂2 be the two possible values of r2, where
r̂1 ≤ (N+1)/2 ≤ N+1− r̂1, r̂2 ≤ (N+1)/2 ≤ N+1− r̂2.
In addition, Let x1 be the smallest volume in U2

1,1, x2
be the smallest volume in U2

2,1. We can obtain two sets
S1 = U1,2−U1,2∩U2,1 and S2 = U2,1−U1,2∩U2,1, and if
we sort the elements in S2(−1)

1 , S2
2 in ascending order, we

will obtain sets {s1,1, s1,2, ..., s1,ŝ1}, {s2,1, s2,2, ..., s2,ŝ2},
respectively. We have:
– If (r̂1, r̂2) is the result, we have two cases:
∗ |r̂1 − r̂2| 6= 1: we have vol([r̂1, r̂1]q) = x1, vol([r̂2,
r̂2]q) = x2.
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∗ |r̂1 − r̂2| = 1: we have the following two cases:
(1) r̂2 = r̂1 + 1: we have ŝ1 = r̂1, ŝ2 = N + 1 − r̂2,
{vol([r̂1 + 1− i, r̂1]) = s1,i}i∈[r̂1], {vol([r̂2, i+ r̂2 −
1]) = s2,i}i∈[N+1−r̂2].

(2) r̂1 = r̂2 + 1: we have ŝ1 = N + 1 − r̂1, ŝ2 = r̂2,
{vol([r̂1, i + r̂1 − 1]) = s1,i}i∈[N+1−r̂1], {vol([r̂2 +
1− i, r̂2]) = s2,i}i∈[r̂2].

– If (r̂1, N +1− r̂2) is the result, we have vol([r̂1, r̂1]q) =
x1, vol([N + 1− r̂2, N + 1− r̂2]q) = x2;

– If (N + 1 − r̂1, r̂2) is the result, we have vol([N + 1 −
r̂1, N + 1− r̂1]q) = x1, vol([r̂2, r̂2]q) = x2;

– If (N + 1 − r̂1, N + 1 − r̂2) is the result, we have two
cases:
∗ |N+1− r̂1− (N+1− r̂2)| 6= 1, we have vol([N+1−
r̂1, N+1− r̂1]q) = x1, vol([N+1− r̂2, N+1− r̂2]q) =
x2;
∗ |N + 1− r̂1 − (N + 1− r̂2)| = 1, we have two cases:
(1) N + 1 − r̂2 = (N + 1 − r̂1) + 1: we have ŝ1 =

N+1−r̂1, ŝ2 = r̂2, {vol([N+2−r̂1−i,N+1−r̂1]) =
s1,i}i∈[N+1−r̂1], {vol([N + 1 − r̂2, i + N − r̂2]) =
s2,i}i∈[r̂2].

(2) N+1− r̂1 = (N+1− r̂2)+1: we have ŝ1 = r̂1, ŝ2 =
N+1−r̂2, {vol([N+1−r̂1, i+N−r̂1]) = s1,i}i∈[r̂1],
{vol([N +2− r̂2− i,N +1− r̂2]) = s2,i}i∈[N+1−r̂2].

• Observation 4.5: Given r̂1, N + 1 − r̂1, r̂2, N + 1 − r̂2
defined in Observation 4.4, we have:
– If (r̂1, r̂2) is the result, we have two cases:
∗ If r̂1 < r̂2, the update-intersection count is r̂1(N +
1− r̂2);
∗ If r̂2 < r̂1, the update-intersection count is r̂2(N +
1− r̂1).

– If (r̂1, N + 1 − r̂2) is the result, the update-intersection
count is r̂1 · r̂2;

– If (N + 1 − r̂1, r̂2) is the result, the update-intersection
count is r̂1 · r̂2;

– If (N + 1 − r̂1, N + 1 − r̂2) is the result, we have two
cases:
∗ IfN+1−r̂1 < N+1−r̂2, then the update-intersection

count is r̂2(N + 1− r̂1);
∗ IfN+1−r̂2 < N+1−r̂1, then the update-intersection

count is r̂1(N + 1− r̂2).
• Observation 4.6: Given (r2 = r1 + 1, {vol([i, r1]q)}i∈[r1],
{vol([r2, i]q)}i∈[r2,N ]) or (r1 = r2 + 1,
{vol([r1, i]q)}i∈[r1,N ], {vol([i, r2]q)}i∈[r2]), we can recover
the counts of values in [N ] as follows:
– For (r2 = r1 + 1, {vol([i, r1]q)}i∈[r1],
{vol([r2, i]q)}i∈[r2,N ]), compute vol([i, i]q) =
vol([i, r1]q) − vol([i + 1, r1]q) for i ∈ [r1 − 1],
vol([r2 + i, r2 + i]q) = vol([r2, i + r2]q) − vol([r2, i +
r2 − 1]q) for i ∈ [N − r2];

– For (r1 = r2 + 1, {vol([r1, i]q)}i∈[r1,N ],
{vol([i, r2]q)}i∈[r2]), compute vol([i, i]q) =
vol([i, r2]q) − vol([i + 1, r2]q) for i ∈ [r2 − 1],
vol([r1 + i, r1 + i]q) = vol([r1, i + r1]q) − vol([r1, i +
r1 − 1]q) for i ∈ [N − r1].

4.4 Attack Overview

The attack consists of three steps. In Step 1, we aim to obtain
the update-access-volume count and the update-intersection

count. Step 2 is to recover the domain size and the values of
newly added records. Finally, we recover the count of value
in [N ] in Step 3. In particular, if the difference between the
values of the two added records is 1, Step 3 can recover the
count of each value in [N ].

The first procedure in Step 1 is to collect the full-cover
access-volume pair set before the first update, denoted by A,
after the first update but before the second update, denoted
by B, and after the second update, denoted by C. With A,
B and C, based on Observation 4.2, we further obtain the
following sets: (1) the set containing the access-volume pairs
that have been changed after the first update (i.e., Type-
II update-access-volume set for the first update), denoted
by D; (2) the set containing the access-volume pairs that
will change when the second update occurs (i.e., Type-I
update-access-volume set for the second update), denoted
by E; (3) the set containing the access-volume pairs that
have been changed after the first update and will change
when the second update occurs, denoted by F; (4) the set
containing the access-volume pairs that will change when
the first update occurs, denoted by G. Finally, we can obtain
the update-access-volume count for the first update, the
update-access-volume count for the second update and the
update-intersection count, which is the size of D, E and F,
respectively.

