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Privacy-Preserving Outsourced Support Vector
Machine Design for Secure Drug Discovery

Ximeng Liu ,Member, IEEE, Robert H. Deng , Fellow, IEEE,

Kim-Kwang Raymond Choo , Senior Member, IEEE, and Yang Yang ,Member, IEEE

Abstract—In this paper, we propose a framework for privacy-preserving outsourced drug discovery in the cloud, which we refer to as

POD. Specifically, POD is designed to allow the cloud to securely use multiple drug formula providers’ drug formulas to train Support

Vector Machine (SVM) provided by the analytical model provider. In our approach, we design secure computation protocols to allow the

cloud server to perform commonly used integer and fraction computations. To securely train the SVM, we design a secure SVM

parameter selection protocol to select two SVM parameters and construct a secure sequential minimal optimization protocol to privately

refresh both selected SVM parameters. The trained SVM classifier can be used to determine whether a drug chemical compound is

active or not in a privacy-preserving way. Lastly, we prove that the proposed POD achieves the goal of SVM training and chemical

compound classification without privacy leakage to unauthorized parties, as well as demonstrating its utility and efficiency using three

real-world drug datasets.

Index Terms—Cloud-supported drug discovery, privacy-preserving, support vector machine, sequential minimal optimization

Ç

1 INTRODUCTION

DRUG discovery can deliver significant benefits to the
society, particularly in an aging society. Drug discov-

ery is generally defined as the process of identifying one or
more active ingredients from traditional remedies, and
includes the identification of screening hits, medicinal
chemistry and optimization of these hits to increase the
affinity, selectivity (to reduce the potential of side effects),
bioavailability, and metabolic half-life [1]. However, drug
discovery is a challenging, costly, and inefficient process
with a low rate of discovering new therapeutic uses. For
example, drugs can reportedly take 12 years from initial dis-
covery stage to licensing approval, and the Association of
the British Pharmaceutical Industry estimated the amount
of investment to be at £1.15 billion per drug [2]. In other
words, drug discovery requires significant investment from
the pharmaceutical sector and governments [3].

Technologies can play a facilitating role in drug discov-
ery (e.g., in computer-aided drug design to find new biolog-
ically active compounds [4]). According to a report from
Research and Markets [5], the global drug discovery tech-
nologies market is expected to grow at a compound annual
growth rate of approximately 12.2 percent over the next
decade to reach approximately $160 billion by 2025.

Machine learning is one of the several technologies that
can be used in drug discovery. For example, machine learn-
ing tools can be used to evaluate the potential biological activ-
ity and to provide predictions about the physicochemical and
pharmacokinetic properties of chemical structures [6], [7]. Of
the data mining tools, Support Vector Machine (SVM) [8] has
a relatively high decision rate and has been widely used in
recent times to predict ligand-based chemical compounds in
drug discovery [9]. In approaches using SVMs, we use exist-
ing datasets of known drug formulas to train the SVM classi-
fier, and the trained SVM classifier can be used for new drug
compound visual scanning (See Fig. 1). Due to the significant
investments and high commercial values involved in drug
discovery, privacy is an important factor [10]. For example,
how can we minimize the risk of unauthorized disclosure
during the SVM training phase? In this context, when a
researcher sends some chemical compounds to the cloud for
SVM classification, it is important to ensure that the potential
new drug compounds will not be leaked to a third-party,
such as a competing pharmaceutical corporation.

Furthermore, to train the SVM, multiple pharmaceutical
corporations may collaborate in order to increase the SVM
decision rate. At the same time, these corporations do not
wish to reveal their datasets. How to achieve secure SVM
training and decision under multiple data sources without
compromising the privacy of each individual party remains
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a research and operational challenge. Thus, in this paper,
we propose a Privacy-preserving Outsourced Support Vec-
tor Machine Design for Secure Drug discovery in the cloud
environment, hereafter referred to as POD. Unlike existing
drug discovery frameworks [11], our POD seeks to achieve
the following:

� Secure Outsourced Data Storage: The drug formula
owner can securely outsource the data (e.g., drug
formula) to the cloud for storage without leaking the
data to unauthorized third parties.

� Secure Multi-Source SVM Training: The POD allows
an authorized model provider to use other drug for-
mula owners’ encrypted data to train the SVM on-
the-fly. The model provider can decrypt and obtain
the trained model without knowing (contents of) the
training dataset.

� Secure SVM Drug Decision: An authorized tester can
securely upload his/her drug chemical compounds
to the cloud and determine whether the compound
is active or not in a privacy-preserving way.

� Mitigating Plaintext Overflow: During computation,
the plaintext length of the ciphertext may increase
and exceed the plaintext upper-bound, and there-
fore, further secure computation will result in the
plaintext overflow issue. A secure fast approxima-
tion method is then designed to reduce the plaintext
size of the ciphertext such that the new ciphertext
can be further computed.

� Ease of Use: POD does not require the authorized tes-
ter to perform any complex pre-processing before
outsourcing. Also, the interaction between drug tes-
ter and the cloud server is kept to a minimum during
secure computation, since the tester only needs to
send an encrypted query to the cloud server, and
waits for the cloud to reply with the encrypted deci-
sion result in a single round.

The remainder of this paper is organized as follows. In
Section 2, we present the preliminaries required for the
understanding of our proposed POD. In Section 3, we for-
malize the system model, state the problem, and show the
attack model. Then, we describe POD, and the secure com-
putation protocols to solve the overflow issue in POD, in
Sections 4 and 5, respectively. The security analysis and per-
formance evaluation are respectively presented in Sections 6
and 7. Related work is discussed in Section 8. Section 9 con-
cludes this paper.

2 PRELIMINARY

In this section, we outline the definition of SVM, which is
the basis in our proposed POD. Also, we introduce a basic
crypto primitive and the secure computation protocols used
as the building blocks for the construction of POD. Table 1
summarizes the key notations used in this paper.

2.1 Support Vector Machine (SVM)

Given n training instances ð~x1; y1Þ; . . . ; ð~xn; ynÞ, where ~xi is
t-dimension real vector and yi 2 f1;�1g. The SVM classifier
attempts to find a hyperplane that divides the two classes
with the largest margin. The training SVM classifier can be
converted into a solver for the SVM dual problem, i.e.,
min~a

1
2

Pn
i¼1

Pn
j¼1 a

�
ia
�
j yiyjKð~xi;~xjÞ �

Pn
i¼1 a

�
i ; subject toPn

i¼1 a
�
i yi ¼ 0 and 0 � a�i � C, where i ¼ 1; . . . ; n; C is the

upper limit of all a�i , and Kð~xi;~xjÞ is the kernel function.
Then, we calculate b� as b� ¼ yj �

Pn
i¼1 a

�
i yiKð~xi;~xjÞ: Using

the trained SVM parameters, we can achieve the decision
function of SVM as hð~xÞ ¼ SignðPn

i¼1 a
�
i yiKð~xi;~xÞ þ b�Þ;

where SignðxÞ is the function. The function outputs 1 when
x > 0, and �1 otherwise.

2.2 Basic Primitive

In the proposed POD, we use the Distributed Two Trapdoors
Public-Key Cryptosystem (DT-PKC) [12] as the basic crypto
primitive. The latter contains eight algorithms: KeyGen,
Encryption (Enc), Decryption with weak private key (WDec),
Decryption with strong private key (SDec), Strong private
key splitting (SkeyS), Partial Decryption Step-1 (PD1), Partial
Decryption Step-2 (PD2), and Ciphertext Refresh (CR) (see
supplemental material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TCC.2018.2799219, for the construction). The
overall plaintext domain is in ZN , and we use plaintext
domain ½0; N=2Þ to represent positive number and plaintext
domain ðN=2; N � 1� to represent negative number. As
the plaintext domain is modular N � 1, it has N � a �
�amodN . The construction can be found in the supplemen-
tal material, available online section. We only describe two
main homomorphic properties of DT-PKC, as follows: 1.
Additive homomorphism: given two ciphertext ½m1�pk and
½m1�pk, the additive homomorphism can be achieved by
½m1�pk � ½m2�pk ¼ ½m1 þm2�pk. 2) Scalar-multiplicative Homo-
morphism: given ciphertexts ½m� and a constant number

TABLE 1
Summary of Notations

Notation Definition

pka=ska Party a’ public key/private key
ðsskKGC; vkKGCÞ Strong unforgeable signature/verification key
SKð1Þ=SKð2Þ Partial Strong private key of DT-PKC scheme
½x�pka=½x� Ciphertext of DT-PKC scheme with integer x
hxi Encryption of fraction number x
kxk Bit-length of x.
CERx Certificate for domain x

Kð~xi;~xjÞ Kernel function of SVM
a�1; . . . ;an;b Parameters of SVM
SðGÞ Size of a set G
S� Encrypted training dataset with SVM parameters
g;N Group generator, plaintext domain of DT-PKC

Fig. 1. Drug discovery cycle.
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c 2 ZN , it has ð½m�pkÞc ¼ ½cm�pk: Specifically, let c ¼ N � 1 and

we have ð½m�pkÞN�1 ¼ ½�m�pk: Thus, the secure computation

achieves under the same public key pk.

2.3 Secure Integer & Fraction Computation
Protocols

All the following protocols are executed between two non-
colluding servers, and we refer interested reader to our pre-
vious work [13], [14] or the supplemental material, available
online section for the concrete construction.

