
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

3-2012

Hoare-style verification of graph programs Hoare-style verification of graph programs

Christopher M. POSKITT
Singapore Management University, cposkitt@smu.edu.sg

Detlef PLUMP

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Graphics and Human Computer Interfaces Commons, and the Software Engineering

Commons

Citation Citation
POSKITT, Christopher M. and PLUMP, Detlef. Hoare-style verification of graph programs. (2012).
Fundamenta Informaticae. 118, (1-2), 135-175.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4859

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4859&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4859&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4859&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4859&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Fundamenta Informaticae 118 (2012) 135–175 135

DOI 10.3233/FI-2012-708

IOS Press

Hoare-Style Verification of Graph Programs

Christopher M. Poskitt ∗†, Detlef Plump

Department of Computer Science

The University of York

Deramore Lane, York, YO10 5GH, United Kingdom

cposkitt@cs.york.ac.uk; det@cs.york.ac.uk

Abstract. GP (for Graph Programs) is an experimental nondeterministic programming language
for solving problems on graphs and graph-like structures. The language is based on graph trans-
formation rules, allowing visual programming at a high level of abstraction. In particular, GP frees
programmers from dealing with low-level data structures. In this paper, we present a Hoare-style
proof system for verifying the partial correctness of (a subset of) graph programs. The pre- and post-
conditions of the calculus are nested graph conditions withexpressions, a formalism for specifying
both structural graph properties and properties of labels.We show that our proof system is sound
with respect to GP’s operational semantics and give examples of its use.

1. Introduction

Rule-based transformations of graph-like structures are ubiquitous in computer science. Applications
of graph transformation to programming languages and software engineering include the semantics and
implementation of functional programming languages [26, 27], the specification and analysis of pointer
structures [3, 2, 33], the semantics of the Unified Modelling Language [17, 21] and the semantics and
analysis of model transformations [36, 9, 5, 15].

Applications to the semantics of languages and the analysis of systems naturallyraise the question
of how to formally verify properties of graph transformation systems. In recent years, a number of
verification approaches have emerged which typically focus on sets of graph transformation rules or
graph grammars [32, 4, 20, 6, 10, 19].

∗This author is grateful to be supported by a scholarship of the Engineering and Physical Sciences Research Council.
†Address for correspondence: Department of Computer Science, The University of York, Deramore Lane, York, YO10 5GH,
United Kingdom

136 C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs

Graph transformation languages such as PROGRES [34], AGG [35], Fujaba [23] and GrGen [8],
however, provide control constructs on top of graph transformation rules for practical problem solving.
To give a simple example, consider the problem of reversing the direction ofthe edges of an input graph.
This requires two loops in sequence: the first applies as long as possible arule which reverses an edge
and marks it as reversed (to ensure termination), the second applies as long as possible a rule which
removes the auxiliary edge mark.

The challenge to verify programs in practical graph transformation languages has, to the best of our
knowledge, not yet been addressed. A first step beyond the verification of plain sets of rules has been
made by Habel, Pennemann and Rensink [11] by constructing the weakestpreconditions of so-called
high-level programs. These programs provide constructs such as sequential composition and as-long-
as-possible iteration over sets of conditional graph transformation rules.The authors adopt Dijkstra’s
approach to program verification: one calculates the weakest precondition for a program and its post-
condition, and then needs to prove that the program’s precondition implies theweakest precondition.
High-level programs fall short of practical graph transformation languages though, in that they cannot
calculate with labels (or attributes), a capability which is indispensable for manygraph algorithms. For
example, computing the shortest path between two nodes requires one to compare and add distances
(edge labels). Another drawback of the approach of [11] is that for programs with loops, the generated
weakest precondition is infinite.

In this paper we present an approach for verifying programs in the graph programming language
GP [28, 22], an experimental nondeterministic language for high-level problem solving in the domain of
graphs. GP is based on graph transformation rules and has a simple syntaxand semantics, to facilitate
formal reasoning about programs. The core of GP consists of just four constructs: single-step application
of a set of rules, sequential composition, branching and looping. Our Hoare calculus assumes that the
conditions of branching statements and the bodies of loops are sets of conditional rule schemata rather
than arbitrary programs.

Instead of adopting the weakest-precondition approach to verification, we follow Hoare’s seminal
paper [16] and devise a calculus of syntax-directed proof rules. Ourproof system aims at human-guided
verification and the compositional construction of proofs, assisted by a mechanical theorem prover. This
is in line with work on program verification for languages such as Java [30, 18, 37, 25].

The pre- and postconditions of our calculus areE-conditions: nested graph conditions in the sense of
Habel and Pennemann [10], extended with expressions as labels and assignment constraints for specify-
ing properties of labels. For example, the E-condition∃(x y | x ∗ x = y) expresses that there exists
two nodes labelled with some integersx andy such thatx2 = y. Such an assertion cannot be finitely
expressed with the conditions of [10]. To demonstrate the problem with an even simpler property, con-
sider the E-condition∃(x | type(x) = int) which requires the existence of a node labelled with some
integer. To specify this with a condition in the sense of [10], we would need toinclude all integers in
the label alphabet (violating that paper’s requirement that label alphabets are finite) and then resort to the
infinite condition

∃(0) ∨ ∃(1) ∨ ∃(-1) ∨ ∃(2) ∨ ∃(-2) ∨ . . .

The rest of this paper is organised as follows. We briefly review some preliminaries in Section 2,
graph transformation in Section 3, and graph programs in Section 4. Following this, we present E-
conditions in Section 5, and then use them to define a proof system for GP in Section 6, where its use will
be demonstrated by proving properties of graph colouring programs. InSection 7, we formally define

C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs 137

two transformations of E-conditions used in the proof system, then in Section 8we prove the axiom
schemata and inference rules sound in the sense of partial correctness, with respect to GP’s operational
semantics. Finally, we conclude in Section 9.

This paper is an extended version of the conference paper [31], adding full proofs, and further exam-
ples.

2. Graphs, Assignments, and Substitutions

Graph transformation in GP is based on the double-pushout approach withrelabelling [13]. This frame-
work deals with partially labelled graphs, whose definition we recall below. We consider two classes
of graphs, “syntactic” graphs labelled with expressions and “semantic” graphs labelled with (sequences
of) integers and strings. We also introduce assignments which translate syntactic graphs into semantic
graphs, and substitutions which operate on syntactic graphs.

A graphover a label alphabetC is a systemG = (VG, EG, sG, tG, lG,mG), whereVG andEG are
finite sets ofnodes(or vertices) andedges, sG, tG : EG → VG are thesourceand target functions for
edges,lG : VG → C is the partial node labelling function andmG : EG → C is the (total) edge labelling
function. Given a nodev, we write lG(v) = ⊥ to express thatlG(v) is undefined. GraphG is totally
labelledif lG is a total function. We writeG(C) for the set of all totally labelled graphs overC, andG(C⊥)
for the set of all graphs overC.

Unlabelled nodes will occur only in the interfaces of rules and are necessary in the double-pushout
approach to relabel nodes. There is no need to relabel edges as they can always be deleted and reinserted
with different labels.

A graph morphismg : G → H between graphsG andH consists of two functionsgV : VG → VH

andgE : EG → EH that preserve sources, targets and labels; that is,sH◦gE = gV ◦sG, tH◦gE = gV ◦tG,
mH ◦ gE = mG, andlH(g(v)) = lG(v) for all v such thatlG(v) 6= ⊥. Morphismg is an inclusion if
g(x) = x for all nodes and edgesx. It is injective(surjective) if gV andgE are injective (surjective). It is
an isomorphismif it is injective, surjective and satisfieslH(gV (v)) = ⊥ for all nodesv with lG(v) = ⊥.
In this caseG andH areisomorphic, which is denoted byG ∼= H.

We consider graphs over two distinct label alphabets. Graph programs and E-conditions contain
graphs labelled with expressions, while the graphs on which programs operate are labelled with (se-
quences of) integers and character strings. We consider graphs of the first type as syntactic objects and
graphs of the second type as semantic objects, and aim to clearly separate these levels of syntax and
semantics.

Let Z be the set of integers and Char be a finite set of characters. We fix the label alphabetL =
(Z ∪ Char∗)+ of all non-empty sequences over integers and character strings.

The other label alphabet we are using consists of expressions according to the EBNF grammar of
Figure 11, where VarId is a syntactic class2 of variable identifiers. We writeG(Exp) for the set of all
graphs over the syntactic class Exp.

Each graph inG(Exp) represents a possibly infinite set of graphs inG(L). The latter are obtained
by instantiating variables with values fromL and evaluating expressions. Anassignmentis a partial

1This grammar and those in the following sections are ambiguous, as we arenot concerned with concrete syntax in this paper.
If necessary we use parentheses to disambiguate expressions or programs.
2We use the non-terminals of our grammars to denote the syntactic classes of strings that can be derived from them.

138 C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs

Exp ::= (Term| String) [’ ’ Exp]

Term ::= Num| VarId | Term ArithOp Term

ArithOp ::= ’+’ | ’-’ | ’∗’ | ’/’

Num ::= [’-’] Digit {Digit}

String ::= ’ ” ’ {Char} ’ ” ’

Figure 1. Syntax of expressions

functionα : VarId→ L. Given an expressione, an assignmentα is well-typedfor e if it is defined for
all variables occurring ine and if for each termt1 ⊕ t2 in e, with ⊕ in ArithOp, we haveα(x) in Z for
all variablesx occurring int1 ⊕ t2. In this case we inductively define the valueeα ∈ L as follows. If
e is a numeral or a sequence of characters, theneα is the integer or character string represented bye. If
e is a variable identifier, theneα = α(e). Otherwise, ife has the formt1 ⊕ t2 with ⊕ ∈ ArithOp and
t1, t2 ∈ Term, theneα = tα1 ⊕Z tα2 where⊕Z is the integer operation represented by⊕. Finally, if e has
the formt e1 with t ∈ Term∪ String ande1 ∈ Exp, theneα = tαeα1 (the concatenation of the sequences
tα andeα1).

Given a graphG in G(Exp) and an assignmentα that is well-typed for all expressions inG, we
write Gα for the graph inG(L) that is obtained fromG by replacing each labele with eα (note thatGα

has the same nodes, edges, source and target functions asG). If g : G → H is a graph morphism with
G,H ∈ G(Exp), thengα denotes the morphism〈gαV , g

α
E〉 : G

α → Hα.
A substitutionis a partial functionσ : VarId→ Exp. Given an expressione, σ is well-typedfor e if

for each termt1⊕ t2 in e, with⊕ ∈ ArithOp, we haveσ(x) ∈ Term for all variable identifiersx in t1⊕ t2
for which σ is defined. In this case, the expressioneσ is obtained frome by replacing every variablex
for whichσ is defined withσ(x) (if σ is not defined for a variablex, thenxσ = x). Given a graphG in
G(Exp) such thatσ is well-typed for all labels inG, we writeGσ for the graph inG(Exp) that is obtained
by replacing each labele with eσ. If g : G → H is a graph morphism between graphs inG(Exp), then
gσ denotes the morphism〈gσV , g

σ
E〉 : G

σ → Hσ.
Given an assignmentα : VarId → L, the substitutionσα : VarId → Exp inducedby α maps

every variablex to the expression that is obtained fromα(x) by replacing integers and strings with their
syntactic counterparts. For example, ifα(x) is the integer 23, thenσα(x) is 23 from the syntactic class
Num. Consider another example: ifα(x) is the sequence56, a, bc , where56 is an integer anda andbc are
strings, thenσα(x) = 56 ”a” ”bc”. Note that for any variablex, and any two well-typed assignments
α, α′ for x, σα(x)α

′
= α(x).

3. Graph Transformation

We briefly review the model of graph transformation underlying GP, the double-pushout approach with
relabelling [13]. Our presentation is tailored to GP in that we consider graphs inG(L), and rules in which
the interface consists of unlabelled nodes only.