Step 2 stems from Observations 4.1, 4.3, 4.5. In par-
ticular, we can easily recover the domain size N based
on Observation 4.1. With N and the update-access-volume
counts for the first update and the second update obtained
from Step 1, we can recover four candidate pairs of the
values of newly added records using Observation 4.3. To
check whether the candidate pair is the result, the attack
runs a further checking step based on Observation 4.5.

Step 3 stems from Observations 3.5, 4.4. The main task
of this step is to recover the count of value in [N ]. If D or
E equals N , we can recover the count of each value in [N ]
as in Section 3. Otherwise, we employ another approach.
Specifically, there are two cases. Let r1, r2 be the recovered
values of newly added records. For the case where |r1 −
r2| 6= 1, the attack can only recover the counts of [r1, r1]q
and [r2, r2]q . For the case where |r1− r2| = 1, the attack can
fully reconstruct the counts of the whole database.

4.5 Description of Attack
The attack consists of the following steps:
• Step 1: Obtain the update-access-volume count and

the update-intersection count. Let A, B, and C be the
full-cover access-volume pair sets before T1, after T1

but before T2, and after T2, respectively. Obtain set
D = B − A ∩ B, E = B − B ∩ C, and F = D ∩ E. In
addition, obtain G = A − A ∩ B for future use (in Step
3). Finally, obtain the update-access-volume count for the
first update |D|, the update-access-volume count for the
second update |E|, and the update-intersection count |F|.

• Step 2: Recover the domain size N , the value of the
first added record r1 and the value of the second added
record r2. Let n be the size of A (or B, or C), first obtain
N from equation n = N(N + 1)/2. With the knowledge
of |D|, obtain r1 from equation |D| = r1(N + 1 − r1),
denoted by r̂1 or N + 1 − r̂1, where r̂1 ≤ (N + 1)/2 ≤
N + 1 − r̂1; similarly, with the knowledge of |E|, obtain
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r2 from equation |E| = r2(N + 1 − r2), denoted by r̂2 or
N + 1 − r̂2, where r̂2 ≤ (N + 1)/2 ≤ N + 1 − r̂2. So,
we have the following candidate pairs of (r1, r2): (r̂1, r̂2),
(r̂1, N+1− r̂2), (N+1− r̂1, r̂2), (N+1− r̂1, N+1− r̂2)5.
We further process the above candidate pairs as follows:
– For candidate pair (r̂1, r̂2),
∗ if r̂1 < r̂2, check whether the equation r̂1(N + 1 −
r̂2) = |F| holds, if yes, record (r̂1, r̂2) as the final
result;
∗ if r̂2 < r̂1, check whether the equation r̂2(N + 1 −
r̂1) = |F| holds, if yes, record (r̂1, r̂2) as the final
result.

– For candidate pair (r̂1, N + 1 − r̂2), check whether the
equation r̂1 · r̂2 = |F| holds, if yes, record (r̂1, N+1− r̂2)
as the final result;

– For candidate pair (N + 1 − r̂1, r̂2), check whether the
equation r̂1 · r̂2 = |F| holds, if yes, record (R+1− r̂1, r̂2)
as the final result;

– For candidate pair (N + 1− r̂1, N + 1− r̂2),
∗ ifN+1− r̂1 < N+1− r̂2, check whether the equation
(N + 1 − r̂1)r̂2 = |F| holds, if yes, record (N + 1 −
r̂1, N + 1− r̂2) as the final result;
∗ ifN+1− r̂2 < N+1− r̂1, check whether the equation
(N + 1 − r̂2)r̂1 = |F| holds, if yes, record (N + 1 −
r̂1, N + 1− r̂2) as the final result.

• Step 3: Recover the count of value in [N ]. First check
whether |D| or |E| equalsN , if yes, let S = {a1, a2, ..., a|S|}
be the volume set containing volumes in D2(−1) (if
|D| = N ) or E2 − F2 + F2(−1) (if |D| 6= N and |E| = N ),
where the volumes in S are sorted in ascending order.
Intuitively, S is the volume set of elementary range queries
or complemented elementary range queries. For i ∈ [|S|],
do: if i = 1, set s1 = a1; otherwise, set si = ai − ai−1.
Finally, we have the following two cases:
– Case 1: r̂1 = 1 (if |D| = N ) or r̂2 = 1 (if |D| 6= N and
|E| = N ). For i ∈ [|S|], set vol([i, i]q) = si;

– Case 2: N +1− r̂1 = N (if |D| = N ) or N +1− r̂2 = N
(if |D| 6= N and |E| = N ). For i ∈ [|S|], set vol([N +1−
i,N + 1− i]q) = si.

Otherwise (i.e., |D| 6= N and |E| 6= N ), find the smallest
volume in G2, E2, denoted by x1, x2, respectively. Obtain
set S1 = G2−F2(−1), sort S1 in ascending order to obtain a
set {s1,1, s1,2, ..., s1,ŝ1}, Also, obtain set S2 = E2−F2, sort
S2 in ascending order to obtain a set {s2,1, s2,2, ..., s2,ŝ2}.
There are four cases:
Case 1: if (r̂1, r̂2) is the final result,
– If |r̂1 − r̂2| 6= 1, obtain vol([r̂1, r̂1]q) = x1,
vol([r̂2, r̂2]q) = x2.

– If |r̂1 − r̂2| = 1, do as follows:
∗ if r̂2 = r̂1 + 1, obtain that vol([r̂1 + 1 − i, r̂1]) =
s1,i for i ∈ [r̂1] and vol([r̂2, i + r̂2 − 1]) = s2,i for
i ∈ [N + 1 − r̂2]. Using the above knowledge, we
can obtain other counts of values in [N ] as follows:
compute vol([i, i]) = vol([i, r̂1]) − vol(i + 1, r̂1) for
i ∈ [r̂1 − 1], vol([r̂2 + i, r̂2 + i]) = vol([r̂2, i + r̂2]) −
vol(r̂2, i+ r̂2 − 1) for i ∈ [N − r̂2].
∗ if r̂1 = r̂2 + 1, obtain that vol([r̂1, i+ r̂1 − 1]) = s1,i

5. The case where r1 = r2 = (N + 1)/2 is included.

for i ∈ [N +1− r̂1] and vol([r̂2 +1− i, r̂2]) = s2,i for
i ∈ [r̂2]. Using the above knowledge, we can obtain
other counts of values in [N ] as follows: compute
vol([i, i]) = vol([i, r̂2])− vol(i+1, r̂2) for i ∈ [r̂2− 1],
vol([r̂1+i, r̂1+i]) = vol([r̂1, i+r̂1])−vol(r̂1, i+r̂1−1)
for i ∈ [N − r̂1].