With two encrypted data ½x� and ½y�, Secure Multiplica-
tion Protocol (SM) securely outputs ½z�, s.t. ½z� ¼ ½x � y�  
SMð½x�; ½y�Þ: The Secure Less Than Protocol (SLT) securely
outputs ½u�  SLTð½x�; ½y�Þ, where u ¼ 0 if x 	 y and u ¼ 1 if
x < y. The Secure Equivalent Testing Protocol (SEQ) com-
putes ½u�  SEQð½x�; ½y�Þ, such that u ¼ 0 if x is equal to y and
u ¼ 1 if x 6¼ y. The Secure Bit-Decomposition Protocol (SBD)
securely outputs bit-decomposition ciphertexts ð½xm�1�; . . . ;
½x0�Þ  SBDð½x�Þ, where

Pm�1
i¼0 xi � 2i ¼ x, and xi 2 f0; 1g. The

Secure Sign Bit Acquisition Protocol (SSBA) securely out-
puts ciphertexts ð½x��; ½s��Þ  SSBAð½x�Þ, s.t., x� ¼ x and
s� ¼ 1 when x 	 0, or x� ¼ N � x and s� ¼ 0 when x < 0.
To execute Secure Inner Product Protocol (SIP) with input
½x0�; . . . ; ½xt�1� and ½y0�; . . . ; ½yt�1�, SIP securely computes
inner product, and outputs encrypted integer ½z�  SIP

ð½x0�; . . . ; ½xt�1�; ½y0�; . . . ; ½yt�1�Þ, where z ¼Pt�1
i¼0 xi � yi:

To store the decimal numbers, one decimal number x�

can be stored as two ciphertexts hx�i ¼ ð½xþ�; ½x��Þ, such that
x� 
 xþ

x� (we adopt this idea from [13]). Given ð½xþ�; ½x��Þ and
ð½yþ�; ½y��Þ, we construct Secure Fraction Addition (FAdd),
Secure Fraction Subtraction (FSub), Secure Fraction Multi-
plication (FMul), Secure Fraction Division (FDiv), Secure
Fraction Comparison (FCmp), Secure Fraction Equality Test
(FEqu), and Secure Fraction Inner Product Protocol (FIP)
by directly using the secure integer protocols (see [13] or the
supplemental material, available online section).

3 SYSTEM MODEL & PRIVACY REQUIREMENT

3.1 System Model

The proposed POD system comprises six types of parties,
namely: Drug Formula Providers (DPs), Drug Formula Tes-
ter (DT), Key Generation Center (KGC), Cloud Platform
(CP), Computation Service Provider (CSP), and Analytical
Model Provider (AP) – see Fig. 2.

� The KGC is trusted by all other entities in the system,
and is tasked with distributing and managing all
public/private keypairs for the system.

� The CP has almost ‘unlimited’ data storage spaces,
and stores and manages data outsourced from all
registered parties in the system. It can also perform
certain calculations on ciphertexts.

� CSP is able to partially decrypt ciphertexts sent by
the CP, perform certain calculations, and then re-
encrypt the calculated results.

� Each DP can be an individual commercial pharma-
ceutical corporation, which encrypts and forwards
its drug formulary to CP for storage. Also, DP can
authorize a specific party for outsourced formula
processing on-the-fly.

� A DT can be a researcher who needs to test some
compounds (e.g., determine whether compounds
are active for a disease or not). The authorized DT
can encrypt these compounds, and send them to the
CP for secure classification. Once the encrypted
results are received, the authorized DT can decrypt
and obtain the classification result.

� An AP can be a commercial corporation that pro-
vides secure classification model for DT. If the AP
is authorized by a DP, then the DP’s outsourced
formulas can be used for secure model training
on-the-fly.

In a real-world deployment, POD can contain multiple
DPs and DTs, and each DP or DT can contain multiple drug
formulas. However, for ease of understanding, in this paper
we assume the POD has n DPs, one DT, one AP, one CSP,
one CP, one KGC, and each DP D i contains only one drug
formula ~xi ¼ ðxi;1; . . . ; xi;tÞ and yi, where xi;1 2 Zp and
yi 2 f1;�1g:We define Sig/Verify to be a strong unforge-
able signature/verification scheme, and KGC generates the
signing and verification key pair ðsskKGC; vkKGCÞ, sends
vkKGC to the other parties in the system, and stores sskKGC

locally. The strong private key SK should be randomly split
into SKð1Þ and SKð2Þ using the SkeyS algorithm, prior send-
ing to CP and CSP for storage, respectively.

3.2 Attack Model

In our attack model, CP, CSP, AP, DPs, and DT are curious-
but-honest parties that strictly follow the protocol, but are
also interested to learn data belonging to other parties. There-
fore, we introduce three active adversaries A�1, A�2, and A�3 in
our model. The goal ofA�1,A�2, andA�3 is to respectively chal-
lenge DT’s ciphertext, DP’s ciphertext, and AP’s ciphertext,
via the following capabilities: 1)A�1,A�2, andA�3 may eavesdrop
on all communication links to obtain the encrypted data. 2)
A�1, A�2, and A�3 may compromise the CP’s data storage to get
all ciphertexts in the CP, and all ciphertexts sent from the
CSP by executing an interactive protocol. 3) A�1, A�2, and A�3
may compromise the CSP to guess plaintext values of all
ciphertexts sent from the CP by executing an interactive pro-
tocol. Note that A�1, A�2, and A�3 are restricted from

Fig. 2. System model under consideration.

612 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 8, NO. 2, APRIL-JUNE 2020



compromising both CP and CSP concurrently.1 Also, A�1, A�2,
and A�3 cannot compromise the respective challenger’s
ciphertext (i.e., DT, DP, andAP).We remark that such restric-
tions are typical in adversary models used in cryptographic
protocols (see the review of adversarymodels in [12]).

4 BASIC COMPONENT OF POD FRAMEWORK

Before constructing POD, we will construct the following
secure data computation protocols as the basis of POD.

4.1 User Authorization and Key Distribution

4.1.1 Certificate Structure and Revocation

If a party A (e.g., AP) wishes to simultaneous perform some
computations on the other parties (e.g., DPs) D1; . . . ; Dn’s
ciphertexts, Di needs to present a valid authorization time
for A (e.g., periods of authorization time in the form of
PTi ¼ ‘‘201801012310� 201801020800’’ from Di), and sends
it to KGC. Next, KGC generates a certificate number CN for
each certificate and constructs a new certificate CERs� with
a valid period PTs� ¼ PT1 \ � � � \ PTn and access domain
AD2 as follows: hcer ¼ ðCN;AD; s�; PTs� ; pks� Þ; Sigðcer;
sskKGCÞi; where s� ¼ fD1; . . . ; Dn : Ag, pks� ¼ gsks� and
sks� ¼ us� are randomly selected from ZN . To revoke CERs�
within PTs� , KGC generates a revocation certificate
RVKs� ¼hrev ¼ ðrevoke; CNÞ; Sigðrev; sskKGCÞi. After that,
RVKs� is sent to CP and CSP to revoke CERs� .

4.1.2 Certificate Generation and Key Distribution

To distribute keys in the POD, the KGC chooses public
parameters pp ¼ ðN; gÞ, randomly selects skx ¼ ux 2 ZN (for
all x 2 fD 1; . . . ;D n;A ;B g, where A denotes the AP, B

denotes the DT, D 1; . . . ;D n denote the DP 1 to DP n, respec-
tively), and computes pki ¼ gui under the same N and g.
After that, KGC generates CERD i

for D i ði ¼ 1; . . . ; nÞ, CERA

for A , CERB for B , where CERx ¼ hcer ¼ ðCN;x; PTx;
pkxÞ; Sigðcer; sskKGCÞi: Also, the private key skD i

¼ uD i

(i ¼ 1; . . . ; nÞ, skA ¼ uA and skB ¼ uB are privately sent to
D i, A and B via secure channel, respectively. Also, all the
above certificates are sent to both CP and CSP for storage.
Next, CERs and CERs0 are generated by KGC, and are only
sent to A andB for storage respectively, where s ¼ fD 1; . . . ;
D n : A g and s0 ¼ fD 1; . . . ;D n;A : B g. As these two
encrypted domains are only used for secure computation,
the verification key vkKGC is sent to both CP and CSP. More-
over, the public keys pks ¼ gus and pks0 ¼ gus0 are sent to CP
and CSP, and the corresponding private keys sks ¼ us and
sks0 ¼ us0 are randomly selected from ZN and stored only in
the KGC. Thus, it is not possible for an external adversary
and other internal parties to retrieve and decrypt the cipher-
texts in the encrypted domains s and s0, since these entities
do not have access to the corresponding private keys sks and

sks0 . Specifically, it can be guaranteed by the semantic secu-
rity of the DT-PKC scheme (see Theorem 1). Next, to support
ciphertext calculation under different public keys, we will
construct the secure domain transformation protocol.

4.2 Secure Domain Transformation (SDT)

Due to the characteristics of the DT-PKC scheme, homomor-
phic properties can be achieved only if the ciphertexts are
encrypted with the same public key. In reality, ciphertexts
computation under different public keys are more practical,
and thus, they cannot be directly computed. Liu et al. [15]
presented a solution to achieve commonly used integer cal-
culations across multiple keys; however, the computation
cost is high. Here, we give another solution called Secure
Domain Transformation (SDT) to transform ciphertexts in
different keys into a single authorized domain.

SDT is described as follows: Given a ciphertext ½x�pka with
public key pka, output ½z�pks ðz ¼ xÞ into another domain
with authorized public key pks 2 CERs according to the fol-
lowing steps.

Step-0(@CP&CSP): Use vkKGC as the input of verifiy to
determine whether both CERa and CERs are valid, and
½x�pka 2 AD in CERa. If invalid, then output ?; other-
wise, execute the following.

Step-1(@CP): Select a random number r 2 ZN , calculate
X1  ½xþ r�pka ¼ ½x�pka � ½r�pka ; and X01  PD1SKð1Þ ðX1Þ,
and sendX1 andX01 to CSP.

Step-2(@CSP): Use PD2 of DT-PKC (see the supplemental
material, available online section) to decrypt X1 and
X01, and obtain h ¼ xþ r. Then, encrypt h and send
D1  ½h�pks to the CP.