A rule r = 〈L ← K → R〉 is a pair of inclusionsK → L andK → R, whereK consists of
unlabelled nodes only, andL andR are totally labelled graphs overL. GraphK is the interfaceof r.
Intuitively, an application ofr to a graph will remove the items inL −K, preserveK, add the items in

C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs 139

R −K, and relabel the unlabelled nodes inK. Given a graphG in G(L), an injective graph morphism
g : L → G is amatchfor r if it satisfies thedangling condition: no node ing(L) − g(K) is incident to
an edge inG− g(L). In this caseG directly derivesthe graphH in G(L) that is constructed fromG as
follows3:

1. Remove all nodes and edges ing(L)− g(K).

2. Add disjointly all nodes and edges fromR−K, keeping their labels. Fore ∈ ER −EK , sH(e) is
sR(e) if sR(e) ∈ VR − VK , otherwisegV (sR(e)). Targets are defined analogously.

3. For each nodev in K, lH(gV (v)) becomeslR(v).

We writeG⇒r,g H (or justG⇒r H) if G directly derivesH as above.
Figure 2 shows an example of a direct derivation. The rule in the upper row is applied to the left

graph of the lower row, resulting in the right graph of the lower row. For simplicity, we do not depict
edge labels and assume that they are all the same. The node identifiers 1 and2 in the rule specify the
inclusions of the interface. The middle graph of the lower row is an intermediateresult (omitted in
the above construction). This diagram represents a double-pushout inthe category of partially labelled
graphs overL.

1
1

1 1
2

←
1 2

→ 2
1

3
2

↓ ↓ ↓

1

1

1

1

←

1

→ 2 3

1

Figure 2. A direct derivation

To define conditional rules, we equip rules with predicates that restrict sets of matches. Aconditional
rule q = (r, P) consists of a ruler and a predicateP on graph morphisms. Given totally labelled graphs
G, H and a matchg : L→ G for q, we writeG⇒q,g H (or justG⇒q H) if P (g) holds andG⇒r,g H.
For a set of conditional rulesR, we writeG⇒R H if there is someq inR such thatG⇒q H.

4. Graph Programs

We briefly review GP’s conditional rule schemata, program syntax, and structural operational semantics.
We also give an example program that computes a graph colouring, in order to make clear how the
programming language and its features work. Further technical details andexamples can be found in
[28, 29].
3See [13] for an equivalent definition by graph pushouts.

140 C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs

4.1. Conditional Rule Schemata

Conditional rule schemata are the “building blocks” of graph programs: a program is essentially a list
of declarations of conditional rule schemata together with a command sequence for controlling their
application. Rule schemata generalise graph transformation rules as introduced in the previous section,
in that labels can contain (sequences of) expressions over parametersof type integer or string. Figure 3
shows a conditional rule schema consisting of the identifierbridge followed by the declaration of formal
parameters, the left and right graphs of the schema which are graphs inG(Exp), the node identifiers1, 2,
3 specifying which nodes are preserved, and the keywordwhere followed by a rule schema condition.

bridge(a, b, x, y, z : int)

x

1

y

2

z

3

a b
⇒ x

1

y

2 3

z

3

a+ b

a b

where not edge(1, 3)

Figure 3. A conditional rule schema

In the GP programming system [22], rule schemata are constructed with a graphical editor. Labels
in the left graph comprise only variables and constants (no composite expressions) because their values
at execution time are determined by graph matching. The condition of a rule schema is a Boolean
expression built from arithmetic expressions and the special predicateedge, where all variables occurring
in the condition must also occur in the left graph. The predicateedge demands the existence of an edge
between two nodes in the graph to which the rule schema is applied (and is typically used in negated
form). For example, the expressionnot edge(1, 3) in the condition of Figure 3 forbids an edge from
node 1 to node 3 when the left graph is matched. The grammar of Figure 4 defines the syntax of rule
schema conditions, where Term is the syntactic class defined in Figure 1.

BoolExp ::= edge ’(’ Node ’,’ Node ’)’ | Term RelOp Term

| not BoolExp| BoolExp BoolOp BoolExp

Node ::= Digit{Digit}

RelOp ::= ’=’ | ’\=’ | ’>’ | ’<’ | ’>=’ | ’<=’

BoolOp ::= and | or

Figure 4. Syntax of rule schema conditions

Conditional rule schemata represent possibly infinite sets of conditional graph transformation rules
in the sense of the previous section. A rule schemaL ⇒ R with conditionΓ represents conditional
rules〈〈Lα ← K → Rα〉, Γα,g〉, whereK consists of the preserved nodes (which inK are unlabelled)
andΓα,g is a predicate on graph morphismsg : Lα → G (see [28, 29]). Thus, applying the rule schema

C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs 141

〈L⇒ R,Γ〉 to a graphG in G(L) amounts to:

1. choosing an assignmentα : VarId→ L,

2. choosing a graph morphismg : Lα → G that satisfies the dangling condition with respect to
〈Lα ← K → Rα〉,

3. checking the conditionΓα,g, and

4. applying〈Lα ← K → Rα〉 with matchg, in the sense of Section 3.

For example, the upper rows of Figure 5 show the rule schemabridge of Figure 3 (without con-
dition) and its instancebridgeα, whereα(x) = 0, α(y) = α(z) = 1, α(a) = 3 andα(b) = 2. The
condition ofbridge evaluates underα to a predicate which is true for a matchg of the left-hand graph
if and only if there is no edge fromg(1) to g(3). The lower rows of Figure 5 show an application of
bridgeα by a graph morphism satisfying the predicate.

Schema: x

1

y

2

z

3

a b
⇒ x

1

y

2

z

3

a b

a+ b

↓α ↓α

Instance: 0
1

1
2

1
3

3 2
⇒ 0

1

1
2

1
3

3 2

5

↓ ↓

0 1

2

1
3 2

01

⇒ 0 1

2

1
3 2

5

01

Figure 5. Application of the rule schemabridge using instantiation

4.2. Abstract Syntax

Figure 6 gives the abstract syntax of graph programs. A program consists of a number of declarations of
conditional rule schemata and macros, and exactly one declaration of a main command sequence. The
rule schema identifiers (category RuleId) occurring in a call of categoryRuleSetCall refer to declarations
of conditional rule schemata in category RuleDecl (see Section 4.1). The latter category is not defined in
the textual syntax because rule schemata are declared graphically in the GPprogramming system [22].

Macros are a simple means to structure programs and thereby make them more readable. Every
program can be transformed into an equivalent macro-free program by replacing macro calls with their
associated command sequences (recursive macros are not allowed). This allows us, when defining the
semantics of GP, to consider programs as command sequences.

142 C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs

Prog ::= Decl{Decl}
Decl ::= RuleDecl| MacroDecl| MainDecl
MacroDecl ::= MacroId ’=’ ComSeq
MainDecl ::= main ’=’ ComSeq
ComSeq ::= Com{’;’ Com}
Com ::= RuleSetCall| MacroCall

| if ComSeqthen ComSeq [else ComSeq]
| ComSeq ’!’
| skip | fail

RuleSetCall ::= RuleId| ’{’ [RuleId {’,’ RuleId}] ’ }’
MacroCall ::= MacroId

Figure 6. Abstract syntax of GP

A branching commandifC then P elseQ is executed on a graphG by first executing the program
C onG. If C can produce a graph, then the programP is executedon the input graphG. On the other
hand, if all executions ofC on G end in failure, then the programQ is executed, again, on the input
graphG.

The commandsskip andfail can be expressed through the other commands (see Section 4.3),
hence the core of GP includes only the call of a set of conditional rule schemata (RuleSetCall), sequential
composition (’;’), the if-then-else statement and as-long-as-possible iteration (’!’).

4.3. Structural Operational Semantics

GP’s formal semantics [29] is given in the style of structural operational semantics (see for example
[24]). Inference rules inductively define a small-step transition relation→ on configurations. In our
setting, a configuration is either a command sequence together with a graph, just a graph, or the special
element fail:

→ ⊆ (ComSeq× G(L))× ((ComSeq× G(L)) ∪ G(L) ∪ {fail}).

Configurations in ComSeq×G(L) represent unfinished computations, given by a command sequence
that remains to be executed and a state (a graph), while graphs inG(L) are proper results of computations.
In addition, the element fail represents a failure state.

Each inference rule in Figure 7 consists of a premise and a conclusion separated by a horizontal
bar. Both parts contain meta-variables for command sequences and graphs, whereR stands for a call in
category RuleSetCall,C,P, P ′, Q stand for command sequences in category ComSeq, andG,H stand
for graphs inG(L). Given a rule set callR, we writeG 6⇒R if there is no graphH such thatG⇒R H.
Meta-variables are considered to be universally quantified. For example, the rule [Call1]SOS should be
read as: “For allR in RuleSetCall and allG,H in G(L), G⇒R H implies〈R, G〉 → H.”

Figure 7 shows the inference rules for the core constructs of GP. We write →+ and→∗ for the
transitive and reflexive-transitive closures of→. A command sequenceC finitely failson a graphG ∈
G(L) if (1) there does not exist an infinite sequence〈C, G〉 → 〈C1, G1〉 → . . . and (2) for each
terminal configurationγ such that〈C, G〉 →∗ γ, γ = fail. (A configurationγ is terminal if there is no

C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs 143

configurationδ such thatγ → δ.) In other words,C finitely fails onG if all computations starting from
〈C, G〉 eventually end in the configurationfail.

[Call1]SOS
G⇒R H
〈R, G〉 → H

[Call2]SOS
G 6⇒R

〈R, G〉 → fail

[Seq1]SOS
〈P, G〉 → 〈P ′, H〉

〈P ;Q, G〉 → 〈P ′;Q, H〉
[Seq2]SOS

〈P, G〉 → H
〈P ;Q, G〉 → 〈Q, H〉

[Seq3]SOS
〈P, G〉 → fail
〈P ;Q, G〉 → fail

[If1]SOS
〈C, G〉 →+ H

〈if C then P else Q, G〉 → 〈P, G〉

[If2]SOS
C finitely fails onG

〈if C then P else Q, G〉 → 〈Q, G〉

[Alap1]SOS
〈P, G〉 →+ H

〈P !, G〉 → 〈P !, H〉
[Alap2]SOS

P finitely fails onG
〈P !, G〉 → G

Figure 7. Inference rules for core commands

The meaning of the remaining GP commands is defined in terms of the meaning of the core com-
mands, see Figure 8. We refer to these commands asderivedcommands.

[Skip]SOS 〈skip, G〉 → 〈null, G〉

wherenull is the rule schema∅ ⇒ ∅

[Fail]SOS 〈fail, G〉 → 〈{}, G〉

[If3]SOS 〈if C then P, G〉 → 〈if C then P else skip, G〉

Figure 8. Inference rules for derived commands

The meaning of graph programs is summarised by a semantic functionJ K, which assigns to every
programP the functionJP K mapping an input graphG to the set of all possible results of runningP on
G. The result set may contain, besides proper results in the form of graphs, the special value⊥ which
indicates a non-terminating or stuck computation. Thesemantic functionJ K : ComSeq→ (G(L) →
2G(L)∪{⊥}) is defined by4:

JP KG = {H ∈ G(L) | 〈P, G〉
+
→H} ∪ {⊥ | P can diverge or get stuck fromG}

4We writeJP KG for the application ofJP K to a graphG.

144 C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs

whereP can diverge fromG if there is an infinite sequence〈P, G〉 → 〈P1, G1〉 → 〈P2, G2〉 → . . . ,
andP can get stuck fromG if there is a terminal configuration〈Q, H〉 such that〈P, G〉 →∗ 〈Q, H〉
(where the rest programQ cannot be executed because no inference rule is applicable).

A program can get stuck only in two situations: either it contains a subprogramifC then P elseQ

whereC both can diverge from some graph and cannot produce a proper result from that graph, or it
contains a subprogramB! where the loop’s bodyB possesses the said property ofC.