Case 2: if (r̂1, N + 1 − r̂2) is the final result, obtain
vol([r̂1, r̂1]q) = x1, vol([N + 1− r̂2, N + 1− r̂2]q) = x2.
Case 3: if (N+1−r̂1, r̂2) is the final result, obtain vol([N+
1− r̂1, N + 1− r̂1]q) = x1, vol([r̂2, r̂2]q) = x2.
Case 4: if (N + 1− r̂1, N + 1− r̂2) is the final result,
– If |R+ 1− r̂1 − (N + 1− r̂2)| 6= 1, obtain vol([N + 1−
r̂1, N+1−r̂1]q) = x1, vol([N+1−r̂2, N+1−r̂2]q) = x2.

– If |N + 1− r̂1 − (N + 1− r̂2)| = 1, do as follows:
∗ if N + 1 − r̂2 = (N + 1 − r̂1) + 1, obtain that
vol([N + 2 − r̂1 − i,N + 1 − r̂1]) = s1,i for i ∈
[N+1− r̂1] and vol([N+1− r̂2, i+N− r̂2]) = s2,i for
i ∈ [r̂2]. Using the above knowledge, we can obtain
other counts of values in [N ] as follows: compute
vol([i, i]) = vol([i,N+1− r̂1])−vol(i+1, N+1− r̂1)
for i ∈ [N− r̂1], vol([N+1− r̂2+ i,N+1− r̂2+ i]) =
vol([N +1− r̂2, i+N +1− r̂2])− vol(N +1− r̂2, i+
(N + 1− r̂2)− 1) for i ∈ [r̂2 − 1].
∗ if N + 1 − r̂1 = (N + 1 − r̂2) + 1, obtain that
vol([N + 1 − r̂1, i + N − r̂1]) = s1,i for i ∈ [r̂1]
and vol([N + 2 − r̂2 − i,N + 1 − r̂2]) = s2,i for i ∈
[N +1− r̂2]. Using the above knowledge, we can ob-
tain other counts of values in [N ] as follows: compute
vol([i, i]) = vol([i,N+1− r̂2])−vol(i+1, N+1− r̂2)
for i ∈ [N− r̂2], vol([N+1− r̂1+ i,N+1− r̂1+ i]) =
vol([N +1− r̂1, i+N +1− r̂1])− vol(N +1− r̂1, i+
(N + 1− r̂1)− 1) for i ∈ [r̂1 − 1].

Example of attack. In the following, we present an example
from Fig. 3 to show the process of the attack in Section 4.

• Step 1. In this step, we obtain three sets A, B and C, where
A is Knowledge III in Fig. 3, B is Knowledge VI in Fig. 3
and C is Knowledge IX in Fig. 3. The size n of A (or B, or
C) is 21. We then obtain the following sets:
D = B − A ∩ B={(b1,2, 5), (b1,3, 20), (b1,4, 25), (b1,5, 28),
(b1,6, 31), (b2,2, 3), (b2,3, 18), (b2,4, 23), (b2,5, 26), (b2,6, 29)}.
E = B − B ∩ C = {((b1,3, 20), (b1,4, 25), (b1,5, 28), (b1,6,
31), (b2,3, 18), (b2,4, 23), (b2,5, 26), (b2,6, 29), (a3,3, 15), (a3,4,
20), (a3,5, 23), (a3,6, 26)}.
F = D∩E = {(b1,3, 20), (b1,4, 25), (b1,5, 28), (b1,6, 31), (b2,3,
18), (b2,4, 23), (b2,5, 26), (b2,6, 29)}.
G = A − A ∩ B = {(a1,2, 4), (a1,3, 19), (a1,4, 24), (a1,5,
27), (a1,6, 30), (a2,2, 2), (a2,3, 17), (a2,4, 22), (a2,5, 25), (a2,6,
28)}.
Hence, we obtain the update-access-volume count for the
first update |D| = 10, the update-access-volume count for
the second update |E| = 12, the the update-intersection
count |F| = 8.

• Step 2. Now we know n = 21 and 21 = N(N+1)/2 (from
Observation 4.1), we can obtain that N = 6. Knowing
|D| = 10 and 10 = r1(6 + 1− r1) (from Observation 4.3),
we can obtain two values: r̂1 = 2 or N + 1 − r̂1 = 5.
Similarly, knowing |E| = 12 and 12 = r1(6 + 1 − r1)
(from Observation 4.3), we can obtain two values: r̂2 = 3
or N + 1 − r̂2 = 4. Now, we have four candidate pairs:
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(2, 3), (2, 4), (5, 3), (5, 4). We further check the four candi-
date pairs as follows:
– For (2, 3), since 2 < 3, compute 2(6+1− 3) = 8, which

equals |F|, so (2, 3) is the result.
– For (2, 4), compute 2 · (6 + 1 − 4) = 6, which does not

equal |F|, so (2, 4) is not the result.
– For (5, 3), compute (6 + 1 − 5) · 3 = 6, which does not

equal |F|, so (5, 3) is not the result.
– For (5, 4), since 5 > 4, compute 4 ·(6+1−5) = 8, which

equals |F|, so (5, 4) is the result.
Hence, the final results are (r̂1 = 2, r̂2 = 3), (N +1− r̂1 =
5, N + 1− r̂2 = 4).

• Step 3. Since |D| = 10 6= N = 6 and |E| = 12 6=
N = 6, we proceed as follows. Knowing G, E, F,
we can obtain G2 = {4, 19, 24, 27, 30, 2, 17, 22, 25, 28},
E2 = {20, 25, 28, 31, 18, 23, 26, 29, 15, 20, 23, 26}, F2 =
{20, 25, 28, 31, 18, 23, 26, 29}, F2(−1) = {19, 24, 27, 30, 17,
22, 25, 28}. We can further obtain S1 = G2 − F2(−1) =
{4, 2}, sort S1 in ascending order to obtain s1,1 = 2, s1,2 =
4. Also, we can obtain S2 = E2 − F2 = {15, 20, 23, 26},
sort S2 in ascending order to obtain s2,1 = 15, s2,2 = 20,
s2,3 = 23, s2,4 = 26. We have the following two cases:
– For (r̂1 = 2, r̂2 = 3), since r̂2 = r̂1 + 1, we have

that vol([2, 2]q) = s1,1 = 2, vol([1, 2]q) = s1,2 = 4,
vol([3, 3]q) = s2,1 = 15, vol([3, 4]q) = s2,2 = 20,
vol([3, 5]q) = s2,3 = 23, vol([3, 6]q) = s2,4 = 26. Hence,
we have vol([1, 1]q) = vol([1, 2]q) − vol([2, 2]q) =
2, vol([4, 4]q) = vol([3, 4]q) − vol([3, 3]q) = 5,
vol([5, 5]q) = vol([3, 5]q) − vol([3, 4]q) = 3,
vol([6, 6]q) = vol([3, 6]q) − vol([3, 5]q) = 3. The counts
of values in [N ] are {2, 2, 15, 5, 3, 3}.