Step-3(@CP): Calculate the final result as ½z�pks  D1�
ð½r�pks Þ

N�1, where it can be checked z ¼ x.
Similarly, the SDT can be used for transforming the com-

puted result ½x�pks from domain s to user’s domain a (with
output ½x�pka ), if both CERa and CERs are valid, and
½x�pks 2 AD in CERs . Note that system adversaries A�1, A�2,
and A�3 in Section 3.2 cannot directly use the SDT to trans-
form some arbitrary ciphertexts into their own domains. It
is because these adversaries cannot 1) compromise both CP
and CSP concurrently, and 2) generate two fake certificates,
and let the target ciphertexts belong to AD in CERs , as
strong unforgeable signatures are used for generating these
certificates.

4.3 Secure Computation Components

In this section, we will show how to normalize data before
encryption and how to achieve secure computation over
normalized encryption. Note that all the following cipher-
texts are associated with the same public key. Thus, we
omit the subscript operation of the ciphertexts and use ½x� to
denote the encryption of x.

4.3.1 Data Normalization

The DT-PKC can only encrypt integer value, and SVM
requires the storing and processing of non-integer values. To
solve the problem,we normalize all data into a fraction before
encryption. i.e., the number x� can be stored as two cipher-
texts hx�i ¼ ð½xþ�; ½x��Þ, such that x� 
 xþ

x�, where x� > 0.

1. As the DT-PKC is an additive homomorphic encryption scheme,
multiplication homomorphic operations on encrypted data cannot be
manipulated in a single server. If both CP and CSP collude, the CP and
CSP can be considered as one party, and all data stored in the CP can
be decrypted. In this situation, only the fully homomorphic encryption
scheme can be used for secure computation, which is rather inefficient
for homomorphic operations in existing schemes.

2. Specially, if s� contains only one party i, then PTs� ¼ PTi: Access
domain AD defines which domain/type of encrypted data can autho-
rize user accesses.
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4.3.2 Secure Fraction Computation Protocols

Here, we will construct the secure fraction computation pro-
tocols as the basis of our POD.

Secure Fraction Absolute Value Protocol (FAbs): Given hxi,
and it outputs hzi, such that z ¼ jxj. Note that the sign of the
fraction is stored in the numerator. The protocol works as fol-
lows: ½h�  SLTð½xþ�; ½0�Þ; ½h1�  ½1� � ½h�N�2 ¼ ½1� 2h�; ½zþ�  
SMð½xþ�; ½h1�Þ; ½z��  ½x��:Here, we denote hzi  FAbsðhxiÞ.

Secure Ciphertext Oblivious Selection (COS): Given ½x�, ½y�
and ½h�, the COS securely selects x or y and outputs ½z�,
according to h (i.e., z x if h ¼ 0 and z y if h ¼ 1). The
COS is constructed as follows: ½p1�  SMð½xþ�; ½1� � ½h�N�1Þ;
½p2�  SMð½yþ�; ½h�Þ; ½z�  ½p1� � ½p2� ¼ ½x � ð1� hÞ þ y � h�: We
denote the algorithm as ½z�  COSð½x�; ½y�; ½h�Þ.

Secure Fraction Oblivious Selection (FOS): Given hxi and hyi
and ½h�, FOS securely selects x or y and outputs hzi, accord-
ing to h (i.e., z x if h ¼ 0 and z y if h ¼ 1). The COS is
constructed as follows:

½zþ�  COSð½xþ�; ½yþ�; ½h�Þ; ½z��  COSð½x��; ½y��; ½h�Þ;
and we denote the algorithm as hzi  FOSðhxi; hyi; ½h�Þ.

Secure Tuple Maximum Protocol (MAX): Given U1 ¼
(ht1i; hx1i; hy1i; ½z1�; ½ID1�Þ and U2 ¼ (ht2i; hx2i; hy2i; ½z2�; ½ID2�Þ,
such that it outputs U ¼ (hti; hxi; hyi; ½z�; ½ID�Þ, where
t ¼ maxðt1; t2Þ, and x, y, z and ID are t’s corresponding
values and identity. (1) Compute ½h�  FCmpðht1i; ht2iÞ.
(2) Compute hti  FOSðht1i; ht2i; ½h�Þ; hxi  FOSðhx1i; hx2i;
½h�Þ; hyi  FOSðhy1i; hy2i; ½h�Þ; ½z�  COSð½z1�; ½z2�; ½h�Þ; ½ID�  
COSð½ID1�; ½ID2�; ½h�Þ: The algorithm is denoted as
U  MAXðU1; U2Þ.

Secure Tuple TOP-1 Protocol (TOP1): Input U1; . . . ; Ud,
where Ui ¼ ðhtii; hxii; hyii; ½zi�; ½IDi�Þ, i ¼ 1; . . . ; d. TOP1 out-
puts ðhx0i; hy0i; ½z0�; ½ID0�Þ, where t0 ¼ maxðt1; t2; . . . ; tdÞ, and
x0, y0, z0 and ID0 are the corresponding values and identity
of t0. (1) Place U1; . . . ; Ud into a set G, and let SðGÞ be the size
of set G. (2) The following procedure executes recurrently
until only one tuple remains in G, i.e., SðGÞ ¼ 1. Let the part
of U1 (i.e., ðhx1i; hy1i; ½z1�; ½ID1�Þ and U�  ðhx0i; hy0i; ½z0�; ½ID0�ÞÞ
be the final output. If SðGÞ > 1, then TOP1 executes as fol-
lows: 1) If the size SðGÞmod 2 ¼ 0, then calculate U 0i  
MAXðU2i�1; U2iÞ for i ¼ 1; . . . ;SðGÞ=2. Put U 01; . . . ; U 0SðGÞ=2 in to

a set G0 and replace G by G0; 2) If the size SðGÞmod 2 6¼ 0,
then calculate U 0i  MAXðU2i�1; U2iÞ for i ¼ 1; . . . ; ðSðGÞ � 1Þ=2.
Put U 01; . . . ; U

0
ðSðGÞ�1Þ=2; USðGÞ in a set G0 and replace G by G0.

We denote the TOP1 as U�  TOP1ðU1; . . . ; UdÞ.
4.4 Secure Fraction Approximation Protocol (FApx)

As all data are encrypted, the plaintext length of the cipher-
text may easily overflow when a large number of secure
computation are involved in the SVM training and classifi-
cation phase. Although a secure data approximate method
was proposed in our previous work [13] to securely reduce
the plaintext length, the secure approximate method in [13]
may fail to reduce the plaintext length if both numerator
and denominator are co-prime. Moreover, the overhead of
our previously published approximate method is relatively
high, due to the use of the secure division protocol.

Thus, we design a new FApx, which can be used to
reduce the plaintext size to overcome the above limitation.
FApx is now described below: Given hxi ¼ ð½xþ�; ½x��Þ,
where LðxþÞ ¼ m1 and Lðx�Þ ¼ m2. FApx outputs

hzi ¼ ð½zþ�; ½z��Þ, where LðzþÞ ¼ m1 � k and Lðz�Þ ¼ m2 � k,
and the construction is as follows.

(1) Extract ½xþ�’s absolute value ½x0� and its correspond-
ing symbol ½sx� securely, i.e., ð½x0�; ½sx�Þ  SSBAð½xþ�Þ;

(2) Use SBD to securely obtain the bit representations of
½x0� and ½�x��, i.e., ð½xþm1�1�; . . . ; ½xþ0 �Þ  SBDð½x0�Þ and
ð½x�m1�1�; . . . ; ½x�0 �Þ  SBDð½x��Þ;

(3) Finally, calculate ½z0�  ½xþk � � ½xþkþ1�2 � � � ½xþm1�1�
2m1�k

;
and obtain the approximation result as ½zþ�  SMð½z0�;
½sx�2 � ½1�N�1Þ; ½z��  ½x�k � � ½x�kþ1�2 � � � ½x�m1�1�

2m1�k
:

When the calculated plaintext reaches its upper bound,
the system can automatically call FApx. Due to page limita-
tions, we will not specifically explain the usage of FApx in
the following section. Here, we give an example to demon-
strate the correctness of FApx.

Example of FApx: Given hxi ¼ ð½�92�; ½99�Þ, where
kxþk ¼ kx�k ¼ 7; and we wish to reduce the plaintext
length of xþ and x� to 5 and obtain a new fraction result hzi.
First, we use SSBA to obtain ½92� and symbol ½0�. Next, we
use SBD to expand ½92� into ð½1�; ½0�; ½1�; ½1�; ½1�; ½0�; ½0�Þ, and
expand ½99� into ð½1�; ½1�; ½0�; ½0�; ½0�; ½1�; ½1�Þ. Then, we calcu-

late ½z0�  ½1� � ½1�2 � ½1�4 � ½0�8 � ½1�16 ¼ ½23� and ½z��  ½0� � ½0�2�
½0�4 � ½1�8 � ½1�16 ¼ ½24�: Finally, we calculate ½s0�  ½0�2� ½�1� ¼
½�1� and ½�23� ¼ ½zþ�  SMð½23�; ½s0�Þ:

By executing FApx, we can approximate the original frac-
tion �9299 
 �0:929 into a new faction �2324 
 �0:958.

5 PROPOSED POD FRAMEWORK

Before using privacy-preserving SVM for decision-making,
we need to train the encrypted SVM before usage. Note that
the SVM can be formulated as an optimization problem (see
Section 2.1). The goal is to find appropriate a�1; . . . ;a

�
n to sat-

isfy the SVM dual problem, which requires the solution of a
very large quadratic programming (QP) optimization prob-
lem. The Sequential Minimal Optimization (SMO) algo-
rithm is an efficient way of solving the dual problem due to
the derivation of the SVM, which breaks the large QP prob-
lem into a series of smallest possible QP problems (see [16]
for more information). These small QP problems are solved
analytically. In this section, we will discuss how to securely
select a1 and a2 from a�1; . . . ;a

�
n, and use SMO algorithm to

securely refresh a1 and a2.
To successfully achieve computer-aided drug design, one

accepted basic tenet is that similar molecules have similar
activities. To allow the server to automatically achieve the
drug design, we transform chemical information into a useful
number or the result of some standardized experiment which
can be used for logic and mathematical procedure. The trans-
formed information is known as the molecular descriptors.
There are a numbers ofways to describemolecular [17], and in
this paper, we use a binary vector~xi ¼ ðxi;1; . . . ; xi;tÞ encoding
chemical substructures (or fragments), and each bit records
the presence (“1”) or absence (“0”) of a fragment in the mole-
cule.Moreover, we use a bit y to indicate active (“1”) and non-
active (“0”) to represent the chemical structure (see Fig. 3).