4.4. Example Program: Node Colouring

We discuss an example program to familiarise the reader with GP’s features.This program will be a
running example throughout the remainder of the paper.

A colouring for a graph is an assignment of colours (integers) to nodes such that thesource and
target of each non-looping edge have different colours. The programcolouring in Figure 9 produces a
colouring for every integer-labelled input graph, recording colours as so-called tags. In general, a tagged
label is a sequence of expressions separated by underscores.

main = init!; inc!

init(x : int)

1

x ⇒

1

x 0

inc(i, k, x, y : int)

x i y i

1 2

k
⇒ x i y i+1

1
2

k

3 0

3 1

3 2

3 1

3 3

33

+
← 3

3

3

3

3 3

33

+
→ 3 0

3 1

3 0

3 1

3 3

33

Figure 9. The programcolouring and two of its executions

The program initially colours each node with 0 by applying the rule schemainit as long as possible,
using the iteration operator ’!’. It then repeatedly increments the target colour of edges with the same
colour at both ends. Note that this process is nondeterministic: Figure 9 shows two executions, one

C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs 145

producing a colouring with two colours, and one producing a colouring withthree colours.
It is easy to see that whenevercolouring terminates, the resulting graph is a correctly coloured

version of the input graph. This is because the output cannot contain anedge with the same colour at
both of its incident nodes, as theninc would have been applied at least one more time. Also, it can be
shown that every execution of the program terminates after at most a quadratic number of rule schema
applications [28].

5. Nested Graph Conditions with Expressions

We introduce nested graph conditions with expressions (or E-conditions)to specify graph properties in
the pre- and postconditions of graph programs. E-conditions extend the nested conditions of [10] with
expressions for labels, and assignment constraints that restrict the values that can be assigned to variables.
E-conditions can be considered as finite representations of (possibly infinite) sets of nested conditions.

Definition 5.1. (Assignment constraint)
An assignment constraintis a Boolean expression conforming to the grammar in Figure 10. We require
that the arguments of the operators>, <, >= and <= belong to the syntactic class Term and that the
arguments of= and\= belong to either Term, String, or Exp− (Term∪ String). (See Figure 1 for the
definition of Term, String and Exp.) �

ACBoolExp ::= Exp RelOp Exp| not ACBoolExp

| ACBoolExp BoolOp ACBoolExp

| type ’(’ Exp ’)’ ’=’ Type | true

RelOp ::= ’=’ | ’\=’ | ’>’ | ’<’ | ’>=’ | ’<=’

BoolOp ::= and | or

Type ::= int | string | tagged

Figure 10. Syntax of assignment constraints

Given an assignment constraintγ and an assignmentα well-typed for all expressions inγ, the valueγα

in B = {tt, ff} is inductively defined as follows. Ifγ = true, thenγα = tt. Let nowγ have the form
e1 ⊲⊳ e2 with ⊲⊳ ∈ RelOp ande1, e2 ∈ Exp. If ⊲⊳ is = or \=, then(e1 ⊲⊳ e2)

α = tt (resp.ff) if eα1 = eα2 ,
otherwise(e1 ⊲⊳ e2)

α = ff (resp.tt). If ⊲⊳ is >, ande1, e2 are in Term, then the value of(e1 ⊲⊳ e2)
α is

the truth value ofeα1 > eα2 . (The cases for when⊲⊳ is <, >=, and<= are analogous.)
If γ = not γ1 with γ1 ∈ ACBoolExp, thenγα = tt (resp.ff) if γα1 = ff (resp.tt). If γ = γ1⊕γ2

with γ1, γ2 ∈ ACBoolExp and⊕ ∈ BoolOp, thenγα = γα1 ⊕B γα2 where⊕B is the Boolean operation
onB represented by⊕.

Finally, if γ has the formtype(e) = t with e ∈ Exp andt ∈ Type, thenγα = tt if t(eα) = t, where
the function t: L → Type is defined by:

t(l) =

int if l ∈ Z,

string if l ∈ Char∗,

tagged otherwise.

146 C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs

Example 5.1. (Assignment constraint)
Consider the assignment constraintγ = a > b and b \= 0 and type(a) = int. Letα1 = (a 7→ 5, b 7→ 1)
andα2 = (a 7→ 3, b 7→ 0). Thenγα1 = tt andγα2 = ff. �

Note that variables in assignment constraints do not have a type per se, unlike the variables in GP
rule schemata. Rather,type can be used to restrict the type(s) that a variable may be instantiated to.

A substitutionσ : VarId → Exp is well-typed for an assignment constraintγ if it is well-typed for
all expressions inγ, and if for eacht1 ⊲⊳ t2 with t1, t2 ∈ Term and⊲⊳ ∈ RelOp− {=, \=}, we have
σ(x) ∈ Term for all variable identifiersx in t1, t2 for which σ is defined. In this case, the assignment
constraintγσ is obtained fromγ by replacing every variablex for whichσ is defined withσ(x).

Notation 5.1. (type)
We allowtype(x1, . . . , xn) = int to be short fortype(x1) = int and . . . and type(xn) = int. �

Definition 5.2. (E-condition)
An E-conditionc over a graphP is of the form true or∃(a | γ, c′), wherea : P →֒ C is an injective5

graph morphism withP,C ∈ G(Exp), γ is an assignment constraint, andc′ is an E-condition over
C. Boolean formulae over E-conditions overP yield E-conditions overP , that is,¬c andc1 ∧ c2 are
E-conditions overP if c, c1, c2 are E-conditions overP . �

All substitutionsσ are well-typed forc = true. In this case we definecσ = true. A substitutionσ is
well-typed forc = ∃(a | γ, c′) if it is well-typed for the graphs ina, for γ, and forc′. In this case the
application ofσ to c is definedcσ = ∃(aσ | γσ, (c′)σ).

The satisfactionof E-conditions by injective graph morphisms between graphs inG(L) is defined
inductively. Every such morphism satisfies the E-condition true. An injective graph morphisms : S →֒
G with S,G ∈ G(L) satisfiesthe E-conditionc = ∃(a : P →֒ C | γ, c′), denoteds |= c, if there exists an
assignmentα that is well-typed for all expressions inP,C, γ and is undefined for variables present only
in c′, such thatS = Pα, and such that there is an injective graph morphismq : Cα →֒ G with q ◦aα = s,
γα = tt, andq |= (c′)σα . Here,σα is the substitution induced byα, which we require to be well-typed
for all expressions inc′. If such an assignmentα and morphismq exist, we say thats satisfiesc byα,
and writes |=α c. Figure 11 summarisess |=α c (assuming thatγα = tt).

S = P
α

C
α

G

a
α

s

→֒
→֒ →֒=

q |= (c′)σα

Figure 11. Satisfaction of an E-condition

Remark 5.1. (Induced substitutions)
In the definition of satisfaction, we apply an induced substitutionσα to the nested E-conditionc′, before
checking that the morphismq satisfies it. This is necessary to enforce equal assignment of variables that
appear only in the assignment constraint in different parts of the nesting.

�

5We restrict to injective morphisms since GP is restricted to injective matching.

C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs 147

For brevity, we write false for¬true,∃(a | γ) for ∃(a | γ, true), ∃(a, c′) for ∃(a | true, c′), and∀(a |
γ, c′) for ¬∃(a | γ,¬c′). In our examples, when the domain of morphisma : P →֒ C can unambiguously
be inferred, we write only the codomainC. For instance, an E-condition∃(∅ →֒ C, ∃(C →֒ C ′)) can
be written as∃(C, ∃(C ′)), where the domain of the outermost morphism is the empty graph, and the
domain of the nested morphism is the codomain of the encapsulating E-condition’s morphism.

An E-condition over a graph morphism whose domain is the empty graph is referred to as anE-
constraint. We later refer to E-conditions over left- and right-hand sides of rule schemata asE-app-
conditions.

Example 5.2. (E-condition)
The E-condition∀(x y

1 2

k
| x > y, ∃(x y

1 2

l
k

)) (which is an E-constraint) expresses that every pair
of adjacent integer-labelled nodes with the source label greater than the target label has a loop incident
to the source node. The unabbreviated version of the condition is as follows:

¬∃(∅ →֒ x
1

y
2

k
| x > y, ¬∃(x

1 2
yk
→֒

1
x

2
y

l
k

| true, true)).
�

We write2 and2α in place of|= and|=α, respectively, when the satisfaction relation does not hold for a
morphism and E-condition.

A graphG in G(L) satisfies an E-conditionc, denotedG |= c, if the morphismiG : ∅ →֒ G satisfies
c. (Note that graphs will only ever satisfy E-constraints.)

The satisfaction of Boolean formulae over E-conditions is defined inductively. We haves |= ¬c if
s 2 c, ands |= c ∧ d if s |= c ands |= d. Given an assignmentα, we haves |=α ¬c if s 2α c, and
s |=α c ∧ d if s |=α c ands |=α d.

Given a substitutionσ, we define(¬c)σ = ¬cσ, and(c ∧ d)σ = cσ ∧ dσ if σ is well-typed forc and
c, d respectively.

Notation 5.2. (Unconstrained variables)
For simplicity, we omit labels of nodes and edges in E-conditions that are unconstrained variables. We
leave it implicit that in each graph of the E-condition, each such variable occurs only once and does not
occur in any assignment constraint. �

By this convention, we can simplify the E-condition in Example 5.2 to:

∀(x y
1 2

| x > y, ∃(x y
1 2

)).

Here, it is implicit that the non-looping edge in both graphs are labelled by the same variable (but notx
or y), and the looping edge in the nested graph is labelled by another, distinct variable. In Example 5.2,
k andl are used, respectively, but the choice of symbols is unimportant.

6. A Hoare Calculus for Graph Programs

We present and discuss a system of partial correctness proof rules for GP, in the style of Hoare [1],
using E-constraints as the pre- and postconditions. We demonstrate the useof the proof system in two
examples.

148 C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs

Definition 6.1. (Partial correctness)
A graph programP is partially correct with respect to a preconditionc and a postconditiond (both of
which are E-constraints), if for every graphG ∈ G(L), G |= c impliesH |= d for every graphH in
JP KG. �

Recall thatJ K is GP’s semantic function (see Section 4.3), andJP KG contains all graphs resulting
from executing programP on graphG. Note that partial correctness of a programP does not entail that
P will terminate on graphs satisfying the precondition.

Given E-constraintsc, d and a programP , a triple of the form{c} P {d} expresses the claim that
P is partially correct with respect to preconditionc and postconditiond. Our proof system in Figure
12 operates on such triples. As in classical Hoare logic [16, 1], we use the proof system to construct
proof trees, deriving the desired triple by application of the axiom schemataand inference rules. We let
c, d, e, inv range over E-constraints,P,Q over arbitrary command sequences,r, ri over conditional rule
schemata, andR over sets of conditional rule schemata.

[ruleapp]
{Pre(r, c)} r {c}

[nonapp]
{¬App(R)} R {false}

{c} r1 {d} . . . {c} rn {d}
[ruleset]

{c} {r1, . . . , rn} {d}

{inv} R {inv}
[!]
{inv} R! {inv ∧ ¬App(R)}

{c} P {e} {e} Q {d}
[comp]

{c} P ; Q {d}

{c′} P {d′}
[cons]c⇒ c′ d′ ⇒ d

{c} P {d}

{c ∧ App(R)} P {d} {c ∧ ¬App(R)} Q {d}
[if 1]

{c} ifR then P else Q {d}

Figure 12. Partial correctness proof rules for GP’s core commands

Two transformations — App and Pre — are required in some of the proof rules (formal constructions
are given in Section 7). Intuitively, App takes as input a setR of conditional rule schemata, and trans-
forms it into an E-condition specifying that at least one rule schema inR is applicable. Pre constructs the
weakest precondition such that ifG |= Pre(r, c), and the application ofr toG results in a graphH, then
H |= c. The transformation Pre is informally described by the following steps: (1) form a disjunction of
right E-app-conditions, accounting for the possible ways in whichc and the right-hand side of the rule
schemar might overlap, (2) convert the right E-app-condition into a left E-app-condition (i.e. over the
left-hand side ofr), (3) nest this within an E-condition that is quantified over every possible match for r
(accounting also for its applicability).