– For (N + 1 − r̂1 = 5, N + 1 − r̂2 = 4), since
N +1− r̂1 = N +1− r̂2+1, we have that vol([5, 5]q) =
s1,1 = 2, vol([5, 6]q) = s1,2 = 4, vol([4, 4]q) =
s2,1 = 15, vol([3, 4]q) = s2,2 = 20, vol([2, 4]q) =
s2,3 = 23, vol([1, 4]q) = s2,4 = 26. Hence, we have
vol([1, 1]q) = vol([1, 4]q) − vol([2, 4]q) = 3, vol([2, 2]q)
= vol([2, 4]q) − vol([3, 4]q) = 3, vol([3, 3]q) =
vol([3, 4]q)−vol([4, 4]q) = 5, vol([6, 6]q) = vol([5, 6]q)−
vol([5, 5]q) = 2. The counts of values in [N ] are
{3, 3, 5, 15, 2, 2}.

4.6 Explanation and Analysis
Explanation and analysis of Step 1. Step 1 mainly consists
of two procedures, we present the analysis as follows.
• The first procedure is to collect the full-cover access-

volume pair set. Different from the attack in Section 3, the
attack in this section records the access location for each
range query. The analysis regarding the query distribution
is the same with that of the attack in Section 3.

• The second procedure is to derive a couple of sets using A,
B and C. We explain this procedure as follows. A∩B is the
set containing all the access-volume pairs from A (or from
B) that do not change when the first update occurs. Hence,
D = B−A ∩ B is the set containing all the access-volume
pairs in B that are different from any access-volume pair
in A, G = A − A ∩ B is the set containing all the access-
volume pairs in A that are different from any access-
volume pair in B. From Observation 4.2, D (resp. G) is
the Type-II (resp. Type-I) update-access-volume set for the

first update and |D| is the (corresponding) update-access-
volume count. Similarly, B∩C is the set containing all the
access-volume pairs from B (or from C) that do not change
when the second update occurs. Hence, E = B− B ∩ C is
the set containing all the access-volume pairs in B that are
different from any access-volume pair in C. From Obser-
vation 4.2, E is the Type-I update-access-volume set for
the second update and |E| is the (corresponding) update-
access-volume count. Hence, F = D ∩ E is the update-
intersection set, |F| is the update-intersection count. The
complexity is O(N2).

Explanation and analysis of Step 2. Step 2 mainly consists
of two procedures, we present the analysis as follows.
• The first procedure is to recover N . Since there are N(N+
1)/2 distinct range queries, from Observation 4.1, we can
obtain N easily. The complexity is to solve a quadratic
equation.

• The second procedure is to compute the values of added
records r1 and r2. From Observation 4.3, we have two
possible values for r1 and two possible values for r2, up
to reflection. Without loss of generality, there are four
possible (r1, r2) candidate pairs. So the next task is to
determine which candidate pair(s) is the result. Based
on Observation 4.5, with the knowledge of the update-
intersection count F (obtained from Step 1), we can deter-
mine which candidate pair(s) is the result.

Explanation and analysis of Step 3. Step 3 gives the method
of recovering the count of value in [N ]. The first procedure
is to check whether |D| or |E| equals N , if yes, we can
run similar operations as in Case 2 of Step 3 in Section
3.4 to reconstruct the database counts. Otherwise, we adopt
another approach. Since G = A−A∩B and E = B−B∩C,
we have that G is the Type-I update-access-volume set for
the first update, E is the Type-I update-access-volume set
for the second update. From Observation 4.4, for the case
where |r̂1−r̂2| 6= 1, or (r̂1, N+1−r̂2), or (N+1−r̂1, r̂2) and
|N +1− r̂1− (N +1− r̂2)| 6= 1, we can obtain vol([r1, r1]q)
and vol([r2, r2]q) easily; for the case where |r̂1 − r̂2| = 1 or
|N + 1 − r̂1 − (N + 1 − r̂2)| = 1, we can fully reconstruct
the counts of the database. The complexity is O(N2), which
the size of A (or B, or C).
Explanations of observations. Since Observations 4.1, 4.2,
4.3, 4.6 are easy to understand, we do not provide the anal-
ysis here. In the following, we main present the explanation
of Observation 4.4 and Observation 4.5, respectively.
• Explanation of Observation 4.4. Since U2

1,1 is defined
to be the volume set of all range queries that will
change when the first update with value r1 occurs, we
have that the range query set corresponding to U2

1,1 is
{[i, j]q}i∈[1,r1],j∈[r1,N ], and vol([r1, r1]q) is the smallest
volume. Hence, the smallest volume of U2

1,1 must be
the volume of [r1, r1]q . Similarly, since U2

2,1 is defined
to be the volume set of all range queries that will
change when the second update with value r2 occurs,
we have that the range query set corresponding to U2

2,1

is {[i, j]q}i∈[1,r2],j∈[r2,N ], and vol([r2, r2]q) is the smallest
volume. Hence, the smallest volume of U2

2,1 must be the
volume of [r2, r2]q . U1,2 ∩U2,1 denotes the set containing
the access-volume pairs that have been changed after
the first update and will change once more when the
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second update occurs. Hence, S1 = U1,2 − U1,2 ∩ U2,1

is the set containing the access-volume pairs that has been
changed after the first update and will not change when
the second update occurs, and S2 = U2,1 − U1,2 ∩ U2,1

is the set containing the access-volume pairs that do not
change after the first update and will change when the
second update occurs. If r2 = r1 + 1, the range query
set corresponding to S1 is {[i, r1]q}i∈[r1], and the range
query set corresponding to S2 is {[r2, i]q}i∈[r2,N ]. On the
other hand, if r1 = r2 + 1, the range query set corre-
sponding to S1 is {[r1, i]q}i∈[r1,N ], and the range query set
corresponding to S2 is {[i, r2]q}i∈[r2]. Given the volumes
of {[i, r1]q}i∈[r1] and {[r2, i]q}i∈[r2,N ], or the volumes of
{[r1, i]q}i∈[r1,R] and {[i, r2]q}i∈[r2], from Observation 4.6,
it is easy to recover the count of each value in [N ].