5.1 Overview of POD

As we have previously explained, (for ease of understand-
ing) in this paper each DP D i contains only one drug for-
mula. Here, we give the basic overview of POD.
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Secure Drug Formula Outsourcing Phase. To minimize the
storage space, each DP D i’s drug formula descriptors ~xi ¼
ðxi;1; . . . ; xi;tÞ and decision yi are encrypted with the DP’s
own public key, and formed as ½~xi�pki ¼ ð½xi;1�pki ; . . . ; ½xi;t�pkiÞ
and ½yi�pki , prior to outsourcing to the CP for storage. Also, the

AP initializes the SVMparameters a�1; . . . ;a
�
n;b

�, uses his/her
own public key pkA to encrypt and obtain ha�1ipkA ; . . . ;ha�nipkA ; hb�ipkA , and sends them to the CP for storage.

Secure Drug Formula Pre-Process Phase. Before training the
SVM, the CP needs to decide which DP’s data can be manip-
ulated by AP A , i.e., uses Step-0 of SDT to determine
whether CERA and CERs are valid, where s ¼ fD 1; . . . ;
D n : A g. If this is validated, then ciphertexts ½~xi�pki from D i

and SVM parameters ha�1ipkA ; . . . ; ha�nipkA ; hb�ipkA will be
transformed into domain s using Steps 1 to 3 of SDT. Since
all data belong to the same domain pks , for simplicity, we
omit the notation pks in ½xi�pks and ha�i ipks , and use ½x� and
ha�i instead. Moreover, both CP and CSP calculate all kernel
functions between every two instances in the training set
offline, i.e., calculate ½K�ij�  SKerð½~xi�; ½~xj�Þ for i; j ¼ 1; . . . ; n:
Moreover, we use STyp2 to compute hE�i i  STyp2ð½~xi�;
S�Þ, where S� ¼ fð½~x1�; ½y1�Þ; . . . ; ð½~xn�; ½yn�Þ, ha�1i; . . . ; ha�ni; hb�ig
(see Section 5.2 for construction of Sker and STyp2).

Secure SVM Training with Encrypted Drug Descriptors. To
refresh all the parameters in SVM, CP selects ha1i and ha2i
from ha�1i; . . . ; ha�ni, such that a1 and a2 are the first two
parameters in the above parameters that do not satisfy the
Karush-Kuhn-Tucker (KKT) condition (see Section 5.3). To
train the encrypted SVM, Secure SequentialMinimal Optimi-
zation (SSMO) is designed to refresh a1 and a2 in a privacy-
preserving way (see Section 5.4). As the newly generated a

ðeÞ
1

and a
ðeÞ
2 are encrypted, CP needs to find the corresponding

positions in S�, and refreshes them with the new encrypted
values (see Section 5.5). Finally, we securely check to deter-
mine whether the training phase of SVM has completed (see
Section 5.6). Since all parameters are encrypted, it is not pos-
sible for the CP to decidewhen to stop the training.

Secure Outsourced SVM Classification for Unknown Drug
Molecules. Once secure drug classification is needed, DT B

encrypts and uploads ½~xb�pkB to the CP. Next, the encrypted
½~xb�pkB are transformed into domain s0 ¼ fD 1; . . . ;Dn;
A : B g, and then CP performs the secure SVM classification
on-the-fly. Finally, the encrypted result is transformed into
domainB and sends backB for decryption (see Section 5.7).

5.2 Secure Function Computation Protocols

A kernel function is a similarity metric between the input
objects, which is considered as key component of SVM. In
practice, a few kernels (such as Polynomial Kernel, Gauss-
ian Kernel, Sigmoid Kernel) would be more appropriate for
most common settings. In the proposed POD, we choose
polynomial kernel Kð~x;~x0Þ ¼ ð1þ~x �~x0Þd as the basis of

SVM. For privacy classification and training, we also need
to securely calculate two kinds of functions: Type-1 function
g1ð~xÞ ¼

Pn
j¼1 ajyjKð~x;~xjÞ þ b and Type-2 function g2ð~x; yÞ ¼Pn

j¼1 ajyjKð~x;~xjÞ þ b� y.

Secure Kernel Function Computation Protocol (SKer): Input
½~x� ¼ ð½x1�; . . . ; ½xt�Þ and ½~x0� ¼ ð½x01�; . . . ; ½x0t�Þ, SKer securely
outputs ½Kð~x;~x0Þ� as follows: (1) calculate encrypted
h2 ¼ 1þ~x �~x0 by ½h1�  SIPð½x1�; . . . ; ½xt�; ½x01�; . . . ; ½x0t�Þ and
½h2�  ½1� � ½h1� ¼ ½1þ h1�. (2) compute encrypted ðh2Þd with
exponent d (binary representation as ðdm�1; . . . ; d0Þ), we use
the square-and-multiply idea taht executes as follows: ini-
tialize ½z�  ½x�. Then for i ¼ m� 1 to 0, if di ¼ 1, calculate
½z�  SMð½z�; ½x�Þ; otherwise, complete and jump to the begin-
ning of the loop for the next iteration.

Secure Type-1 Function Computation (STyp1): Input ½~x� and
S� ¼ fð½~x1�; ½y1�Þ; . . . ; ð½~xn�; ½yn�Þ, ha1i; . . . ; hani; hbig, STyp1

securely calculates Type-1 function and outputs hg1ð~xÞi as
follows: (1) Initialize ½g1ð~xÞþ�  ½0� and ½g1ð~xÞ��  ½0�,
respectively. (2) The goal of this step is to calculate the
encrypted Lj ¼ yjKð~x;~xjÞ, i.e., for j ¼ 1; . . . ; n, calculate
½T 0j �  SKerð½~x�; ½~xj�Þ and ½lj�  SMð½T 0j �; ½yj�Þ. Note that ½lj� can
be considered an encrypted fraction hLi, where ½Lþj � ¼ ½lj�
and ½L�j � ¼ ½1�. (3) The final g1ð~xÞ can be calculated by
hoi  FIPðha1i; . . . ; hani; hL1i; . . . ; hLniÞ and hg1ð~xÞi  FAddðhoi;
hbiÞ. Here, we denote STyp1 as hg1ð~xÞi  STyp1ð½~x�; S�Þ.

Secure Type-2 Function Computation (STyp2): Similar to
the input of STyp1, STyp2 securely calculates kernel
function and outputs hg2ð~xÞi as follows: (1) Calculate
hGi  STyp1ð½~x�; S�Þ. (2) Compute ½X�  SMð½G��; ½y�Þ;
½g2ð~xÞþ�  ½Gþ� � ½X�N�1; ½g2ð~xÞ��  ½G��. Here, we denote
the protocol as hg2ð~xÞi  STyp2ð½~x�; S�Þ.

5.3 Secure Parameter Selection

To refresh all a�i (i ¼ 1 to n) in the SVM, CP is required to
securely select a1 and a2 for the SVM parameters, i.e., find
first a�i (denote a1, the corresponding Ei denotes as E1) that
does not satisfy the KKT condition.3 Once a1 is selected, CP
tests all a�i to calculate T �i ¼ jE1 � E�i j, finds a2 such that
T2 ¼ maxðT �1 ; . . . ; T �nÞ, where hE�i i  STyp2ð½~xi�; S�Þ and
S� ¼ fð½~x1�; ½y1�Þ; . . . ; ð½~xn�; ½yn�Þg. Next, we will show how to
construct a protocol to check whether an element a�i does
not satisfy the KKT condition securely (SKKT) and securely
select a1 and a2 among all the encrypted a�i .

5.3.1 Secure KKT Check Protocol (SKKT)

Given hai; hEi and ½y�, SKKT outputs the encrypted element
½f� to determine whether a satisfies the KKT condition, i.e.,
if a does not satisfy KKT, then f ¼ 1; otherwise, f ¼ 0.

(1) As the comparison involved in the KKT condition is
strictly less than comparison, CP constructs four
encrypted ½F1�; ½F2�; ½F 01� and ½F 02� to check whether
a < C, yE < �", C < a and " < yE hold, respec-
tively, i.e., compute ½Zþ�  SMð½Eþ�; ½y�Þ; ½Z��  ½E��;
½F1�  FCmpðhai; hCiÞ; ½F2�  FCmpðhZi; h�"iÞ; ½F 01�  
FCmpðhCi; haiÞ; ½F 02�  FCmpðh"i; hZiÞ.

Fig. 3. Chemical formula description.