The proof rules share a number of similarities with their counterparts for imperative programming
languages, but there are also a number of important differences. The axiom [ruleapp] is as basic to our

C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs 149

proof system as the assignment axiom is to the proof systems of [16, 1]. The [ruleset] rule requires
each rule schema to be considered in turn, since one is nondeterministically chosen during program
execution. Our [if1] rule considers the applicability of the guard,R, a set of rule schemata, rather than
the evaluation of some Boolean expression. We also have the axiom [nonapp], which allows one to infer
postconditions of failing programs. The [comp] rule should be familiar from conventional Hoare calculi.
The iteration rule [!] is our analogue to classical loop rules; it requires one to prove that the E-condition
inv is an invariant of the loop body. Like other proof systems, we have a rule of consequence [cons],
which can strengthen preconditions and weaken postconditions. This rulerequires one to prove that the
E-conditionsc ⇒ c′ andd′ ⇒ d are valid, which, as in conventional Hoare logic, has to happen outside
of the proof system.

Two of the proof rules deal with programs that are restricted in a particularway: both the conditionC
of a branching commandif C then P else Q and the bodyP of a loopP ! must be sets of conditional
rule schemata (whereas GP allows arbitrary programs). This restricted language is complete though in
that every computable function on graphs (with untagged labels) is computedby some program. This is
proved in [12] for a similar language.

When constructing a proof tree for a program containing derived commands, one can simply replace
each derived command with the corresponding core command (see Figure 8) and use the proof rules
of Figure 12. However, it is more convenient to have proof rules dealingdirectly with the derived
commands, and we give these in Figure 13.

[skip]
{c} skip {c}

[fail]
{true} fail {false}

{c ∧ App(R)} P {d}
[if 2] c ∧ ¬App(R)⇒ d

{c} ifR then P {d}

Figure 13. Partial correctness proof rules for GP’s derivedcommands

Example 6.1. (Colouring)
Our first example proves a property of thecolouring program of Figure 9. We prove that ifcolouring
is executed on a graph which satisfies the following precondition, then any graph resulting from that
execution will satisfy the postcondition:

Precondition ¬∃(a | not type(a) = int)
or “every node is integer-labelled”

Postcondition ∀(a
1
, ∃(a

1
| a = b c and type(b, c) = int))∧¬∃(x i y i

k
| type(i, k, x, y) = int)

or “every node label is an integer with a colour attached to it, and nodes linked by integer labelled
edges have distinct colours”

Note that the property we are proving does not guarantee that nodes linked by string-labelled edges
will have distinct colours. Indeed, they might not, since the rule schemata ofcolouring operate only

150 C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs

on integer labelled nodes and edges. If we strengthened the preconditionto require that input graphs
contain only integer-labelled edges, then it would be possible to have a more general postcondition (we
do not show this here to keep the example simple).

A proof tree proving the above for ourcolouring program is given in Figure 14. The precondition,
program, and postcondition form the triple at the root of the tree.

[ruleapp]
{Pre(init, e)} init {e}

[cons]
{e} init {e}

[!]
{e} init! {e ∧ ¬App({init})}

[cons]
{c} init! {d}

[ruleapp]
{Pre(inc, d)} inc {d}

[cons]
{d} inc {d}

[!]
{d} inc! {d ∧ ¬App({inc})}

[comp]
{c} init!; inc! {d ∧ ¬App({inc})}

c = ¬∃(a | not type(a) = int)

d = ∀(a
1
, ∃(a

1
| a = b c and type(b, c) = int))

e = ∀(a
1
, ∃(a

1
| type(a) = int) ∨ ∃(a

1
| a = b c and type(b, c) = int))

¬App({init}) = ¬∃(x | type(x) = int)

¬App({inc}) = ¬∃(x i y i
k

| type(i, k, x, y) = int)

Pre(init, e) = ∀(x
1
| type(x) = int,

∀(x
1
a

2
, ∃(x

1
a

2
| type(a) = int)

∨ ∃(x
1
a

2
| a = b c and type(b, c) = int))

∧∀(x
1
, ∃(x

1
| type(x 0) = int)

∨∃(x
1
| x 0 = b c and type(b, c) = int)))

Pre(inc, d) = ∀(x i y i
1 2

k
| type(i, k, x, y) = int,

∀(x i y i a
1 2 3

k
, ∃(x i y i a

1 2 3

k
| a = b c and type(b, c) = int))

∧∀(x i y i
1 2

k
, ∃(x i y i

1 2

k
| x i = b c and type(b, c) = int))

∧∀(x i y i
1 2

k
, ∃(x i y i

1 2

k
| y i+1 = b c and type(b, c) = int)))

Figure 14. A proof tree for the programcolouring of Figure 9

The side conditions arising from applications of [cons] are satisfied as follows (we omit the trivial
cases):

e ⇒ Pre(init, e). For Pre(init, e) to be satisfied, for every integer labelled node in the graph, it
must be the case that every other node is labelled with either a single integer oran integer and a colour
(the second conjunct of the nested E-condition can be disregarded since the node will always be integer
labelled). The E-conditione guarantees that every node is integer labelled, so the whole implication must
be valid.

C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs 151

d⇒ Pre(inc, d). For Pre(inc, d) to be satisfied, for every pair of integer-labelled coloured nodes linked
by an integer-labelled edge, it must be the case that any node outside of thispair must be labelled with an
integer and a colour (the second and third conjuncts of the nested part can be disregarded sincex, y, and
i can only be integers). The E-conditiond guarantees that every node will be labelled with an integer
and a colour, so the whole implication must be valid.

c⇒ e. Fore to be satisfied, every node must either be labelled with a single integer, or an integer and a
colour. The E-conditionc guarantees that every node is integer labelled, so the whole implication is valid.

e ∧ ¬App({init}) ⇒ d. For d to be satisfied, every node must be labelled with an integer and a
colour. The E-conditione guarantees that every node is labelled with a single integer, or an integer and a
colour; but¬App({init}) guarantees that no node is labelled with a single integer. Hence, every node
is labelled with an integer and a colour, and the whole implication is valid. �

Example 6.2. (2-Colouring)
We now consider the program2-colouring, given in Figure 15. The program checks whether a non-
empty and connected input graph is 2-colourable and, if this is the case, correctly colours its nodes with 0
or 1. If the graph is not 2-colourable, then the program returns the input graph unmodified. The program
first picks an arbitrary integer-labelled node and colours it with 0, before repeatedly colouring uncoloured
nodes adjacent to coloured nodes with either 0 or 1, as appropriate. Next, the program attempts to find
two adjacent nodes with the same colour (an illegal colouring); if it can find such nodes, every colour is
removed.

Note that on an empty input graph, the rule schemachoose and hence the whole program will fail.
Also, if the input graph is disconnected, the program will check 2-colourability only for one of the
graph’s connected components. These restrictions could be lifted by using the program as the body of an
as-long-as-possible loop, but we prefer to keep matters simple in this example.

We prove that if2-colouring is executed on a graph which satisfies the following precondition,
then any graph resulting from that execution will satisfy the postcondition:

Precondition ¬∃(x i | type(i, x) = int)
or “no integer-labelled node is coloured”

Postcondition ¬∃(x i | type(i, x) = int) ∨ (∀(
1

x i | type(i, x) = int, ∃(x i
1
| i = 0 or i = 1)) ∧

¬∃(x i y i
a

| type(a, i, x, y) = int))
or “either the precondition holds, or every integer-labelled node with a colour has colour 0 or 1
and no two nodes linked by an integer-labelled edge have the same colour”

A proof tree proving the above for our2-colouring program is given in Figure 6. The E-constraints
used as the assertions are given in full in Figure 17.

The side conditions arising from applications of [cons] and [if2] are satisfied as follows (we omit the
trivial cases):

c ⇒ Pre(choose, f). The first conjunct of the nested part of Pre(choose, f) is clearly satisfied by any
graph. The second conjunct demands that there is not a distinct node from node1 that is integer-labelled

152 C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs

main = choose; colour!; if illegal then undo!

colour = {colour1, colour2}

choose(x : int) illegal(a, i, x, y : int)

1

x ⇒

1

x 0 x i y i

1 2

a
⇒ x i y i

1 2

a

colour1(a, i, x, y : int) undo(i, x : int)

x i y

1 2

a
⇒ x i y 1−i

1
2

a

1

x i ⇒

1

x

colour2(a, i, x, y : int)

x i y

1 2

a
⇒ x i y 1−i

1
2

a

Figure 15. The program2-colouring

and tagged with a colour. E-conditionc expresses that no integer-labelled node is coloured, hence the
whole implication is valid.

e ⇒ Pre(colour1, e). For Pre(colour1, e) to be satisfied by a graph, for every possible match of
colour1, node1 must be coloured0 or1, and every coloured node outside of the match must be coloured
0 or 1. Additionally, the colour that node2 will be assigned after the application ofcolour1 must also be
0 or 1 (which it will be if i is assigned to0 or 1, by1-i in the assignment constraint). The E-conditione

is satisfied if and only if every coloured integer-labelled node has colour0 or 1, so the whole implication
must be valid.

e⇒ Pre(colour2, e). Analogous to the above.

f ⇒ e. Fore to be satisfied, every coloured integer-labelled node in the graph must be coloured with0 or
1. If f is satisfied, then one such node is coloured0, but there are not two coloured integer-labelled nodes,
i.e. only one node is coloured and it has colour0. Hence, every coloured node is correctly coloured, and
the implication is valid.

¬App({undo})⇒ c ∨ d. Valid since¬App({undo}) andc are the same E-conditions.

e ∧ ¬App({illegal})⇒ c ∨ d. Valid sincee ∧ ¬App({illegal}) forms the same E-condition asd.

�

C
.M

.P
o

skitta
n

d
D

.P
lu

m
p

/H
o

a
re

-S
tyle

V
e

rifica
tio

n
o

fG
ra

p
h

P
rog

ra
m

s
153

SubtreeA SubtreeB[comp]
{c} choose; {colour1, colour2}!; if illegal then undo! {c ∨ d}

where SubtreeA is:

[ruleapp]
{Pre(choose, f)} choose {f}

[cons]
{c} choose {f}

[ruleapp]
{Pre(colour1, e)} colour1 {e}

[cons]
{e} colour1 {e}

[ruleapp]
{Pre(colour2, e)} colour2 {e}

[cons]
{e} colour2 {e}

[ruleset]
{e} {colour1, colour2} {e}

[!]
{e} {colour1, colour2}! {e ∧ ¬App({colour1, colour2})}

[cons]
{f} {colour1, colour2}! {e}

[comp]
{c} choose; {colour1, colour2}! {e}

and SubtreeB is:

[ruleapp]
{true} undo {true}

[!]
{true} undo! {¬App({undo})}

[cons]
{e ∧ App({illegal})} undo! {c ∨ d}

[if 2]
{e} if illegal then undo! {c ∨ d}

Figure 16. A proof tree for the program2-colouring of Figure 15

154 C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs

c = ¬∃(x i | type(i, x) = int)

d = (∀(
1

x i | type(i, x) = int, ∃(x i
1
| i = 0 or i = 1))

∧¬∃(x i y i
a

| type(a, i, x, y) = int))

e = ∀(
1

x i | type(i, x) = int, ∃(
1

x i | i = 0 or i = 1))

f = ∃(x 0 | type(x) = int)

∧¬∃(x i y j | type(i, j, x, y) = int)

¬App({colour1, colour2})

= ¬∃(x i y
a

| type(a, i, x, y) = int)

∧¬∃(x i y
a

| type(a, i, x, y) = int)

App({illegal}) = ∃(x i y i
a

| type(a, i, x, y) = int)