• Explanation of Observation 4.5. Given r̂1, N +1− r̂1, r̂2,
N + 1 − r̂2 defined in Observation 4.4, we analysis the
four cases of this observation as follows:
– If (r̂1, r̂2) is the result, there are two cases:
∗ If r̂1 < r̂2, the range query set corresponding to

the update-intersection set is {[i, j]q}i∈[1,r̂1],j∈[r̂2,N ].
Hence, the update-intersection count is r̂1(N+1−r̂2);
∗ If r̂2 < r̂1, the range query set corresponding to

the update-intersection set is {[i, j]q}i∈[1,r̂2],j∈[r̂1,N ].
Hence, the update-intersection count is r̂2(N+1−r̂1).

– If (r̂1, N + 1 − r̂2) is the result, the range query
set corresponding to the update-intersection set
is {[i, j]q}i∈[1,r̂1],j∈[N+1−r̂2,N ]. Hence, the update-
intersection count is r̂1 · r̂2;

– If (N + 1 − r̂1, r̂2) is the result, the range query
set corresponding to the update-intersection set
is {[i, j]q}i∈[1,r̂2],j∈[N+1−r̂1,N ]. Hence, the update-
intersection count is r̂1 · r̂2;

– If (N + 1 − r̂1, N + 1 − r̂2) is the result, there are two
cases:
∗ If N + 1 − r̂1 < N + 1 − r̂2, the range query

set corresponding to the update-intersection set is
{[i, j]q}i∈[1,N+1−r̂1],j∈[N+1−r̂2,N ]. Hence, the update-
intersection count is r̂2(N + 1− r̂1);
∗ If N + 1 − r̂2 < N + 1 − r̂1, the range query

set corresponding to the update-intersection set is
{[i, j]q}i∈[1,N+1−r̂2],j∈[N+1−r̂1,N ]. Hence, the update-
intersection count is r̂1(N + 1− r̂2).

5 EXTENSIONS TO SUPPORT DELETION

The operation for database update considered in Section 3
and Section 4 is to add new record(s). Deletion is another
common form of database update. In this section, we con-
sider the scenario where the update operation is deletion.

5.1 Extension of Attack with One Update
In this section, we present the extension of the attack in Sec-
tion 3. As in Section 3, here we consider the dense database
setting, but after deletion, the database may become non-
dense. Let K be the set containing all the values that has
one count (i.e., K = {i|vol([i, i]q) = 1}i∈[N ]), A and B be
the full-cover volume set before and after the update of the
database, respectively. Let the the value of the deleted record
be r, we have the following additional observation.

• Observation 5.1: If |A| = |B|, then r /∈ K and the equation
|B| = |A| = N(N+1)/2 holds; otherwise, if |A| = |B|+N ,
then r ∈ K, and the equation |A| = |B|+N = N(N+1)/2
holds.

Based on the above additional observation, we consider
the attack for two cases as follows.
Case 1: |A| = |B|. In this case, we extend the attack in
Section 3.4 by modifying Step 1 as follows:
• Step 1. This step is almost the same with that of the attack

in Section 3.4, except for replacing bi−ai = 1 with ai−bi =
1.

Case 2: |A| = |B| + N . In this case, the attack works as
follows:
• Step 1: Obtain the update-volume count C. Let A, B be

the full-cover access-volume pair sets before and after the
database update, respectively. Obtain D = A−A∩ B and
C = |D|.

• Step 2: Recover the domain size N and the value of
newly added record r. With the knowledge of n = |A|,
obtain N from equation n = N(N + 1)/2. Then, with
the knowledge of C and N , obtain r from equation C =
r(N + 1− r).

• Step 3: Recover the count of value in [N ]. There are two
cases:
Case 1: C 6= N . Find the smallest value in D2, denoted by
a, obtain vol([r, r]q) = a.
Case 2: C = N . Knowing C = N , we have that r = 1 or
r = N from Step 2. Let S = {a1, a2, ..., a|S|} be the volume
set of all volumes in D2 in ascending order. Hence, S is the
volume set of elementary range queries or complemented
elementary range queries. For i ∈ [|S|], do: if i = 1, set
s1 = a1; otherwise, set si = ai − ai−1. Finally, we have
the following two cases:
– Case 1: r = 1. For i ∈ [|S|], set vol([i, i]q) = si;
– Case 2: r = N . For i ∈ [|S|], set vol([N + 1− i,N + 1−
i]q) = si.

5.2 Extension of Attack with Two Updates
In this section, we present the extension of the attack in
Section 4. As in Section 4, we here consider the dense
database setting and the values of the deleted records are
different6, but after deletion, the database may become non-
dense. Let A, B, and C be the full-cover access-volume
pair sets before T1, after T1 but before T2, and after T2,
respectively. We consider the following two specific cases:
• Case 1: The counts of values are all above 2;
• Case 2: Only one value has one count (and the counts of

other values are all above 1), denoted by k. In addition,
the value of the second deleted record is k.

We note that Case 1 happens with high probability for large-
scale database. Case 2 provides a setting to demonstrate
the possibility of reconstruction even when the database
becomes non-dense. For the above two cases, we have the
following additional observation.
• Observation 5.2: If the counts of values are all above 2,

the equation |A| = |B| = |C| = N(N + 1)/2 holds; if

6. For the setting where the values of the two deleted records are
identical, it is indeed the same setting as Section 5.1.
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|A| = |B| = |C| + N , the value of the first deleted record
is not k, the value of the second deleted record is k, and
the equation |A| = |B| = |C|+N = N(N + 1)/2 holds.

Based on the above additional observation, for Case 1,
we can extend the attack in Section 4.5 by modifying Step 3
as follows:
• Step 3 is almost the same with that of the attack in Section

4.5, except for replacing (1) D2(−1) with D2(+1); (2) E2 −
F2 + F2(−1) with E2 − F2 + F2(+1); (3) S1 = G2 − F2(−1)

with S1 = G2 − F2(+1).

For Case 2, note that E = B−B∩C will not be influenced by
the change of C, even when the database become non-dense
after the second deletion. Hence, we can extend the attack
in Section 4.5 by modifying Step 3 as follows:
• Step 3 is the almost same with that of the attack in Section

4.5, excepting for replacing (1) D2(−1) with D2(+1); (2)
E2−F2+F2(−1) with E2−F2+F2(+1); (3) S1 = G2−F2(−1)

with S1 = G2 − F2(+1).