3. For a�1; � � � ;a�n, at is the first not to satisfy the KKT condition
(at < C and ytEt < �"; or at > C and ytEt > "), where Et ¼ g2ð~xtÞ,
C is the upper bound of at , " is the margin and typically set to 10�3.
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(2) With the above four ciphertexts, we can construct the
final output by f ¼ ðF1 ^ F2Þ _ ðF 01 ^ F 02Þ. This logic
can be constructed by ½U1�  SMð½F1�; ½F2�Þ; ½U2�  
SMð½F 01�; ½F 02�Þ; ½f1�  SMð½1� � ½U1�N�1; ½U2�Þ; ½f2�  SMð½U1�;
½1� � ½U2�N�1Þ; and outputs ½f �  SMð½f1�; ½f2�Þ:

5.3.2 Secure a1 and a2 Selection Protocol (SSel)

To successfully find a1 and a2, the idea of SSel is to first
construct the encrypted tuple U�i ¼ ðha�i i; hE�i i; ½y�i �; ½ID�i �Þ,
where ID�i 6¼ 0 is the unique identity associated with a�i .
Next, we use SKKT to construct the encrypted s0i to indicate
whether a�i is the first element that does not satisfy the KKT
condition, where vi�1 is used to record that no element does
not satisfy KKT condition previously if vi�1 ¼ 1. The tuple
ðha1i; hE1i; ½y1�; ½ID1�Þ can be easily constructed as only one
element is equal to 1 among s01; . . . ; s

0
n. Once the encrypted

a1 is generated, we can construct element T �i  ðht�i i; ha�i i;
hE�i i; ½y�i �; ½ID�i �Þ, where t�i ¼ jE1 � E�i j, and use TOP-1 to
find the tuple ðha002i; hE002 i; ½y002 �; ½ID002 �Þ with maximum t�i ,
which is the tuple that contains encrypted element a2. The
detailed construction of SSel can be found in Algorithm 1
and described as follows.

Algorithm 1. Secure a1 and a2 Selection Protocol

Input: U�i ¼ ðha�i i; hE�i i; ½y�i �; ½ID�i �Þ for i ¼ 1; . . . ; n.

Output: ðha1i; hE1i; ½y1�; ½ID1�Þ; ðha2i; hE2i; ½y2�; ½ID2�Þ.
1: Initialize ½v0�  ½1�:;
2: for i ¼ 1; . . . ; n do
3: ½si�  SKKTðha�i i; hE�i i; ½y�i �Þ;
4: ½vi�  SMð½vi�1�; ½1� � ½si�N�1Þ; ½s0i�  SMð½vi�1�; ½si�Þ;
5: ½ða0iÞþ�  SMðð½a�i Þþ�; ½s0i�Þ; ½ða0iÞ��  SMðð½a�i Þ��; ½s0i�Þ;
6: ½ðE0iÞþ�  SMð½ðE�i Þþ�; ½s0i�Þ; ½ðE0iÞ��  SMð½ðE�i Þ��; ½s0i�Þ;
7: ½y0i�  SMð½y�i �; ½s0i�Þ; ½ID0i�  SMð½ID�i �; ½s0i�Þ;
8: Multiply all ½ðaiÞþ� to generate ½ða1Þþ�. Similarly, generate

½a�1 �, ½Eþ1 �, ½E�1 �½y1�, ½ID1� by multiplying ½ða0iÞ��, ½ðE0iÞþ�,
½ðE0iÞ��, ½y0i�, ½ID0i�, respectively.

9: for i ¼ 1; . . . ; n do
10: ht�i i  FAbsðFSubðhE1i; hE�i iÞÞ:
11: Denote T �i  ðht�i i; ha�i i; hE�i i; ½y�i �; ½ID�i �Þ;
12: ðha002i; hE002 i; ½y002 �; ½ID002 �Þ  TOP1ðT �1 ; . . . ; T �n Þ;
13: ha2i  FOSðha002i; h0i; ½vn�Þ; hE2i  FOSðhE002 i; h0i; ½vn�Þ;
14: ½y2�  COSð½y002 �; ½0�; ½vn�Þ; ½ID2�  COSð½ID002 �; ½0�; ½vn�Þ:
15: Return ðha1i; hE1i; ½y1�; ½ID1�Þ; ðha2i; hE2i; ½y2�; ½ID2�Þ.

In line 1, initialize ½v0�  ½1�: Then, for each input tuple
U1; . . . ; Un, use SKKT to test whether the ha�i i in U�i satisfies
the KKT conditions or not (line 3). If a�i is the first element
that does not satisfy the KKT condition, then calculate
vi ¼ 0 and s0i ¼ 1 using SM protocol (line 4), and obtain the
corresponding value ha0ii, hE0ii, ½y0i� and ½ID0i�, respectively
(line 5-7). As only the first tuple that does not satisfy KKT
contains encrypted non-zero value and other tuples are
encrypted zeros, use DT-PKC homomorphic addition to
obtain ha1i, hE1i, ½y1� and ½ID1� (line 8). Next, use FAbs and
FSub to compute hT �i i  hjEi � E�i ji (lines 9-10), and use
the TOP1 to obtain ha002i, hE002 i, ½y002 � and ½ID002 � (line 11). If there

exists a a1 that does not satisfy the KKT condition, then out-
put U2  ðha002i, hE002 i, ½y002 �, ½ID002 �Þ. Otherwise, output
U2 ¼ U1  ðh0i, h0i, ½0�, ½0�Þ, where the numerator of h0i is
equal to ½0�, and the denominator of h0i is equal to ½1�. Note
that ID1 ¼ ID2 ¼ 0 =2 fID�1; . . . ; ID�ng if no a�i (i ¼ 1; . . . ; n)
does not satisfy KKT condition (lines 13-14).

5.4 Secure Sequential Minimal Optimization (SSMO)

After executing Ssel, we can securely obtain U1 ¼ ðha1i;
hE1i; ½y1�; ½ID1�Þ and U2 ¼ ðha2i; hE2i; ½y2�; ½ID2�Þ. We denote

them as ðhaðoÞ1 i; hEðoÞ1 i; ½yðoÞ1 �; ½IDðoÞ1 �Þ and ðhaðoÞ2 i; hEðoÞ2 i; ½yðoÞ2 �;
½IDðoÞ2 �Þ, respectively. As the SMO algorithm is an efficient
way of solving the resultant dual problem, we will construct
its corresponding encrypted version—Secure Sequential
Minimal Optimization (SSMO)—to securely refresh haðoÞ1 i;
haðoÞ2 i, and hbðoÞi, and output haðeÞ1 i; haðeÞ2 i, and hbðeÞi.

Step-1: Before refreshing a
ðoÞ
1 and a

ðoÞ
2 , CP computes the lower

bound L and upper boundH of these two values, i.e.,

if y
ðoÞ
1 6¼ y

ðoÞ
2 , then calculates L maxð0; aðoÞ2 � a

ðoÞ
1 Þ,

H  minðC;C þ a
ðoÞ
2 � a

ðoÞ
1 Þ; if y

ðoÞ
1 ¼ y

ðoÞ
2 , then

calculates L maxð0;aðoÞ2 þ a
ðoÞ
1 � CÞ, H  min

ðC;aðoÞ2 þ a
ðoÞ
1 Þ. It can be securely computed as fol-

lows: First, calculate hh1i  hmaxð0;aðoÞ2 � a
ðoÞ
1 Þi and

hh2i  hminðC;C þ a
ðoÞ
2 � a

ðoÞ
1 Þi and hh3i  hmaxð0;

a
ðoÞ
2 þ a

ðoÞ
1 � CÞi and hh4i  hminðC;aðoÞ2 þ a

ðoÞ
1 Þiwith

the combination of FSub, FAdd, FCmp and FOS.

Second, generate hhei  SEQð½yðoÞ1 �; ½yðoÞ2 �Þ to determine

whether y
ðoÞ
1 and y

ðoÞ
2 are equal. Then, FOS is used to

compute hLi using hh3i; hh1i; ½he� and calculate hHi
with hh4i; hh2i; ½he�.

Step-2: In this step, calculate the encrypted new unbounded

value haðe;uÞ2 i associated with a
ðoÞ
2 , such that a

ðe;uÞ
2 ¼

a
ðoÞ
2 þ

y2ðEðoÞ1
�EðoÞ

2
Þ

h
, where h ¼ K

ðoÞ
11 þK

ðoÞ
22 � 2K

ðoÞ
12 . Since

all data are encrypted, it impossible to know the value

of K
ðoÞ
11 , K

ðoÞ
12 , K

ðoÞ
22 . Thus, ID

ðoÞ
1 and ID

ðoÞ
2 are used to

locate the position, such that 1) if ID
ðoÞ
1 ¼ ID�i , let

K
ðoÞ
11  K�ii; 2) if ID

ðoÞ
2 ¼ ID�i , let K

ðoÞ
22  K�ii; 3) if

ID
ðoÞ
1 ¼ ID�i and IDðoÞ ¼ ID�j , let K

ðoÞ
12  K�ij; other-

wise, let K
ðoÞ
11 ;K

ðoÞ
22 ;K

ðoÞ
12 be ½0�, where K�ij can be com-

puted offline (see Section 5.1). Note that all the identity
are encrypted in the integer format, we can directly
use the secure integer protocol for secure computation.
Finally, calculate hhi and haðe;uÞ2 i usingFSub,FMul and
FAdd.

Step-3: Reduce a
ðe;uÞ
2 according to the upper and lower

bounds, and hence obtain haðeÞ2 i, such that

a
ðeÞ
2 ¼

H; a
ðe;uÞ
2 > H

a
ðe;uÞ
2 ; L � a

ðe;uÞ
2 � H

L; a
ðe;uÞ
2 < L:

8>><
>>:

(1)

Note that haðeÞ2 i can be easily computed according to

haðe;uÞ2 i, hHi and hLi with secure fraction protocols.

Once we obtain haðeÞ2 i, we can calculate the encrypted
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a
ðeÞ
1 ¼ a

ðoÞ
1 þ y

ðoÞ
1 � yðoÞ2 � ðaðoÞ2 � a

ðeÞ
2 Þ to refresh the cor-

responding encrypted a
ðoÞ
1 .