¬App({undo}) = ¬∃(x i | type(i, x) = int)

Pre(choose, f) = ∀(
1

x | type(x) = int,

(∃(
1

x y 0 | type(y) = int)

∨∃(
1

x | type(x) = int))

∧(¬∃(
1

x y i z j | type(i, j, y, z) = int)

∧¬∃(
1

x z j | type(0, j, x, z) = int)

∧¬∃(
1

x y i | type(i, 0, y, x) = int)))

Pre(colour1, e) =

∀(
1

x i y

2

a
| type(a, i, x, y) = int,

∀(x i
1

y

2
z k

3

a
| type(k, z) = int, ∃(x i

1
y

2
z k

3

a
| k = 0 or k = 1))

∧∀(x i
1

y

2

a
| type(i, x) = int, ∃(

1
x i y

2

a
| i = 0 or i = 1))

∧∀(
1

x i
2

y
a

| type(1-i, y) = int, ∃(
1

x i
2

y
a

| 1-i = 0 or 1-i = 1)))

Pre(colour2, e) =

∀(
1

x i y

2

a
| type(a, i, x, y) = int,

∀(x i
1 2

y z k
3

a
| type(k, z) = int, ∃(x i

1
y

2
z k

3

a
| k = 0 or k = 1))

∧∀(
1

x i y

2

a
| type(i, x) = int, ∃(x i

1 2
y

a
| i = 0 or i = 1))

∧∀(
1

x i
2

y
a

| type(1-i, y) = int, ∃(
1

x i
2

y
a

| 1-i = 0 or 1-i = 1)))

Figure 17. The E-conditions used in the proof tree of Figure 6

C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs 155

7. Transformations of E-Conditions

In this section we give formal definitions of the transformations App and Pre, and prove that they are
correct. They are adapted from the basic transformations of nested conditions in [10].

We begin in Section 7.1 by stating and proving basic lemmata about the satisfiability of E-conditions
to which substitutions have been applied (these lemmata are used in later proofs). In Section 7.2, we
define the transformation App and prove that it is correct. In Section 7.3, we build up to a definition
and correctness proof of transformation Pre, breaking the transformation steps into the intermediate
transformations A and L.

7.1. Substitution and Satisfiability Lemmata

In this subsection, we state and prove two lemmata about the satisfiability of E-conditions to which
substitutions have been applied. These lemmata are later applied in the correctness proofs of App and
Pre.

Lemma 7.1 states that if a morphism satisfies an E-condition by a particular assignment, then it will
also satisfy that E-condition after a substitution induced6 by some (or all) of the assignment’s mappings
is applied (and vice versa). Intuitively, this is because the induced substitution replaces variables with
syntactic representations of the labels inL that the assignment would have mapped them to.

Lemma 7.2 states that if a morphism satisfies an E-condition to which a substitution has been applied,
then it also satisfies the E-condition before the application of that substitution.Intuitively, this is true
since one can define a new assignment that incorporates the effect of that substitution.

Lemma 7.1. (Induced substitutions that preserve satisfiability)
Let s : Pα →֒ G be an injective morphism, whereα is a well-typed assignment andG ∈ G(L). Let c
be an E-condition, andα′ be an assignment such that ifα is defined for a variablex thenα′(x) = α(x).
Then,

s |=α′ c if and only if s |=α′ cσα .

�

Proof:
Case one.c = true. We have thatcσα = trueσα = true. All morphisms satisfy true.

Case two.c = ∃(a : P →֒ C | γ, c′). In both the “only if” and “if” directions, the argument follows from
the definition ofσα, and the fact that for every variablex thatα is defined on,α′(x) = α(x). Together,
we get thatσα(x)α

′
= α(x) = α′(x). That is, the substitution ultimately does not change the label inL

obtained by the application of assignmentα′ to a label. ⊓⊔

Corollary 7.1. Let s : Pα →֒ G be an injective morphism, whereα is a well-typed assignment defined
only for variables inP , andG ∈ G(L). Let c = ∃(a : P →֒ C | γ, c′) be an E-condition overP . Then,

s |= c implies s |= cσα .

�

6Substitutions induced by assignments are defined in Section 2.

156 C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs

Lemma 7.2. (Discarding a substitution preserves satisfiability)
Given an injective morphisms : S →֒ G with S,G ∈ G(L), an E-conditionc, sets of variable identifiers
X,Y , an assignmentα : X → L, and a substitutionσ : Y → Exp,

s |=α cσ implies s |=ασ
c

whereασ : X → L is defined for all variablesx in X as follows:

ασ(x) =

{

α(x) if σ(x) is undefined,

σ(x)α if σ(x) is defined.

�

Proof:
By structural induction.

Induction basis.Let c = true. Then we haves |=α trueσ ands |=ασ
true. All morphisms satisfy true.

Induction hypothesis.The statement holds forc′.

Induction step.Let c = ∃(a : P →֒ C | γ, c′). Assume thats |=α cσ. Then we have(γσ)α = tt and
an injective graph morphismq : (Cσ)α →֒ G with q ◦ (aσ)α = s. Now considerασ from the statement,
an assignment which has as its domain all the variables occurring inP,C, andγ. For all variablesx
whereσ(x) is undefined (i.e. variables which are not substituted and thus remain present in cσ), we
haveασ(x) = α(x). For all variablesx whereσ(x) is defined (i.e. variables which are substituted), we
haveασ(x) = σ(x)α. Intuitively, ασ has the net effect of applying the substitutionσ (where defined)
before applying the original assignmentα. This assignment gives usPασ = (P σ)α, Cασ = (Cσ)α,
γασ = (γσ)α = tt, and thus an injective graph morphismq′ : Cασ →֒ G with q′ ◦ aασ = s andq′ = q.
By assumption,q′ |= ((c′)σ)σα , and so there is an assignmentα′ such thatq′ |=α′ ((c′)σ)σα . We assume
without loss of generality thatα′ contains at least the mappings ofα. Lemma 7.1 and the induction
hypothesis together yieldq′ |=α′

σ
c′. Clearly,α′

σ has at least the mappings ofασ; using this and the
definition of|=, we yieldq′ |= (c′)σασ . Putting everything together we get the result thats |=ασ

c. ⊓⊔

7.2. Applicability of Sets of Rule Schemata

In this subsection, we define and prove correct the transformation App,which takes as input a set of rule
schemata, and returns an E-condition expressing the weakest propertythat a graph must satisfy for at
least one rule schema in the set to be applicable to it (i.e. at least one rule schema can be applied to the
graph). For a rule schema to be applicable to a graph, there must be an opportunity to apply it without
violating the dangling condition, and without violating any constraints the rule schema imposes over the
instantiation of variables. The definition of App makes use of two intermediate transformations, Dang
andτ , which respectively address these requirements.

In Lemma 7.3, we define and prove correct the transformation Dang, whichtakes as input a rule
schema, and returns as output an E-condition which is satisfied by morphisms(from the left-hand side
of the rule) that violate the dangling condition.

C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs 157

In Lemma 7.4, we define and prove correct the transformationτ , which takes as input the left-hand
side and condition of a rule schema, and returns an E-condition which is satisfied by morphisms (from
the left-hand side of the rule) that satisfy the rule schema condition.

Lemma 7.3. (Dangling condition)
There is a transformation Dang such that for all rule schematar, and all injective graph morphisms
q : Lα →֒ G with α a well-typed assignment,

q |= ¬Dang(r) if and only if q satisfies the dangling condition.
�

The idea of transformation Dang is to generate a disjunction of E-conditions,each one expressing
some context (e.g. an edge incident to a node which would be deleted byr), which if present around the
image ofL in q, would imply that the morphism is violating the dangling condition.

Construction. Define Dang(r) =
∨

a∈A ∃a, where the index setA ranges over all7 injective graph
morphismsa : L →֒ L⊕ such that the pair〈K →֒ L, a〉 has no natural pushout8 complement, and each
L⊕ is a graph that can be obtained fromL by adding either (1) a loop labelled byx, (2) a single edge
between distinct nodes labelled byx, or (3) a single node and a non-looping edge incident to that node
labelled byx andy respectively; in all cases,x, y are variables distinct from each other and all labels in
L. If the index setA is empty, then Dang(r) = false.

Example 7.1. Consider the rule schemareduce = 〈 a b
1

c
⇒ a

1
〉. Applying Dang toreduce

yields the following E-condition:

Dang(reduce) =
∨

a∈A ∃a

= ∃(a b
1 2

c
→֒ a b

1 2

c

x

) ∨ ∃(a b
1 2

c
→֒ a b

1 2

c

x

)

∨∃(a b
1 2

c
→֒ a b x

1 2

c y
) ∨ ∃(a b

1 2

c
→֒ a b x

1 2

c y
)

∨∃(a b
1 2

c
→֒ a b

1 2

c
x

)
�

Proof:
Only if. Assume thatq |= ¬Dang(r). By definition of |= and the construction of Dang, we have
q 2 Dang(r) =

∨

a∈A ∃a whereA ranges over morphismsa : L →֒ L⊕ such that〈K →֒ L, a〉 has
no (natural) pushout complement. EachL⊕ is obtained fromL by adding either (1) a loop, (2) an edge
between distinct nodes, or (3) a new node incident to a non-looping edge(i.e. the three possible ways a
single edge can be added toL). It follows that there is no assignmentα′ and morphismq′ : (L⊕)α

′
→֒ G

with q′ ◦aα
′
= q. Henceq satisfies the dangling condition, since no node in the image ofq, that would be

deleted byr, is incident to an edge inG outside of the match, i.e. the image of some edge fromL⊕ − L

in q′.

7We equate morphisms with isomorphic codomains, soA is finite.
8A pushout isnatural if it is simultaneously a pullback [13].

158 C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs

If. Assume thatq : Lα →֒ G is a match forr, i.e. it satisfies the dangling condition. Then the pair
〈Kα →֒ Lα, q〉 has a pushout complementD ∈ G(L). We assume that there is ana ∈ A such that
〈K →֒ L, a〉 has no pushout complement, and some assignmentα′ such thatq |=α′ ∃a, then derive
a contradiction. This assumption gives us a morphismq′ : (L⊕)α

′
→֒ G with q′ ◦ aα

′
= q. The

assignmentα′ is the same asα other than for having mappings for the additional variables inL⊕ (i.e.
a variable for the extra edge to those inL, and possibly a variable for an extra node). Construct(2)
(see Figure 18) as a pullback of(L⊕)α

′
→֒ G ←֓ D. By the universal property of pullbacks, there

is a morphismKα →֒ (K ′)α
′

such that the resulting diagrams commute. By the pushout-pullback
decomposition,(1) + (2) has a decomposition into pushouts(1) and(2), and〈Kα →֒ Lα, aα

′
〉 has a

pushout complement. Clearly, before the application of assignmentsα andα′, the pair of morphisms
〈K →֒ L, a〉 has a pushout complement inG(Exp). A contradiction. There is no assignmentα′ such that
q |=α′

∨

a∈A ∃a = Dang(r), i.e. the result thatq |= ¬Dang(r).

←֓

←֓
←
֓

←
֓

L
α

K
α

G D←֓
←
֓

←
֓

q
′

q (K ′)α
′

(L⊕)α
′

a
α

′ (1)

(2)

Figure 18. Diagram chasing for a contradiction
⊓⊔

Lemma 7.4. (Rule schema condition)
There is a transformationτ such that for all rule schematar = 〈L ⇒ R〉 with rule schema conditionΓ,
and all injective graph morphismsq : Lα →֒ G with α a well-typed assignment,

q |=α τ(L,Γ) if and only if q andα satisfy the rule schema conditionΓ.
�

The idea ofτ is to encode the rule schema condition within both the assignment constraints of
E-conditions (the morphisms of which are simply the identity morphism onL), and the Boolean connec-
tives between them. The exception is theedge predicate, which is concerned with the context ofL in
the graph; this is encoded by an E-condition, the morphism of which hasL as its domain, andL as its
codomain but with the extra edge demanded by the predicate.