6 EXPERIMENTS

In this section, we present the experimental evaluations of
our attacks. Since our attack works for general SE schemes
providing range queries, similar to [15], we implemented an
algorithm that captures the core function of range queries
for encrypted database (as the abstract model of encrypted
outsourced database described in Section 2.1). This repre-
sents a wide range of SE schemes supporting range queries.
We simulate an attacker who has observed the full-cover
volume set and full-cover access-volume pair set needed in
each attack. The number of issued queries is similar to the
theoretical analysis in Section 3.5, which depends on the
underlying domain size N . We implemented our attacks
in Java to recover the value of added or deleted record
and reconstruct the database counts. It takes a few hours
to collect the full-cover volume set and full-cover access-
volume pair set, and the time of the algorithm in our attack
is within one hour (depending on the underlying domain
size N ).

We use datasets consisting of medical records from
the 2012 US government’s Health Data from New York
State to test our attacks. The attributes we chose include
age group, length of stay, severity of illness code, clin-
ical classification software diagnosis code (CCSD Code),
drug code and major diagnosis category code (Mdc Code),
whose domain sizes range from N = 5 to N = 410.
These are indexed via the medical records that are collected
from 145 hospitals. In our experiments, the domain sizes
for different attributes are listed as follows: AGE GROUP:
5, LENGTH OF STAY: 139, SEVERITY ILLNESS: 236,
CCSD CODE: 263, DRUG CODE: 410 and MDC CODE:
266. We regard the attack as successful if we can recover the
value of added or deleted record or reconstruct the desired
database count(s) (up to reflection). We define the success
rate as the percentage of updates that could be utilized to
correctly recover the value of added record or reconstruct
the database counts. The value of each added or deleted
record is chosen randomly and independently. We repeat
each instance of adding or deleting a record that covers
all the values in N and eventually take the average of the
results.

TABLE 1 Results of Attack with One Update1

Age Length Severity CCSD Drug Mdc
Group of Stay of Illness Code Code Code

T1 100% 100% 100% 100% 100% 100%
T2 100% 100% 100% 100% 100% 100%
T3 40% 1.438% 0.847% 0.76% 0.487% 0.75%

1 T1 denotes the success rate of recovering the value (denoted by r)
of newly added record, T2 denotes the success rate of recovering
vol([r, r]q), T3 denotes the success rate of fully recovering the
database counts.

TABLE 2 Results of Attack with Two Updates1

Age Length Severity CCSD Drug Mdc
Group of Stay of Illness Code Code Code

T1 100% 100% 100% 100% 100% 100%
T2 100% 100% 100% 100% 100% 100%
T3 90% 4.285% 2.531% 2.272% 1.46% 2.247%

1 T1 denotes the success rate of recovering the values (denoted by r1
and r2) of two newly added records, T2 denotes the success rate of
recovering vol([r1, r1]q) and vol([r2, r2]q), T3 denotes the success rate
of fully recovering the database counts.

6.1 Attack with One Update
The results of our attack are summarized in Table 1. The
results show that the attack in Section 3 can correctly recover
the value of newly added record for all attributes. Let r
be the value of newly added record, vol([r, r]q) can also
be correctly recovered for all attributes. The success rate
of fully reconstructing the database counts depends on the
underlying domain size. When the attribute is age group,
the success rate is 40%. This is much higher than other
attributes shown in the table. The reason is that smaller
domain size has higher probability of the updated value
being either the minimum or the maximum value in the
range.

6.2 Attack with Two Updates
The evaluation results of our attack in Section 4 are summa-
rized in Table 2. The results show that the values of newly
added records can be recovered with 100% for all attributes.
Let r1, r2 be the values of newly added records (r1 6= r2),
the success rate of recovering vol([r1, r1]q) and vol([r2, r2]q)
is also 100% for all attributes. As with the evaluation in the
previous section, the success rate of fully reconstructing the
database counts depends on the domain size. Note that the
success rate is much higher for the attribute AGE GROUP
than other attributes, which is 90%. This is due to smaller
domain size having higher probability of two values that
are consecutive numbers or being either the minimum or
the maximum value in the range.

6.3 Attack Supporting Deletion
In this section we evaluate the success rate of our attacks
in Section 5.1 and Section 5.2. The results are summarized
in Table 3 and Table 4, respectively. Table 3 shows that
the attack in Section 5.1 can recover the value of newly
deleted record with 100% for all attributes. Given r the
value of newly deleted record, the success rate of recov-
ering vol([r, r]q) is also 100% for all attributes. As with the
previous case on one update, the success rate of fully recon-
structing the database counts depends on the domain size
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TABLE 3 Results of Attack supporting Deletion with One
Update1

Age Length Severity CCSD Drug Mdc
Group of Stay of Illness Code Code Code

T1 100% 100% 100% 100% 100% 100%
T2 100% 100% 100% 100% 100% 100%
T3 40% 1.438% 0.847% 0.76% 0.487% 0.75%

1 T1 denotes the success rate of recovering the value (denoted by r)
of a deleted record, T2 denotes the success rate of recovering
vol([r, r]q), T3 denotes the success rate of fully recovering the
database counts.

TABLE 4 Results of Attack supporting Deletion with Two
Update1

Age Length Severity CCSD Drug Mdc
Group of Stay of Illness Code Code Code

T1 100% 100% 100% 100% 100% 100%
T2 100% 100% 100% 100% 100% 100%
T3 90% 4.285% 2.531% 2.272% 1.46% 2.247%

1 T1 denotes the success rate of recovering the values (denoted by r1
and r2) of two deleted records, T2 denotes the success rate of
recovering vol([r1, r1]q) and vol([r2, r2]q), T3 denotes the success rate
of fully recovering the database counts.

N , where smaller domain size would have the higher prob-
ability that the deleted value is the minimum or maximum
value. As can be observed from the table, the success rate
for age group is much higher than other attributes. Table
4 further shows that the attack in Section 5.2 can recover
the values of deleted records with 100% for all attributes.
For our experimental database, the first case of the attack in
Section 5.2 is satisfied. As in the attack with two updates,
given r1, r2 the values of the deleted records, the success
rate of recovering vol([r1, r1]q) and vol([r2, r2]q) is 100%
for all attributes. The success rate of fully reconstructing the
database counts similarly depends on domain size N , as
can be seen where the success rate is much higher for the
attribute AGE GROUP than other attributes, which is 90%.