Step-4: To generate new encrypted value bðeÞ, calculate

encrypted hbðeÞ1 i and hbðeÞ2 i with FAdd, FSub and
FMul, such that

b
ðeÞ
1 ¼ �EðoÞ1 � y

ðoÞ
1 K

ðoÞ
11 ðaðeÞ1 � a

ðoÞ
1 Þ � y2K

ðoÞ
21 ðaðeÞ2 � a

ðoÞ
2 Þ þ bðoÞ;

b
ðeÞ
2 ¼ �EðoÞ2 � y

ðoÞ
1 K

ðoÞ
12 ðaðeÞ1 � a

ðoÞ
1 Þ � y2K

ðoÞ
22 ðaðeÞ2 � a

ðoÞ
2 Þ þ bðoÞ:

Then, generate the new encrypted value hbðeÞi
according to hbðeÞ1 i and hbðeÞ2 i, i.e., if 0 < a

ðeÞ
1 < C,

then bðeÞ ¼ b
ðeÞ
1 ; if 0 < a

ðeÞ
2 < C, then bðeÞ ¼ b

ðeÞ
2 ; oth-

erwise, bðeÞ ¼ b
ðeÞ
1
þbðeÞ

2
2 : It can be achieved by the com-

bination of FAdd, FCmp, FDiv and FOS protocols.

5.5 Secure Parameter Update (SPU)

After running SSMO and obtaining a
ðoÞ
1 and a

ðoÞ
2 , CP and CSP

construct a protocol called SPU to find the original corre-
sponding values in S�, and refresh them with the newly
generated values a

ðeÞ
1 and a

ðeÞ
2 , and refresh all Ei using the

refreshed a�1; . . . ;a
�
n.

Step-0 (Process Offline) Calculate hLiji  hyjK�iji for
i ¼ 1; . . . ; n and j ¼ 1; . . . ; n as follows, compute
½Lþij�  SMð½yi�; ½ðK�ijÞþ�Þ and let ½L�ij�  ½ðK�ijÞ��:

Step-1. Use ½IDðoÞ1 � and ½IDðoÞ2 � to securely locate the original
position i of a

ðeÞ
1 and a

ðeÞ
2 in S�, and then refresh the

value in these two positions with new values a
ðeÞ
1

and a
ðeÞ
2 . Technically, this step will execute (1)-(3)

for i ¼ 1; . . . ; n: (1) test whether ID�i is equal to ID
ðoÞ
1

or ID
ðoÞ
2 , ½v1�  SEQð½ID�i �; ½IDðoÞ1 �Þ; ½v2�  SEQð½ID�i �;

½IDðoÞ2 �Þ; (2) use FOS protocol to securely refresh ha�i i,
i.e, ha00i i  FOSðhaðeÞ1 i; ha�i i; ½v1�Þ; ha00i i  FOSðhaðeÞ2 i; ha�i i;
½v2�Þ; (3) replace ha�i i by ha00i i.

Step-2. Compute hEii such that Ei ¼
Pn

j¼1 a
00
j Li;j þ bðeÞ � yi

for i ¼ 1; . . . ; n. This construction is similar to the
construction of STyp2. Replace hE�i i by hEii.

5.6 Remote Training Completion Check

To train the SVM, CP runs secure parameter selection, SSMO
and secure parameter update for certain numbers of itera-
tions (e.g., 100 iterations). As all data are encrypted, CP can-
not know whether the training phase of SVM has completed
or not. Here, we design a new mechanism to allow an
authorized remote user AP to determine whether the train-
ing phase is completed, i.e., no a�i does not satisfy the KKT
condition. The mechanism constructs as follows:

Step-1(@CP): Execute ðU1; U2Þ  SSelðU�1 ; . . . ; U�nÞ, where
U1 ¼ ðha1i; hE1i; ½y1�; ½ID1�Þ and U2 ¼ ðha2i; hE2i; ½y2�; ½ID2�Þ.
Then, compute ½V �  SEQð½ID1�; ½0�Þ. After that, ½V � is
transformed into AP’s domain with ½V �pkA  SDTð½V �;
pkA Þ if both CERA and CERs are valid. Otherwise,
abort the algorithm and send ? to A .

Step-2(@AP): Decrypt ½V �pkA with a’s own private key skA . If
V ¼ 0, then sends CONTINUE to CP; otherwise (V ¼ 1),
sends STOP to CP.

Step-3(@CP): If CONTINUE is received, then continually exe-
cute SSMO to refresh ha�1i; . . . ; ha�ni; hb�i. If STOP is

received, then SDT is used to transform ha�1i; . . . ; ha�ni;
hb�i into ha�1ipkA ; . . . ; ha�nipkA ; hb�ipkA , and sends these
transformed results to AP.

5.7 Secure SVM Classification

Once DT B ’s encrypted ½~xb�pkB are uploaded to the CP, the
encrypted trained SVM can be used to perform classification
and obtain the result ½yb�s0 , where yb ¼ SignðPn

j¼1 a
�
j yiK

ð~xj;~xbÞ þ b�Þ; s0 is the encrypted domain associated with
fD 1; . . . ;D n;A : B g, and a�1; . . . ;a

�
n;b

� are the SVM parame-
ters. Finally, ½yb�pks0 is transformed into ½yb�pkB and sent back
to B .

Step-0(@CP&CSP): Before computation, transform all the
data in S� into domain s0 using SDT. Note that this step
can be performed offline by CP and CSP.

Step-1(@DT B ): B encrypts ~xb ¼ ðxb;1; . . . ; xb;tÞ and obtains
½~xb�pkB ¼ ð½xb;1�pkB ; . . . ; ½xb;t�pkB Þ, and sends ½~xb�pkB to CP.

Step-2(@CP): (1) Once encrypted attributes are received, CP
transforms the encrypted domain of these ciphertexts
by computing ½xi�pks0  SDTð½xi�pkB Þ for i ¼ 1; . . . ; t, if

both CERB and CERs0 are valid. Otherwise, abort the
algorithm and send ? to B . Note that all the ciphertexts
below are encrypted under pks0 . For simplicity, we omit
the notation pks0 in ½x�pks0 and use ½x� instead. (2) Calcu-
late hg1ð~xbÞi  STyp1ð½~xb�; S�Þ, where S� ¼ fð½~x1�; ½y1�Þ; . . . ;
ð½~xn�; ½yn�Þ, ha�1i; . . . ; ha�ni; hb�ig. (3) CP needs to look at

the symbol of ½g1ð~xbÞþ� and decides on the final result
½y�, i.e., calculates ½O�  SLTð½g1ð~xbÞþ�; ½0�Þ and ½yb�  
COSð½1�; ½�1�; ½O�Þ: (4) SDT is used to transform ½yb� into
½yb�pkB , and sends the transformed value back to B .

Step-3(@DT): Once ½yb�pkB is received, B uses his/her own
private key skB to obtain the final result yb.

6 SECURITY ANALYSIS

In this section, we will show that our POD can achieve its
security level defined in Section 3.2.

6.1 Security of DT-PKC

The DT-PKC scheme is semantically secure in the semi-
trusted model.

Theorem 1. The DT-PKC scheme described in Section 2.2 is
semantically secure, assuming the semantic security of the
underlying Paillier cryptosystem.

Proof. The security proof of the DT-PKC is presented in our
previous work [12]. tu

6.2 Security of Sub-Protocols

Here, we prove the security of our protocols for the specific
scenario of its functionality, which involves three parties,
namely: challenge DT/DP/AP (a.k.a. “DM”), CP (a.k.a.
“S1”), and CSP (a.k.a.“S2”). We construct three simulators
Sim = (SimDM

;SimS1 ;SimS2 ) for adversaries (ADM
;AS1 ;AS2 )

that corrupt DM; S1; S2, respectively. We refer the reader to
[12], [18] for the general case definitions under non-collud-
ing semi-honest adversaries.

Theorem 2. SDT securely transforms the encryption domain in
the presence of semi-honest (non-colluding) adversaries
A ¼ ðADM

;AS1 ;AS2Þ.
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Proof. We only provide a proof to show how to construct
three independent simulators SimDM

;SimS1 ;SimS2 .
SimDM

receives x as input and then simulates ADM
as

follows: it generates encryption ½x�pkM  Encðx; pkMÞ of x
under public key pkM . Finally, it returns ½x�pkM and out-
puts ADM

’s entire view. The view of ADM
consists of the

encrypted data. The views of ADM
in the real and the

ideal executions are indistinguishable due to the seman-
tic security of DT-PKC.

SimS1 simulates AS1 as follows: First, it generates (fic-
titious) encryption of the inputs ½x̂�pks by running Encð�Þ
on randomly chosen x̂, randomly generates r̂ 2 ZN and
computes ½r̂�pks , calculates X̂1, and then calculates X̂01
using PD1ð�Þ. SimS1 sends the encryption X̂1 and X̂01 to

AS1 . If AS1 replies with ?, then SimS1 returns ?.
The view of AS1 consists of the encrypted data it cre-

ated. In both real and ideal executions, AS1 receives the
encryption X̂1; X̂

0
1. In the real world, it is guaranteed by

the fact that the DM (DT or DP or AP) is honest and the
semantic security of DT-PKC. The views of AS1 in the
real and the ideal executions are indistinguishable.

SimS2 simulates AS2 as follows: it randomly chooses ĥ,
uses the Encð�Þ to obtain ½ĥ�pks , and then sends the
encryption to AS2 . If AS2 replies with ?, then SimS2

returns ?.
The view of AS2 consists of the encrypted data it cre-

ated. In both real and ideal executions, AS2 receives the
output encryption ½ĥ�pks . In the real world, it is guaran-
teed by the semantic security of DT-PKC. The views of
AS2 in the real and the ideal executions are indistinguish-
able. tu

Theorem 3. FApx securely performs approximation over cipher-
text in the presence of semi-honest (non-colluding) adversaries
A ¼ ðADM

;AS1 ;AS2Þ.
Proof. The construction of three independent simulators

SimDM
;SimS1 ;SimS2 in FApx is similar to those in Theo-

rem 2 (see supplemental material, available online for the
proof). tu
The security proofs for (FAbs, SCOS, FCOS, MAX, TOP1)

in Section 4.3.2 and SKer, SType1, SType2 in Section 5.2
are similar to those of FApx in the presence of semi-honest
(non-colluding) adversaries A ¼ ðADM

;AS1 ;AS2Þ.