Construction.We defineτ(L,Γ) inductively (see Figure 4 for the syntax of rule schema conditions). If
Γ is empty, thenτ(L,Γ) = true. If Γ has the formt1 ⊲⊳ t2 with t1, t2 in Term and⊲⊳ in RelOp, then
τ(L,Γ) = ∃(L →֒ L | t1 ⊲⊳ t2). If Γ has the formnot b with b in BoolExp, thenτ(L,Γ) = ¬τ(L, b). If
Γ has the formb1 ⊕ b2 with b1, b2 in BoolExp and⊕ in BoolOp, thenτ(L,Γ) = τ(L, b1)⊕∧,∨ τ(L, b2)
where⊕∧,∨ is∧ for and and∨ for or. Finally, if Γ is of the formedge(n1,n2) with n1, n2 in Node, then
τ(L,Γ) = ∃(L →֒ L′) whereL′ is a graph equal toL, except for an additional edge whose source is the
node with identifiern1, whose target is the node with identifiern2, and whose label is a variable distinct
from all others in use.

C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs 159

Example 7.2. Consider the left-hand side of a rule schemaL = a b
1 2

c
and the rule schema condition

Γ = a < b and b < c. Applying the transformationτ toL andΓ yields the following E-condition:

τ(L,Γ) = τ(L, a < b) ∧ τ(L, b < c)

= ∃(a b
1 2

c
→֒ a b

1 2

c
| a < b) ∧ ∃(a b

1 2

c
→֒ a b

1 2

c
| b < c)

�

Proof:
Only If. Assume thatq |=α τ(L,Γ). We consider each of the forms thatΓ can take (using the grammar
defined in Figure 4).

Suppose thatΓ is an empty rule schema condition. Trivially, we have thatq andα satisfy the rule
schema conditionΓ.

Suppose thatΓ has the formt1 ⊲⊳ t2 with t1, t2 in Term and⊲⊳ in RelOp. The assumption and
construction together give usq |=α ∃(L →֒ L | t1 ⊲⊳ t2) and(t1 ⊲⊳ t2)

α = tt. Since the assignment
constraint is identical to the rule schema condition, we have thatq andα satisfy the rule schema condi-
tion Γ.

Suppose thatΓ has the formedge(n1,n2) with n1, n2 in Node. The assumption and construction
together give usq |=α ∃(L →֒ L′) whereL′ is obtained fromL by adding an edge from the node with
identifiern1 to the node with identifiern2. There is a morphismq′ : (L′)α →֒ G with q′◦(L →֒ L′)α = q.
Hence the image ofq is such that it satisfies the rule schema conditionΓ that demands the existence of
an edge fromn1 to n2.

Suppose thatΓ has the formnot b with b in BoolExp. The assumption and construction together
give usq |=α ¬τ(L, b). By the definition of|=α, we haveq 2α τ(L, b). By induction,q andα do not
satisfy the rule schema conditionb. Hence the rule schema conditionnot b is satisfied.

Suppose finally thatΓ has the formb1⊕b2 with b1, b2 in BoolExp and⊕ in BoolOp. The assumption
and construction together give usq |=α τ(L, b1) ⊕∧,∨ τ(L, b2). By the definition of|=α and⊕∧,∨, we
have thatq |=α τ(L, b1) and (resp. or)q |=α τ(L, b2). It is clear from induction thatq andα satisfy the
rule schema conditionΓ.

If. Assuming thatq andα together satisfy the rule schema conditionΓ, one can construct a similar
argument in the other direction yieldingq |=α τ(L,Γ). ⊓⊔

Proposition 7.1. (Applicability of a set of rule schemata)
For every setR of conditional rule schemata, there exists an E-constraint App(R) such that for every
graphG ∈ G(L),

G |= App(R) if and only if there is a graphH such thatG⇒R H.

�

The transformation App generates an E-constraint that can only be satisfied by a graphG if at least
one of the rule schemata fromR can directly derive a graphH fromG. The idea is to generate a disjunc-
tion of E-constraints from the left-hand sides of the rule schemata, using nesting to handle restrictions
on the applicability of the rule schemata (i.e. the dangling condition when deleting nodes, and the rule
schema condition restricting possible assignments).

160 C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs

Construction. Define App({}) = false and App({r1, . . . , rn}) = app(r1) ∨ . . . ∨ app(rn). For a
rule schemari = 〈Li ←֓ Ki →֒ Ri〉 with rule schema conditionΓi, define app(ri) = ∃(∅ →֒ Li |
γri ,¬Dang(ri) ∧ τ(Li,Γi)) whereγri is an assignment constraint restricting the types of variables inri
to the corresponding types in the declaration ofri. For example, ifri corresponds to the declaration of
inc (see Figure 9), thenγri would be the assignment constrainttype(i, k, x, y) = int.

Example 7.3. Consider the rule schemareduce(a, b, c : int) = 〈 a b
1

c
⇒ a

1
〉with rule schema

conditionΓ = a < b and b < c. Applying App toreduce yields the following E-condition:

App({reduce}) = app(reduce)

= ∃(∅ →֒ a b
1 2

c
| type(a, b, c) = int,

¬Dang(reduce) ∧ τ(a b
1 2

c
,Γ))

= ∃(a b
1 2

c
| type(a, b, c) = int,

(¬∃(a b
1 2

c

x

) ∧ ¬∃(a b
1 2

c

x

) ∧ ¬∃(a b x
1 2

c y
)

∧¬∃(a b x
1 2

c y
) ∧ ¬∃(a b

1 2

c
x

))

∧(∃(a b
1 2

c
| a < b) ∧ ∃(a b

1 2

c
| b < c)))

�

Proof:
DefineiG : ∅ →֒ G.

Only if. Assume thatG |= App(R). By the definitions of|= and App, we have thatiG |= App(R) =
app(r1) ∨ . . . ∨ app(rn) whereri ∈ R. By assumption, there is a rule schemari : 〈Li ←֓ Ki →֒ Ri〉
in R with rule schema conditionΓi, and a well-typed assignmentα such thatiG |=α app(ri) = ∃(a :
∅ →֒ Li | γri ,¬Dang(ri) ∧ τ(Li,Γi)). There exists an injective graph morphismq : Lα

i →֒ G with
q ◦ aα = iG, q |= ¬Dang(ri)σα andq |= τ(Li,Γi)

σα . By Lemma 7.2, we haveq |= ¬Dang(ri) and
q |= τ(Li,Γi). By Lemma 7.3, the dangling condition is satisfied byq, and by Lemma 7.4,q satisfies the
rule schema conditionΓ. Putting everything together, and by the definition of rule schema application,q

is a match forri. Hence there is a direct derivationG⇒ri,q H for some graphH ∈ G(L). Sinceri ∈ R,
we get the result that there exists a graphH such thatG⇒R H.

If. Assume that there exists a graphH such thatG ⇒R H. Then there is a rule schemar ∈ R such
thatG ⇒r H. Hence there is some instantiation of the variables inL andΓ by an assignmentα that
gives a matchq : Lα →֒ G for r andΓα = tt. By Lemma 7.4, we haveq |=α τ(L,Γ), and then
with Lemma 7.1 getq |= τ(L,Γ)σα . The morphismq is guaranteed to satisfy the dangling condition
since direct derivations are constructed from two natural pushouts. With Lemma 7.3 this gives us that
q |= ¬Dang(r). Sinceα is defined only for variables inL (variables appearing inΓ must also appear
in L, by the definition of rule schema conditions), we get from Corollary 7.1 thatq |= ¬Dang(r)σα .
By the definition of|=, we getq |= ¬Dang(r)σα ∧ τ(L,Γ)σα . From the construction we have thatγr
only restricts the instantiations of variables to the types that were declared inr, so clearly we have that
γαr = tt. Bringing this all together, we have thatiG |=α app(r) = ∃(∅ →֒ L | γr,¬Dang(r) ∧ τ(L,Γ))
sinceq ◦ (∅ →֒ Lα) = iG. As app(r) is a disjunct of App(R), we getiG |=α App(R), and by definition
of |=, we get the result thatG |= App(R). ⊓⊔

C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs 161

7.3. Transformation of Postconditions into Preconditions

In this subsection, we define and prove correct the transformation Pre,which takes as input a rule schema
and a postcondition (in the form of an E-condition), returning an E-condition that if satisfied by a graph,
guarantees that any graph resulting from the application of the rule schemawill satisfy the postcondition.
The transformation Pre makes use of two intermediate transformations, A and L, which are adapted from
the basic transformations of nested conditions described by Habel and Pennemann in [10].

In Proposition 7.2, we define and prove correct the transformation A, which transforms an E-constraint
into an E-app-condition over the right-hand side of a rule schema.

In Proposition 7.3, we define and prove correct the transformation L, which transforms an E-app-
condition over the right-hand side of a rule schema into an E-app-condition over the left-hand side of
that same rule schema.

Remark 7.1. In the transformations that follow, there are statements of the forms : Pα →֒ G |= ∃(a :
P →֒ C | γ, c′) for P,C ∈ G(Exp) andG ∈ G(L), i.e. the domain ofs is some instantiation of the graph
in the domain ofa. For the sake of simplicity, if such a morphism does satisfy such an E-condition, we
often assumeα to be the assignment by which the E-condition is satisfied, i.e.s |=α ∃(a | γ, c

′). We
can do this without loss of generality, since we can always “overload”α with mappings for variables not
present inP but present inC, γ, without affecting the graph resulting from the application ofα to P . �

Remark 7.2. E-conditions, by definition, contain arbitrary expressions as the labels oftheir graphs. We
can however restrict ourselves (without loss of generality) to considering E-conditions in which nodes
and edges are labelled only by (sequences of) distinct variables, sincethe variables can be equated with
the original expressions in the assignment constraint. For example, the E-condition ∃(x*x

1
) can be

rewritten as the equivalent E-condition∃(a
1
| a = x*x). �

Proposition 7.2. (From E-constraints to E-app-conditions)
Let c be an E-constraint, the graphs of which are labelled by (sequences of)distinct variables. There is
a transformation A such that for all rule schematar = 〈L ⇒ R〉 sharing no variables withc9, and all
injective graph morphismsh : Rα →֒ H with H ∈ G(L) andα a well-typed assignment,

h |= A(r, c) if and only if H |= c.

�

The idea of A is to consider a disjunction of all possible “overlappings” ofR and the graphs of
the E-constraint. Since distinct labels on the syntactic level (Exp) can be instantiated to equal labels
on the semantic level (L), the transformation applies substitutions to variables to facilitate overlappings
of nodes and edges on the syntactic level. Intuitively, an E-condition resulting from A asserts that the
property described by the E-constraint still holds, but makes this assertion within the context ofR.

Construction.All graphs used in the construction of the transformation belong to the classG(Exp). For
E-constraintsc = ∃(a : ∅ →֒ C | γ, c′) and rule schematar, define A(r, c) = A′(iR : ∅ →֒ R, c). For

9It is always possible to replace the label variables inc with new ones that are distinct from those inr.

162 C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs

injective graph morphismsp : P →֒ P ′, and E-conditions overP ,

A′(p, true) = true,

A′(p, ∃(a : P →֒ C | γ, c′)) =
∨

σ∈Σ

∨

e∈εσ

∃(b | γσ,A′(s, (c′)σ)).