6.4 Comparison
In this section, we present a comparison between our attack
in Section 3 and GLMP’s attack [15]. We assume that their
attack has already obtained the full-cover volume set before
the database update, the database counts, as well as the
knowledge of the total number of records and the domain
size. Also, we assume that in our attack the attacker has
obtained the full-cover volume set before and after the
database update, respectively. The results are illustrated
in Fig. 4. Since the success rate of GLMP’s attack heavily
relies on the number of records, hence, we compile the
number of records at different time slots (i.e., percentage of
database) for each attribute in our experiment. This enables
us to simulate the success rate between our attack and
GLMP’s attack for different number of records. We can
see that for most of the selected attributes, GLMP’s attack
cannot recover the value of the added record with 100%7.
To sum up, in terms of the success rate of recovering the

7. Note that one can modify their attack to recover the value of added
record with 100%, but with relatively higher complexity. Specifically,
the complex algorithm of their database reconstruction attack must be
executed before and after the addition of the new record, respectively.
In this case, our attack in Section 3 is much more efficient.

value of the added record, given the full-cover volume
set, our attack outperforms GLMP’s attack. In addition,
GLMP’s attack needs to obtain the database counts first,
which incurs relatively higher overhead compared to our
attack. Nevertheless, GLMP’s attack can start with fewer
range queries once the database counts are known, but can
only approximate the value of the added record with less
precision as discussed above.

7 RELATED WORK

In addition to the excellent works of Grubbs et al. [15] and
Kellaris et al. [23], there have been many serious attacks
proposed on encrypted database utilizing different types of
leakage [2], [7], [16], [17], [26], [28], [32], [37]. In the keyword
search setting, Cash et al. [2] presented leakage-abuse attack
for query and plaintext recovery assuming partial or perfect
knowledge on distribution of the plaintext. In the setting
of active attacker, a related work is the proposal by Zhang
et al. [39]. They proposed file-injection attacks assuming
access pattern leakage. Their attack reveals keyword search
queries for both single and conjunctive keyword search.
This is related to update recovery attack in that it also
operates in the dynamic setting, except that in this case
the attacker is allowed to choose and craft the files being
injected into the database. Durak et al. [8] demonstrated that
more information can be extracted from order-revealing en-
cryption ciphertexts than was previously thought. The other
recent work on reconstruction attack over range queries is
by Lacharité et al. [24]. They proposed full reconstruction
of database assuming access pattern and ranked leakages
without any assumption on query distribution. Assuming
only access pattern leakage, they further presented an ap-
proximate reconstruction attack. Our work is related but or-
thogonal to these works in that our goal is on reconstruction
based on range queries under the dynamic setting. Recently,
Wang et al. [36] presented new volume-based attacks on
encrypted database. The attacks aim to recover the content
of individual user queries by exploiting the behavior of real-
world applications, which is different from ours. Akshima
et al. [1] proposed new attack for multidimensional database
from range query access patterns. This is different from ours
as we consider one-dimensional database.

Beyond the above attacks on searchable encryption, there
have been a series of new constructions that address the
problem of information leakage [11]. Faber et al. [10] pro-
vided the construction supporting rich queries on encrypted
data, which includes range, substring, wildcard, and phrase
queries. Kamara et al. [21] proposed a new structured en-
cryption scheme with only a small amount of information.
To enable encrypted rich (range) queries under distributed
or outsourced setting, new constructions are proposed by
Guo et al. [19] and Wu et al. [38] respectively. To further
reduce information leakage including the knowledge of vol-
ume (i.e., the response length) and provide strong security
guarantee, new schemes supporting volume-hiding [20],
[29] and with rich functionality [31] are recently proposed.

8 CONCLUSIONS AND FUTURE WORK

In this work, we proposed new update recovery attacks that
successfully recover the value(s) of the updated record(s)
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Fig. 4 Comparison between our attack in Section 3 and attack in [15] (denoted by GLMP) in terms of recovering the added
record’s value.

and enable database reconstruction. We demonstrated that
a single database update is sufficient to recover the value of
the added record, as well as to fully recover the database
counts in two specific cases. In the setting of two updates
where two distinct records are added separately, our attack
is successful in recovering the values of the added records.
The attack can also fully recover the database counts in
several cases, which occur with higher probability than the
setting of one database update. We further presented update
recovery attacks where the update operation is deletion.
As far as we know, this has not been considered in attack
utilizing volume leakage on encrypted database support-
ing range queries. Our update recovery attack serves as
a reminder that in-depth analysis must be performed on
the security impact of leakages when designing dynamic
encrypted database schemes. In our future work, we intend
to study generalization of our attacks to a more general
setting where a series of database updates happen. Similar
to GLMP, our attack requires every range query to be issued
at least once. In our future work, we will focus on designing
new attack that does not suffer from this limitation. Also,
our attacks do not work in the scenario where the database
is non-dense before any update, whereas an ideal attack
should work for the non-dense database setting. We leave
the attacks working for non-dense database setting as a
future work.
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[6] Ivan Damgård, Sigurd Meldgaard, and Jesper Buus Nielsen. Per-
fectly secure oblivious ram without random oracles. In TCC 2011,
pages 144–163. Springer, 2011.

[7] F Betül Durak, Thomas M DuBuisson, and David Cash. What else
is revealed by order-revealing encryption? In ACM CCS 16, pages
1155–1166. ACM Press, 2016.

[8] F. Betül Durak, Thomas M. DuBuisson, and David Cash. What
else is revealed by order-revealing encryption? In ACM CCS 2016,
pages 1155–1166, 2016.

[9] Kevin P Dyer, Scott E Coull, Thomas Ristenpart, and Thomas
Shrimpton. Peek-a-boo, i still see you: Why efficient traffic analysis
countermeasures fail. In S&P 2012, pages 332–346. IEEE, 2012.

[10] Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen,
Marcel-Catalin Rosu, and Michael Steiner. Rich queries on en-
crypted data: Beyond exact matches. In ESORICS 2015, pages
123–145, 2015.

[11] Benjamin Fuller, Mayank Varia, Arkady Yerukhimovich, Emily
Shen, Ariel Hamlin, Vijay Gadepally, Richard Shay, John Darby
Mitchell, and Robert K. Cunningham. Sok: Cryptographically
protected database search. In S&P 2017, pages 172–191, 2017.

[12] Craig Gentry. Computing arbitrary functions of encrypted data.
Communications of the ACM, 53(3):97–105, 2010.

[13] Oded Goldreich. Towards a theory of software protection and
simulation by oblivious rams. In ACM STOC, pages 182–194. ACM
Press, 1987.

[14] Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lacharité, Lloyd
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[24] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson.
Improved reconstruction attacks on encrypted data using range
query leakage. In 2018 IEEE Symposium on Security and Privacy,
S&P 2018, pages 297–314, 2018.