6.3 Security of POD Framework

The security of POD can be guaranteed by the following two
theorems. Here, to prove the training phase of POD, we con-
struct nþ 2 parties, challenge DP i (a.k.a. “D i”, i ¼ 1; . . . ; n),
AP (a.k.a. “A ”), CP (a.k.a. “S1”), and CSP (a.k.a.“S2”). We
construct nþ 3 simulators Sim = (SimD i

;SimA ;SimS1 ;SimS2 )
for adversaries (AD i

;AA ;AS1 ;AS2 ) that corrupt D iði ¼
1; . . . ; nÞ;A ; S1; S2, respectively.

Theorem 4. The POD framework securely achieves secure SVM
training on ciphertext in the presence of semi-honest (non-col-
luding) adversaries A ¼ ðAD i

;AA ;AS1 ;AS2Þ.
Proof. The constructions of SimD i

and SimA for this theo-
rem are analogous to SimDM

for Theorem 2 while the con-
structions of SimS1 and SimS2 for this theorem are similar
to the corresponding SimS1 and SimS2 in Theorem 3,

respectively. The difference is that we need to use simula-
tors instead of corresponding secure basic and enhanced
protocols in the SVM training phase. tu
To prove the decision phase of POD, we need additional

parties DT (a.k.a. “B ”), and construct simulator SimB in
addition to SimA ;SimD i

;SimS1 ;SimS2 ði ¼ 1; . . . ; nÞ.
Theorem 5. The POD framework securely achieves secure SVM

classification in the presence of semi-honest (non-colluding)
adversaries A ¼ ðAA ;AB ;AD i

;AS1 ;AS2Þ.
Proof. The constructiona of these simulators are similar to

those in the proof of Theorem 4. tu
Here, we also give an analysis to demonstrate that our

POD can resist system active adversary A�1, A�2 and A�3
defined in Section 3.2. The analysis is described as follows: If
A�1, A�2 and A�3 eavesdrop on the transmission between the
challenge DT and CP, on the transmission between the chal-
lenge DP and CP, and on the transmission between the AP
and the CP, all data transmitted in these three links will be
obtained by A�1, A�2 and A�3, respectively. Moreover, the
ciphertext results (obtained by executing basic secure fraction
computation protocols and secure SVM training and classifi-
cation) transmitted between CP and CSP may also be avail-
able toA�1,A�2 andA�3 due to the eavesdropping. However, as
these data are encrypted before transmission, A�1 cannot
decrypt the challenge DT’s ciphertext without knowing the
challenge DT’s private key, A�2 cannot decrypt the challenge
DP’s ciphertext without knowing the challenge DP’s private
key, and A�3 cannot decrypt the challenge AP’s ciphertext
without knowing the challenge AP’s private key. Thus, it can
be guaranteed by the semantic security of the DT-PKC cryp-
tosystem. Next, we assume that A�1, A�2 and/or A�3 has/have
compromised the CP to obtain the system strong partial pri-
vate key. However,A�1,A�2 andA�3 cannot recover the cipher-
text, as the strong private key is randomly split by executing
KeyS algorithm of DT-PKC. Even when the CSP is compro-
mised, none of the three adversaries (A�1, A�2 and A�3) can
obtain useful information as our protocols use the known
technique of “blinding” the plaintext [19]: given an encryp-
tion of a message, we use the additively homomorphic prop-
erty of the DT-PKC cryptosystem to add a random message
to the plaintext. Therefore, original plaintext is “blinded”.

7 PERFORMANCE ANALYSIS

In this section, findings of the experiment and theoretical
analysis of POD will be presented.

7.1 Experiment Analysis

7.1.1 Performance of Basic Secure Protocols

We evaluated the factors that impact the performance of the
proposed protocols in our testbed with personal computer
(PC) with a 3.6 GHz eight-cores processor and 12 GB RAM
memory, and a customized simulator built using Java.
Here, we assumed N to be 1,024 bits to achieve 80-bit secu-
rity levels [31]. Next, we evaluated the runtime of basic
crypto by executing each algorithm 1,000 times, and DT-
PKC takes 14.509 ms to run Enc, 7.254 ms to run SDec,
7.379 ms to run WDec, 21.481 ms to run DP1, and 20.998 ms
to perform DP2. For the secure protocols, there are three
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factors that impact the performance, namely: 1) the crypto
(DT-PKC) parameter N , 2) the length of vector t, and 3) the
number of instances n.

From Table 2, both computational cost and communica-
tion overhead of the secure protocol increase with N , as DT-
PKC requires more time to process the encrypted data and
storage to store the ciphertext. From Figs. 4a and 4b, both
computational cost and communication overhead of FIP,
SKer, STyp1 and STyp2 increase with t. This is because
computing encrypted data requires computation and com-
munication resources. From Figs. 4c and 4d, the computa-
tional cost and communication overhead of SKer, STyp1
and STyp2 increase with n, since more ciphertexts are cal-
culated when n increases.

7.1.2 Performance of POD

Similar to the secure fraction protocols, there are also three
factors that impact the performance of POD (including
Ssel, SSMO, SPU, and SVM classifier), namely: 1) the DT-
PKC parameter N , 2) the length of vector t, and 3) the num-
ber of instances n. From Table 2, we observed that both

computational cost and communication overhead of these
four components increase with N . It is because DT-PKC and
all basic components of these four protocols in Section 2.2
increase with N . Furthermore, only the computational cost
and communicational overhead of the SVM classifier increase
with t (see Figs. 4a and 4b), as SVM classifier needs to use
STyp2 for computation. We observe that Ssel, SSMO, SPU,
and SVM classifier increase with n as all these four protocols
use all training dataset for computation (see Figs. 4g and 4h).

7.1.3 Real-World Dataset Experiment

As SVM is especially suitable for processing high-dimen-
sional dataset, we use three real-world drug datasets from
[20] that have been used for prediction of pharmacokinetic
and toxicological properties of chemical agent (drug) such
as p-glycoprotein substrate (p-gp, including substrates/
nonsubstrates classes, a total of 201 instances), human intes-
tinal absorption of molecules (HIA, including absorbable/
nonabsorbable classes, a total of 196 instances), and agents
that cause torsades de pointes (TdP, including TdP caus-
ing/non-causing classes, a total of 361 instances). These

TABLE 2
Performance of the Protocols (m ¼ 70, n ¼ 5, t ¼ 3, d ¼ 2)

Computation Cost (s) Communication Overhead (KB)

N 512 768 1024 1280 1536 1792 2048 512 768 1024 1280 1536 1792 2048

SDT 0.01 0.04 0.11 0.20 0.36 0.55 0.78 1.12 1.68 2.25 2.81 3.37 3.93 4.50
FAdd 0.11 0.31 0.68 1.34 2.39 3.59 5.09 3.00 4.49 5.99 7.49 8.99 10.49 11.99
FSub 0.10 0.32 0.67 1.34 2.39 3.66 5.08 2.99 4.49 5.99 7.49 8.99 10.49 11.99
FMul 0.07 0.22 0.46 0.91 1.59 2.39 3.43 2.00 2.99 3.99 4.99 5.99 7.00 7.99
FCmp 0.09 0.27 0.58 1.10 2.08 3.02 4.28 2.62 3.93 5.24 6.55 7.87 9.18 10.49
FEQ 0.18 0.55 1.18 2.33 4.14 6.21 8.99 5.24 7.86 10.49 13.10 15.74 18.36 20.99
FIP 0.44 1.25 2.83 5.17 9.10 14.53 22.13 11.98 17.96 23.96 29.97 35.95 41.95 47.98
FApx 2.76 8.30 18.83 37.46 64.13 98.50 141.52 91.03 136.83 182.48 228.29 273.99 319.38 365.10
SKer 0.13 0.43 0.97 1.79 3.14 5.00 7.65 4.49 6.73 8.98 11.24 13.48 15.73 17.99
STyp1 1.37 4.22 9.62 17.96 31.12 49.24 75.38 42.37 63.58 84.89 106.11 127.36 148.59 169.83
STyp2 1.40 4.33 9.88 18.14 31.83 50.54 77.29 43.36 65.08 86.88 108.61 130.36 152.08 173.82
FAbs 0.06 0.19 0.40 0.77 1.38 2.14 3.14 1.62 2.43 3.25 4.06 4.87 5.68 6.49
SCOS 0.08 0.23 0.51 1.02 1.79 2.70 3.91 2.00 2.99 3.99 4.99 6.00 6.99 7.99
FCOS 0.16 0.47 1.04 2.02 3.60 5.40 7.82 3.99 5.99 7.99 9.98 11.99 13.99 15.98
MAX 0.70 2.16 4.71 9.20 16.40 24.66 35.71 18.60 27.88 37.20 46.49 55.84 65.14 74.45
TOP-1 2.80 8.62 19.09 36.91 65.44 98.46 142.65 55.78 83.62 111.59 139.46 167.51 195.43 223.34
SKKT 0.56 1.70 3.72 7.25 12.80 19.46 27.95 16.47 24.70 32.96 41.18 49.47 57.71 65.95
Ssel 8.29 23.38 55.17 108.41 192.42 288.53 417.81 213.15 311.57 426.41 532.87 640.08 746.77 853.41
SMMO 8.14 25.05 54.41 106.73 188.135 284.34 411.54 183.70 275.39 367.49 459.25 551.67 643.56 735.49
SVM 1.50 4.68 10.64 19.71 33.40 54.14 78.45 48.35 72.56 96.87 121.10 145.34 169.52 193.81

Fig. 4. Evaluation findings.
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three datasets require 159 descriptors (features) and one
decision to describe.