The second line of the equations relies on the following. Construct the pushout (1) of p anda (see
Figure 19) leading to injective graph morphismsa′ : P ′ →֒ C ′ andq : C →֒ C ′. The finite double
disjunction

∨

σ∈Σ

∨

e∈εσ
ranges first over substitutions fromΣ, which we define to contain (1) the empty

substitution10, and (2) all possible substitutions of the form(a1 7→ β1, . . . , ak 7→ βk) where eachai
is a distinct label variable fromC that is not also inP or P ′, and eachβi is some label fromP ′ (if
a node or label inP ′ is tagged, thenβi may be a portion, or the entirety of, that sequence). For each
σ ∈ Σ, the double disjunction then ranges over every surjective graph morphism e : (C ′)σ → E such that
b = e ◦ (a′)σ ands = e ◦ qσ are injective graph morphisms. The setεσ is the set of such surjective graph
morphisms for a particularσ, the codomain of which we consider up to isomorphism. Given a surjective
graph morphisme1 : (C ′)σ1 → E1, E1 is considered redundant and is excluded from the disjunction if
there exists a surjective graph morphisme2 : (C ′)σ2 → E2, such thatE2 ≇ E1, and there exists some
σ ∈ Σ such thatEσ

2
∼= E1.

P ′ P

C ′

(C ′)σ

C

Cσ

E

(1)

p

a′ a

q

e s

qσ

b

aσ
(a′)σ

Figure 19. Construction of A′

Note that the special form of the substitutions inΣ means that for anyσ ∈ Σ, P σ = P , and
(P ′)σ = P ′. Note also thatb ands are jointly surjective; the idea is that eachE contains an image of
bothP ′ andCσ, with the substitutions equating labels on the syntactic level and thus facilitatingEs in
which nodes and edges are overlapping (needed for expressing howthe rule schema interacts with the
original E-constraint).

The transformations A,A′ are extended for Boolean formulae over E-conditions in the usual way,
that is, A(r,¬c) = ¬A(r, c), and A(r, c1 ∧ c2) = A(r, c1) ∧ A(r, c2) (analogous for A′).

Example 7.4. Let r = init (see Figure 9), and

c = ∀(a
1
, ∃(a

1
| type(a) = int) ∨ ∃(a

1
| a = b c and type(b, c) = int)),

10That is, a substitution that replaces no variables.

C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs 163

that is, “every node is labelled by either an integer or a sequence of two integers”. For brevity in what
follows, we definec′1 = ∃(a

1
| type(a) = int) andc′2 = ∃(a

1
| a = b c and type(b, c) = int).

With the definition of∀, we yield:

c ≡ ¬∃(a
1
,¬c′1 ∧ ¬c

′
2).

Now, applying transformation A tor andc, we get:

A(r, c) = ¬A(r, ∃(a
1
,¬c′1 ∧ ¬c

′
2))

= ¬A′(∅ →֒ x 0

1
, ∃(a

1
,¬c′1 ∧ ¬c

′
2))

= ¬(
∨

σ∈Σ

∨

e∈εσ
∃(b | γσ,A′(s, (¬c′1 ∧ ¬c

′
2)

σ)))

= ¬(∃(x 0
1
→֒ x 0

1
a

2
,A′(s1,¬c

′
1 ∧ ¬c

′
2))

∨∃(x 0
1
→֒ x 0

1
,A′(s2, (¬c

′
1 ∧ ¬c

′
2)

(a7→x 0))))

= ¬(∃(x 0
1
→֒ x 0

1
a

2
,¬A′(s1, c

′
1) ∧ ¬A′(s1, c

′
2))

∨∃(x 0
1
→֒ x 0

1
,¬A′(s2, (c

′
1)

(a7→x 0)) ∧ ¬A′(s2, (c
′
2)

(a7→x 0))))

= ¬(∃(x 0
1
→֒ x 0

1
a

2
,

¬∃(x 0
1
a

2
| type(a) = int,A′(s11, true))

∧ ¬∃(x 0
1
a

2
| a = b c and type(b, c) = int,A′(s11, true)))

∨∃(x 0
1
→֒ x 0

1
,

¬∃(x 0
1
| type(x 0) = int,A′(s21, true))

∧¬∃(x 0
1
| x 0 = b c and type(b, c) = int,A′(s21, true))))

= ∀(x 0
1
→֒ x 0

1
a

2
,

∃(x 0
1
a

2
| type(a) = int) ∨ ∃(x 0

1
a

2
| a = b c and type(b, c) = int))

∧∀(x 0
1
→֒ x 0

1
,

∃(x 0
1
| type(x 0) = int) ∨ ∃(x 0

1
| x 0 = b c and type(b, c) = int)),

whereΣ = {(), (a 7→ x 0), (a 7→ x), (a 7→ 0)} (here,() denotes the empty substitution that replaces no
variables) and the particular instances of diagrams from the construction of A ′ are as in Figure 20. Note
that both(a 7→ x) and(a 7→ 0) can only yield redundant E-conditions and hence are excluded from
the disjunction above. Note also that becausec′1, c

′
2 contain only identity morphisms (and hence their

codomains do not introduce new variables), each instance of A′(si, c
′
j) for i, j ∈ {1, 2} ranges over only

one substitution: the empty substitution.
The E-app-condition arising from A(r, c) can be read as follows: “(1) every node that is not in

the image of the right-hand side ofr is either labelled by an integer or a sequence of two integers,
and (2) every node that is in the image of the right-hand side ofr is either labelled by an integer or a
sequence of two integers”. Note that we could already apply simplifications at this stage (e.g. the disjunct
∃(x 0

1
| type(x 0) = int) can safely be discarded since it is unsatisfiable). However, we will wait until

the end of this running example (i.e. once Pre(r, c) is given) before applying any, so that the effects of
the transformations can be followed more easily. �

We remark that in the worst case, transformation A can result in a factorialblow-up of the size of an
E-condition. One can construct an example where graphsP ′ andC in Figure 19 both haven nodes and

164 C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs

∅x 0

ax 0 a

x 0 a

∅x 0

ax 0 a

x 0

s1

x 0 x 0 x 0

s2

a !→ x 0

ax 0 a

x 0 a

a
s1

s11

x 0

x 0

x 0

x 0

x 0
s2

s21

x 0 a

Figure 20. Instances of diagrams from the construction of A′

n edges, and there are more thann! pairwise non-isomorphic graphsE that satisfy the conditions of the
construction of Proposition 7.2.

In order to prove Proposition 7.2, we first prove a lemma stating that an E-condition c overP can
be shifted along an injective graph morphismp which has as its domainP . The proof is very similar to
the proof of Lemma 3 in [10]. On the one hand, it is simplified since we consideronly injective graph
morphisms in our E-conditions, but on the other, it is made more complicated by theseparation of graphs
over the syntactic and semantic label alphabets.

Lemma 7.5. (Shifting E-conditions over morphisms)
Let P ∈ G(Exp). Let c be an E-condition true, or∃(a : P →֒ C | γ, c′) in which the nodes and edges
of each graph (except those also inP) are labelled by (sequences of) distinct variables. For all injective
graph morphismsp : P →֒ P ′ andp′′ : (P ′)α →֒ H whereP ′ ∈ G(Exp), H ∈ G(L), andα is a
well-typed assignment,

p′′ |= A′(p, c) if and only if p′′ ◦ pα |= c.

�

Proof:
We proceed by structural induction, taking a similar approach to the proof of Lemma 3 in [10].

C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs 165

Induction basis.Let c = true. Then we havep′′ |= A′(p, true) = true andp′′ ◦pα |= true. All morphisms
satisfy true.

Induction hypothesis.The statement holds for E-conditionc′.

Induction step.Let c = ∃(a : P →֒ C | γ, c′). For clarity, Figure 21 provides a diagram of the construc-
tion before and after the application of assignmentα.

Only if. Assume thatp′′ |= A′(p, c). We assume without loss of generality that it does so byα (see
Remark 7.1), i.e.p′′ |=α A′(p, c) =

∨

σ∈Σ

∨

e∈εσ
∃(b : P ′ →֒ E | γσ,A′(s : Cσ →֒ E, (c′)σ)). There

exists at least oneσ ∈ Σ and onee ∈ εσ such thatp′′ |=α ∃(b | γ
σ,A′(s, (c′)σ)). By definition of|=α,

there exists an injective graph morphismq′′ : Eα →֒ H with p′′ = q′′ ◦ bα. Defineq′ = q′′ ◦ sα and
p′ = p′′ ◦ pα, both of which are injective since injectivity is closed under composition. By construction,
a′ ◦ p = q ◦ a is a pushout. Sinceσ only replaces variables introduced inC, and thus also present in
C ′ but notP or P ′, we have thatP σ = P , (P ′)σ = P ′, andqσ ◦ aσ = (a′)σ ◦ p is a pushout. Clearly,
applyingα to the morphisms of this pushout results in a pushout of graphs fromG(L). By construction,
we haveb = e ◦ (a′)σ ands = e ◦ qσ. With everything together, we derive thatp′′ ◦ pα = p′ = q′ ◦ (aσ)α

and getp′ = p′′ ◦ pα |=α ∃(a
σ | γσ).

Now, we want to apply the induction hypothesis, but first must rewrite the assumption into an ap-
propriate form (without substitutions). The assumption gives usq′′ |= A′(s : Cσ →֒ E, (c′)σ)σα ; with
Lemma 7.2 we yieldq′′ |= A′(s, (c′)σ). By the construction,σ is undefined for variables not present
in C. SinceCσ forms the common domain of the pushout in the construction of A′, the E-condition
generated by A′(s, (c′)σ) is the same as the E-condition A′(x : C →֒ X, c′)σ where intuitively,X is the
graph obtained fromE by reversing the substitution. More specifically,X is the graph with the property
Xα′

= Eα whereα′ is defined for all variablesx as follows:

α′(x) =

{

α(x) if σ(x) is undefined,

σ(x)α if σ(x) is defined.

Using Lemma 7.2 again, we havex′′ : Xα′
→֒ H |= A′(x : C →֒ X, c′). Now, we can use the induction

hypothesis to yieldx′′ ◦ xα
′
|= c′. SinceXσ = E, Xα′

= Eα, and since thatα′ is “embedding” the
effect ofσ, we can bring the substitution back to the syntactic level to yieldq′′ ◦ sα |= (c′)σ.

We havep′′ ◦ pα |=α ∃(a
σ | γσ) andq′ = q′′ ◦ sα |= (c′)σ. The latter is satisfied by an assignment

that has at least the mappings ofα (since the domain ofq′ is (Cσ)α, and since from the assumption,
((γ′)σ)σα must evaluate tott under some assignment), soq′ |= ((c′)σ)σα by Lemma 7.1. Together, this
gives usp′′ ◦ pα |=α ∃(a

σ | γσ, (c′)σ). By Lemma 7.2 and the definition of|=, we get the result that
p′′ ◦ pα |= ∃(a | γ, c′).

If. Assume thatp′′ ◦ pα |= c. We assume without loss of generality that it does so byα (see Remark 7.1),
i.e. p′′ ◦ pα |=α c. Definep′ = p′′ ◦ pα, which is injective since injectivity is closed under composition.
By the definition of|=α, there exists an injective graph morphismCα →֒ H with (Cα →֒ H) ◦ aα = p′.
Consider substitutionsσ ∈ Σ where(γσ)α = tt, and injective graph morphismsq′ : (Cσ)α →֒ H with
q′◦(aσ)α = p′ andq′ |= ((c′)σ)σα (we assume thatα has mappings for additional variables introduced by
σ, see Remark 7.1). At least one such morphism is guaranteed to exist (i.e. ifσ is the empty substitution).
From the construction yield pushoutsqσ ◦ aσ = (a′)σ ◦ p with pushout objects(C ′)σ. Clearly, applying

166 C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs

PP
′

C
σ(C ′)σ

E

p

q
σ

(a′)σ

b

s
e

P
α(P ′)α

(Cσ)α((C ′)σ)α

E
α

H

p
α

(qσ)α
((a′)σ)α

b
α

e
α

s
α

p
′′

q
′′

q
′

p
′

a
σ (aσ)α

h

Figure 21. Instantiating the construction with an assignment

α to the morphisms yields pushouts of graphs fromG(L). By the universal property of pushouts, each
pushout has a unique morphismh : ((C ′)σ)α → H with p′′ = h ◦ ((a′)σ)α andq′ = h ◦ (qσ)α. Consider
y ◦ x = h, a surjective-injective factorisation ofh with x : ((C ′)σ)α → X surjective,y : X →֒ H

injective,X ∈ G(L), and injective morphismst = x ◦ (qσ)α andu = x ◦ ((a′)σ)α. Now, we argue that
for whicheverX ∈ G(L) is yielded by the factorisation, the construction yields a graphE ∈ G(Exp)
such thatEα ∼= X.