[25] Sharad Mehrotra, Shantanu Sharma, Jeffrey D. Ullman, Dhruba-
jyoti Ghosh, and Peeyush Gupta. Panda: Partitioned data se-
curity on outsourced sensitive and non-sensitive data. CoRR,
abs/2005.06154, 2020.

[26] Muhammad Naveed, Seny Kamara, and Charles V Wright. Infer-
ence attacks on property-preserving encrypted databases. In ACM
CCS 15, pages 644–655. ACM Press, 2015.

[27] Jianting Ning, Jiageng Chen, Kaitai Liang, Joseph K Liu, Chunhua
Su, and Qianhong Wu. Efficient encrypted data search with ex-
pressive queries and flexible update. IEEE Transactions on Services
Computing, 2020.

[28] Jianting Ning, Jia Xu, Kaitai Liang, Fan Zhang, and Ee-Chien
Chang. Passive attacks against searchable encryption. IEEE
Transactions on Information Forensics and Security, 14(3):789–802,
2019.

[29] Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti Yung. Mit-
igating leakage in secure cloud-hosted data structures: Volume-
hiding for multi-maps via hashing. In ACM CCS 2019, pages 79–
93, 2019.

[30] Benny Pinkas and Tzachy Reinman. Oblivious RAM revisited. In
Advances in Cryptology - CRYPTO 2010, pages 502–519, 2010.

[31] Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. Arx: an
encrypted database using semantically secure encryption. Proceed-
ings of the VLDB Endowment, 12(11):1664–1678, 2019.

[32] David Pouliot and Charles V Wright. The shadow nemesis:
Inference attacks on efficiently deployable, efficiently searchable
encryption. In ACM CCS 16, pages 1341–1352. ACM Press, 2016.

[33] Roei Schuster, Vitaly Shmatikov, and Eran Tromer. Beauty and
the burst: Remote identification of encrypted video streams. In
USENIX Security 17, pages 1357–1374.

[34] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher,
Ling Ren, Xiangyao Yu, and Srinivas Devadas. Path oram: an
extremely simple oblivious ram protocol. In ACM CCS 13, pages
299–310. ACM Press, 2013.

[35] Vinod Vaikuntanathan. Computing blindfolded: New develop-
ments in fully homomorphic encryption. In FOCS 2011, pages
5–16, 2011.

[36] Stephanie Wang, Rishabh Poddar, Jianan Lu, and Raluca Ada
Popa. Practical volume-based attacks on encrypted databases.
IACR Cryptol. ePrint Arch., 2019:1224, 2019.

[37] Xingchen Wang and Yunlei Zhao. Order-revealing encryption:
File-injection attack and forward security. In ESORICS 2018, pages
101–121, 2018.

[38] Songrui Wu, Qi Li, Guoliang Li, Dong Yuan, Xingliang Yuan,
and Cong Wang. Servedb: Secure, verifiable, and efficient range
queries on outsourced database. In ICDE 2019, pages 626–637,
2019.

[39] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou.
All your queries are belong to us: The power of file-injection

attacks on searchable encryption. In USENIX Security 16, pages
707–720, 2016.

Jianting Ning received the Ph.D. degree from
the Department of Computer Science and Engi-
neering, Shanghai Jiao Tong University in 2016.
He is currently a research fellow at School of
Information Systems, Singapore Managemen-
t University and a Professor with Fujian Nor-
mal University, China. His research interests in-
clude applied cryptography and information se-
curity. He has published papers in major con-
ferences/journals such as ACM CCS, ESORICS,
IEEE TIFS, IEEE TDSC, etc.

Geong Sen Poh received his PhD degree in In-
formation Security from Royal Holloway, Univer-
sity of London, UK. His main research interests
include searchable encryption and cryptograph-
ic schemes for computations in the encrypted
domain. He was a committee member in the
ISO standard for cryptography working group
(Malaysia chapter), and committee members
for various international conferences. He has
published papers in major conferences/journals
such as ACM CCS, IEEE TIFS, IEEE TDSC, etc.

Xinyi Huang received his Ph.D. degree from the
School of Computer Science and Software Engi-
neering, University of Wollongong, Australia, in
2009. He is currently a Professor at the Fujian
Provincial Key Laboratory of Network Security
and Cryptology, College of Mathematics and In-
formatics, Fujian Normal University, China. His
research interests include cryptography and in-
formation security. He has published papers in
major conferences/journals such as ACM CCS,
IEEE TIFS, IEEE TDSC, etc.

Robert H. Deng is AXA Chair Professor of
Cybersecurity and Director of the Secure Mo-
bile Centre, School of Information Systems, Sin-
gapore Management University (SMU). His re-
search interests are in the areas of data se-
curity and privacy, cloud security and Internet
of Things security. He received the Outstanding
University Researcher Award from National Uni-
versity of Singapore, Lee Kuan Yew Fellowship
for Research Excellence from SMU, and Asia-
Pacific Information Security Leadership Achieve-

ments Community Service Star from International Information Systems
Security Certification Consortium. His professional contributions include
an extensive list of positions in several industry and public services
advisory boards, editorial boards and conference committees. These
include the editorial boards of IEEE Security & Privacy Magazine, IEEE
Transactions on Dependable and Secure Computing, IEEE Transactions
on Information Forensics and Security, Journal of Computer Science
and Technology, and Steering Committee Chair of the ACM Asia Confer-
ence on Computer and Communications Security. He is an IEEE Fellow.

Authorized licensed use limited to: Cornell University Library. Downloaded on August 20,2020 at 00:28:51 UTC from IEEE Xplore.  Restrictions apply. 



1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3015997, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. , NO. , 2020 17

Shuwei Cao received the B.Sc and M.Sc. de-
grees from the School of Computing, National
University of Singapore (NUS) in 2016 and 2018,
respectively. He is currently a senior research
engineer in NUS-Singtel Cybersecurity Lab.

Ee-Chien Chang received the B.Sc and M.Sc.
degrees from the National University of Singa-
pore (NUS) and the Ph.D. degree from New York
University, New York, in 1998. Currently, he is
an associate Professor with the Department of
Computer Science, School of Computing, NUS.
His research interests include network security
and applied cryptography. He has published pa-
pers in major conferences/journals such as ACM
CCS, USENIX Secuity, ACM SIGMOD, ESORIC-
S, IEEE TIFS, etc.

Authorized licensed use limited to: Cornell University Library. Downloaded on August 20,2020 at 00:28:51 UTC from IEEE Xplore.  Restrictions apply. 


	Update recovery attacks on encrypted database within two updates using range queries leakage
	Citation
	Author

	Update Recovery Attacks on Encrypted Database within Two Updates using Range Queries Leakage