To evaluate the effectiveness of POD, we use 10-fold
cross-validation to determine misclassification rate influ-
enced by the number of features (Fig. 4i) and the degree of
polynomial in kernel function (Fig. 4j). From Fig. 4i, we
observed that misclassification rate decreases when the
number of features increase (best 10/6.0%/6.4 percent mis-
classification rate for p-gp/HIA/TdP), and Fig. 4j shows
that the misclassification rate decreases when the polyno-
mial degree increases (best 16.3/9.6/7.6 percent misclassifi-
cation rate for p-gp/HIA/TdP). In the secure SVM training
phase, it takes 3.05/2.95/5.49 hours (85.85/76.59/154.35
MB) to train the secure SVM in one round for p-gp/HIA/
TdP respectively (include 0.68/0.64/1.25/ hours (18.7/
18.2/33.62 MB) to run Ssel, 2.07/2.02/3.7 hours (59.5/
58.1/107.0 MB) to run SMMO, and 0.3/0.29/0.54 hours (7.65/
7.46/13.73 MB) to run SPU). For new instance SVM classifi-
cation, it takes 1.5/1.4/2.8 hours (49.5/48.3/88.7 MB) for p-
gp/HIA/TdP dataset, respectively.

7.2 Theoretical Analysis

7.2.1 Computational Overhead

Let us assume that one regular exponentiation operation
with an exponent of length kNk requires 1:5kNk multiplica-
tions [21] (e.g., the length of r is kNk, and computation of gr

requires 1:5kNk multiplications, denoted as 1:5kNk muls).
As exponentiation operation is significantly more costly than
the addition and multiplication operations, we ignored the
fixed numbers of addition and multiplication operations in
our analysis. As basic SM and SLT need 45kNk muls and
30kNkmuls respectively, FAdd requires 135kNkmuls, while
FSub requires 138kNk muls to process. Similarly, it costs
90kNk muls to run FMul and FDiv. Also, it costs 120kNk
muls to run FCmp, 240kNkmuls to run FEqu, 93kNkmuls to
run COS, 78kNkmuls to run FAbs, 186kNkmuls to run FOS,
864kNk muls to run MAX, OðdkNkÞ muls to run FIP, and
Oðblog 2dckNkÞ muls to run TOP1, where d is the number of
the input encryption. For the enhanced protocols, SKer

needs Oððtþ blog 2dcÞkNkÞ muls, both STyp1 and STyp2

need Oððtþ blog 2dcÞnkNkÞ muls, where d is the degree of
the polynomial kernel. For the POD, it takes OðnkNkÞ muls
to run Ssel, Oðn2kNkÞ muls to run SMMO, and Oðn2kNkÞ
muls to run SPU for one round respectively (total Oðn2kNkÞ
muls for secure SVM training phase). Finally, it takes
OðnkNkÞ muls for CP & CSP for training completion check,
andOððtþ blog 2dcÞnkNkÞmuls to run the SVM classifier.

7.2.2 Communication Overhead

In the DT-PKC scheme, ½x� needs 4kNk bits and partially
decrypted ciphertext need 2kNk bits to transmit. For the
basic protocol, both FAdd and FSub costs 48kNk bits to pro-
cess. Similarly, it costs 32kNk bits to run FMul and FDiv.
Also, it costs 42kNk bits to run FCmp, 84kNk bits to run FEqu,
26kNk bits to FAbs, 32kNk bits to run COS, 64kNk bits to run
FOS, 298jNj bits to run MAX, OðdkNkÞ bits to run FIP, and
Oðblog 2dckNkÞ bits to run TOP1, where d is the number of the
input encryption. For the enhanced protocols, SKer needs
Oððtþ blog 2dcÞkNkÞ bits, and both STyp1 and STyp2 need
Oððtþ blog 2dcÞnkNkÞ bits. For the POD, it takes OðnkNkÞ

bits to run Ssel, Oðn2kNkÞ bits to run SMMO, and Oðn2kNkÞ
bits to run SPU for one round respectively. Finally, it takes
OðnkNkÞ bits for CP & CSP for training completion check,
andOððtþ blog 2dcÞnkNkÞ bits to run the SVM classifier.

7.3 Comparative Analysis

Here, we present the comparative summary of the proposed
POD and existing privacy-preserving SVM classifier (PP-
SVM) and secure data approximate method. The storage of
the existing PP-SVM can be categorized under two types,
namely: secure distributed storage and secure centralized
storage. Secure distributed storage PP-SVM uses secret
sharing to split the user’s data into different partitions,
which can be categorized into vertically partitioned [22],
horizontally partitioned [23], and arbitrarily partitioned
[24]. However, this strategy has two main drawbacks. First,
it stores the shares of one instance across different servers.
Second, all computations need to be online at the same time
when performing the secure computation. To overcome the
limitations, PP-SVM with centralized storage schemes [25],
[26] have been proposed in the literature. Such schemes
allow the data owner to encrypt and outsource the data in
the single storage server. Although the centralized strategy
can achieve privacy-preserving classification on-the-fly, it
requires multiple communication rounds between the data
owner and the storage server. Lin and Chen [27] presented
a solution to address the privacy concerns during the out-
sourced SVM training, but its security is too weak for drug
discovery. To solve the plaintext overflow problem, we pro-
posed a secure data approximate method to securely
deduce the plaintext length in a previous work [13]. How-
ever, it is inefficient due to the use of the time consuming
secure division protocol as the basis. The runtime of our
new secure fraction approximation protocol is much faster
than the corresponding one in [13] (139.2 times faster than
[13] when the plaintext bit length is 20, also see Figs. 4e and
4f for comparison). A comprehensive comparison between
our POD and the above schemes is presented in Table 3.

7.4 Alternate and Further Optimization Methods

In addition to secure fraction computation, it appears that
all data can be directly stored as the fixed-point number for-
mat, and expanded to an integer. Then, secure computation
can directly use secure integer protocols to construct our
POD. Compared with secure fraction storage, it only
requires 2kNk bits to store instead of 4kNk bits, where N is
the maximum value of crypto plaintext domain. However,
our POD needs to perform division calculation, and the
secure integer division protocol requires Oðm2kNk þ m3Þ
muls, where m is the bit-length of the integer in the system.
The latter is impractical for large plaintext (a.k.a m is large),
while our secure fraction computation only requires
OðkNkÞ muls. Another alternative solution is to use float-
ing-point format to securely store information, which allows
one to achieve high precision computation. However, we
would need to encrypt the sign, normalized significand,
and exponent. This requires 6kNk bits for a single number.
Moreover, the secure floating-point addition requires
OðhkNkÞ muls, while our secure fraction computation only
needs Oð1Þ muls (i.e., 4 muls), where h denotes the bit-
length of significand.
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The computation cost for secure training phase is still
high for real-world deployment. Thus, we give two optimi-
zation methods to further decrease the outsource computa-
tion time: 1) Multi-threaded programming. In a worst-case
scenario, we only use a single-threaded program in our
evaluation, and the multi-threaded programming could
achieve a significantly lower runtime for POD; 2) High-per-
formance hardware. We only use common PC to simulate
the outsourced secure computation. In a real-world deploy-
ment, the secure protocols would most probably be
deployed on machines with GPUs.

8 RELATED WORK

Searching over billions of molecules to find possible drug
formula, drug design using machine learning is what some
may consider the “Holy Grail”. SVM classifier is one of the
most robust and highly accurate intelligent classification
techniques in machine learning for designing drug applica-
tions. For example, Burbidge et al. [9] demonstrated that
using SVM classification to predict the inhibition of dihy-
drofolate reductase by pyrimidines, has a higher classifica-
tion rate compared to other machine learning techniques.
There have been other attempts to use SVM in the drug dis-
covery/designing process. For example, Byvatov et al. [28]
used SVM for drug/nondrug classification in the early
phase virtual compound filtering and screening, and Tou
et al. [29] used SVM as a basis to achieve virtual screening
and ligand-based drug design for Traditional Chinese Med-
icine (TCM). A number of machine learning techniques for
drug discovery have also been proposed in the literature,
such as extreme learning machine [30], deep learning [31],
and na€ıve Bayes classifer [32].

To protect the privacy of SVM classifier, Yu et al. [22] pre-
sented a scalable solution for privacy-preserving SVM classi-
fication on vertically partitioned data. As the scheme uses
linear kernel function, Yu et al. [23] constructed a privacy-
preserving SVM on horizontally partitioned data with
(Gaussian) radial basis function kernel. To support arbi-
trarily partitioned data, Vaidya et al. [24] constructed a pri-
vacy-preserving SVM, and quantified the security and
efficiency of the method. These schemes use multiple servers
to store data, which leads to data synchronization problem
across different storage servers. To solve the problem,
Rahulamathavan et al. [25] constructed a privacy-preserving
clinical decision support system using the SVM classifier.
Rahulamathavan et al. [26] also built a privacy-preserving
outsourced multi-class SVM to solve the multi-class prob-
lems on-the-fly. Clients in both schemes need to encrypt their

test sample prior to outsourcing to the cloud. However, mul-
tiple communication rounds between the client and the cloud
are needed in both schemes of [25] and [26]. To minimize the
communication rounds for clients, other frameworks have
also been proposed in the literature. However, none of these
schemes support secure SVM training (an important phase
in drug discovery). Lin and Chen [27] perturbed the data
using random linear transformation to construct the privacy-
preserving outsourcing of the SVM training. Unfortunately,
it only supports single data owner. Later, Lin and Chen [33]
considered the privacy problem of the SVM training dataset
and send the encrypted SVM to a client for classification.
Note that both schemes in [27] and [33] are not semantically
secure (See the securitymodel in [34]).

9 CONCLUSION

In this paper, we proposed POD, a new privacy-preserving
outsourced drug discovery in the cloud. POD is designed to
facilitate drug manufacturers to securely outsource their
formulas to the cloud for storage and SVM training. The
trained SVM model could be used for authorized client’s
compound classification in a privacy-preserving way. Spe-
cifically, we designed a secure domain transformation pro-
tocol and several basic secure computation components for
secure outsourced computation across different parties. We
also built two key secure components (i.e., secure parameter
selection and secure sequential minimal optimization) to
achieve privacy-preserving SVM training in drug discovery.
In the future, we will be extending our approach to support
more sophisticated data mining method in order to support
very large dataset in drug discovery.
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