Suppose thatx is an injective morphism, and hence an isomorphism since it is also surjective,i.e.
((C ′)σ)α ∼= X. The construction yields an isomorphism, i.e.E ∼= Cσ. It follows thatEα ∼= X. Suppose
now thatx is non-injective, i.e. some nodes (edges) in(Cσ)α are merged. Sincet, u are injective, the
images of(P ′)α and(Cσ)α in X must overlap. Hence, a variable inP ′ and another variable inC must
both be instantiated byα to the same label inL. Yet these variables may be distinct and hence the labels
they are in cannot be merged at the syntactic level. However, for non-empty σ ∈ Σ, such a variable in
C, sayx, can be replaced with a corresponding variable inP ′ by σ such thatα(x) = σ(x)α. Now, with
P ′ andC sharing at least one label, the construction yields surjective morphismse : Cσ → E where
E ≇ Cσ andEα ∼= X. The construction gives uss = e ◦ qσ andb = e ◦ (a′)σ. It follows thateα, q′′, sα,
andbα are equal tox, y, t, andu up to isomorphism.

In all cases,p′′ = h ◦ ((a′)σ)α, h = q′′ ◦ eα, andbα = eα ◦ ((a′)σ)α yield p′′ = q′′ ◦ bα, i.e.
p′′ |=α

∨

σ∈Σ

∨

e∈εσ
∃(b | γσ). In each case we can apply a similar argument to that in the “Only if”

section of the proof to obtainq′′ |= A′(s, (c′)σ) from the induction hypothesis.

We havep′′ |=α

∨

σ∈Σ

∨

e∈εσ
∃(b | γσ) andq′′ |= A′(s, (c′)σ). The latter is satisfied by an assign-

ment that has at least the mappings ofα (analogous to the reasons at the end of the “only if” section), so
q′′ |= A′(s, (c′)σ)σα by Lemma 7.1. Together, this gives usp′′ |=α

∨

σ∈Σ

∨

e∈εσ
∃(b | γσ,A′(s, (c′)σ)) =

A′(p, c). Finally, we use the definition of|= to yield the result thatp′′ |= A′(p, c).

When considering Boolean formulae over E-conditions, the statement follows from the definition
and induction hypothesis. ⊓⊔

C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs 167

Proof:
Proof of Proposition 7.2.

From the construction of Proposition 7.2 and the statement of Lemma 7.5, we geth |= A(r, c) iff
h |= A′(iR, c) iff h ◦ iαR |= c iff iH : ∅ →֒ H |= c iff H |= c. ⊓⊔

We now define and prove correct the transformation L, which transformsan E-app-condition over
R (the right-hand side of a rule schema) into an E-app-condition overL (the left-hand side of a rule
schema). Intuitively, one can think of the transformation as applying the ruleschema in reverse to the
graphs of the E-app-conditions.

Proposition 7.3. (Transformation of E-app-conditions)
There is a transformation L such that, for every rule schemar = 〈L ←֓ K →֒ R〉 with rule schema
conditionΓ, every right E-app-conditionc for r, and every direct derivationG⇒r,g,h H with g : Lα →֒
G andh : Rα →֒ H whereG,H ∈ G(L) andα is a well-typed assignment,

g |=α L(r, c) if and only if h |=α c.

�

Construction. All graphs used in the construction of the transformation belong to the classG(Exp).
L(r, c) is inductively defined as follows. Let L(r, true) = true and L(r, ∃(a | γ, c′)) = ∃(b | γ, L(r∗, c′))
if 〈K →֒ R, a〉 has a natural pushout complement(1) with r∗ = 〈Y ←֓ Z →֒ X〉 denoting the “derived”
rule by constructing natural pushout(2). If 〈K →֒ R, a〉 has no natural pushout complement, then
L(r, ∃(a | γ, c′)) = false.

L K R

Y Z X

r :

r∗ :

〈

〈

〉

〉

(1)(2)b a

The transformation L is extended for Boolean formulae in the usual way, that is, L(r,¬c) = ¬L(r, c),
and L(r, c1 ∧ c2) = L(r, c1) ∧ L(r, c2).

Example 7.5. Continuing from Example 7.4, we get:

L(r,A(r, c)) = ∀(x
1
→֒ x

1
a

2
,

∃(x
1
a

2
| type(a) = int)

∨ ∃(x
1
a

2
| a = b c and type(b, c) = int))

∧∀(x
1
→֒ x

1
,

∃(x
1
| type(x 0) = int)

∨∃(x
1
| x 0 = b c and type(b, c) = int)).

where the diagrams arising from applications of the construction are as given in Figure 22.
�

168 C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs

x 0 aaax

x 0x

x 0x

x 0x

Figure 22. Instances of diagrams from the construction of L

Our proof of the proposition is similar to the proof of Theorem 6 in [10]. As earlier, the proof is
simplified by the restriction to injective graph morphisms in E-conditions, but is made more complicated
by the separation of graphs over the syntactic and semantic label alphabets.

Proof:
We prove the proposition by structural induction.

Induction basis.Let c = true. By construction, we get L(r, c) = L(r, true) = true. We haveg |=α true
andh |=α true. All morphisms satisfy true.

Induction hypothesis.Assume that the proposition holds for E-conditionc′.

C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs 169

Induction step.For a right E-app-condition of the formc = ∃(a | γ, c′), the construction distinguishes
two cases. Letl ands denote the injective graph morphismsK →֒ L andK →֒ R, respectively. Let(1)
and(2) denote the natural pushouts of the construction, and(1)α and(2)α denote the same diagrams but
after the application of the well-typed assignmentα to the morphisms (as in Figure 23). Clearly, for a
given assignmentα, (1)α and(2)α are unique (up to isomorphism).

L K R

Y Z X

←֓

←֓

←֓

←֓

←
֓

←
֓

←
֓

l s

b a(1)(2)

←֓

←֓

←֓

←֓

←
֓

←
֓

←
֓

(2)α (1)αb
α

l
α

s
α

a
α

L
α

K
α

R
α

Y
α

Z
α

X
α

Figure 23. Instantiating the construction with an assignment

Case one.The morphisms〈s, a〉 have a natural pushout complement. By construction, we have L(r, ∃(a |
γ, c′)) = ∃(b | γ, L(r∗, c′)) whereb : L →֒ Y andr∗ = 〈Y ←֓ Z →֒ X〉.

A. First, we show that given an injective graph morphismq′ : Y α →֒ G with q′ ◦ bα = g, there
is a decomposition of the pushouts (see Figure 24) which yields the injective graph morphismq :
Xα →֒ H with q◦aα = h. Construct the pullback ofq′ andD →֒ G, obtaining the pullback object
F ∈ G(L). By the universal property of pullbacks, there is a unique graph morphismKα → F

such that the arising diagrams commute. By the pushout-pullback decomposition, (2′) and(4′) are
pushouts and pullbacks, i.e. natural pushouts.Kα → F is injective asbα is injective. Since the
pushout complements of injective graph morphisms are unique up to isomorphism, and pushout
(2′) is a natural pushout, we get that(2′) is equal to natural pushout(2)α up to isomorphism and
F ∼= Zα.

←֓

←֓

←֓

←֓

←
֓

←
֓

←
֓

b
α

l
α

s
α

a
α

L
α

K
α

R
α

Y
α

X
α

F

G D H←֓ ←֓

←
֓

←
֓

←
֓

(1′)(2′)

(3′)(4′)

g h

q
′

q

Figure 24. Decomposing a rule application

Now construct the natural pushout(1′) of Kα →֒ F andsα. By the uniqueness of pushout com-
plements of injective morphisms,(1′) equals(1)α (up to isomorphism). By the universal property
of pushouts, there is a unique morphismq : Xα → H with q ◦ aα = h. By the decomposition
lemma of pushouts, diagram(3′) is also a pushout. Sinceq′ and henceF →֒ D are injective, it
follows thatq is also injective.

B. Given an injective graph morphismq : Xα →֒ H with q ◦ aα = h, one can yieldq′ : Y α →֒ G

170 C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs

with q′ ◦ bα = g by instantiating(1)-(2) into (1)α-(2)α, and decomposing these into(1′)− (4′) as
above, i.e. starting by constructing(3′) as a pullback ofq andD →֒ H.

C. For an assignmentα′ whose mappings comprise at least those ofα, the induction hypothesis states
thatq′ : Y α →֒ G |=α′ L(r∗, c′) if and only if q : Xα →֒ H |=α′ c. By the definitions of L,|=,
Lemma 7.1, and the statements above, we have:

g |=α L(r, ∃(a | γ, c′)) = ∃(b | γ, L(r∗, c′))

iff γα = tt and there existsq′ : Y α →֒ G such thatq′ ◦ bα = g andq′ |=α′ L(r∗, c′)σα

iff γα = tt and there existsq′ : Y α →֒ G such thatq′ ◦ bα = g andq′ |=α′ L(r∗, c′)

iff γα = tt and there existsq : Xα →֒ H such thatq ◦ aα = h andq |=α′ c′

iff γα = tt and there existsq : Xα →֒ H such thatq ◦ aα = h andq |=α′ (c′)σα

iff h |=α ∃(a | γ, c
′)

Case two.The morphisms〈s, a〉 do not have a natural pushout complement. By construction, we have
L(r, ∃(a | γ, c′)) = false. The problem reduces to showing thatg |=α false iff h |=α ∃(a | γ, c

′). By
the definition of|=α, no morphism satisfies false, hence it is sufficient to argue thath does not satisfy
∃(a | γ, c′).

Assume thath |=α ∃(a | γ, c
′). Then there exists an injective graph morphismq : Xα →֒ H with

q◦aα = h. Then, as in case one, the pushout can be decomposed into pushouts(1′) and(3′). This means
that the morphisms〈s, a〉 have a pushout complement, which contradicts the assumption.

When considering Boolean formulae over E-app-conditions, the statementfollows from the definition
and induction hypothesis. ⊓⊔

We conclude this section by defining and proving correct the transformation Pre, which makes use
of the transformations A and L. Pre transforms a postcondition into a precondition, intuitively by the
following steps: (1) transform the postcondition into an E-app-condition over the right-hand side of the
rule schema, (2) transform this into an E-app condition over the left-hand side of the rule schema, (3)
nest this within an E-constraint quantified over all morphisms fromL which represent a match.

Proposition 7.4. (Transformation of postconditions into preconditions)
There is a transformation Pre such that, for every E-constraintc, every rule schemar = 〈L ←֓ K →֒ R〉
with rule schema conditionΓ, and every direct derivationG⇒r H,

G |= Pre(r, c) implies H |= c.

�

Construction.Define Pre(r, c) = ∀(∅ →֒ L | γr, (¬Dang(r) ∧ τ(L,Γ)⇒ L(r,A(r, c)))), whereγr is as
defined in Proposition 7.1.

Example 7.6. Continuing from Examples 7.4 and 7.5, we get:

C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs 171

Pre(r, c) = ∀(x
1
| type(x) = int,

∀(x
1
a

2
, ∃(x

1
a

2
| type(a) = int)

∨ ∃(x
1
a

2
| a = b c and type(b, c) = int))

∧∀(x
1
, ∃(x

1
| type(x 0) = int)

∨∃(x
1
| x 0 = b c and type(b, c) = int))).

Sincer does not delete any nodes, and does not have a rule schema condition,¬Dang(r)∧τ(L,Γ) = true,
simplifying the nested E-constraint generated by Pre. We can simplify Pre(r, c) by hand to yield:

Pre(r, c) ≡ ∀(x
1
a

2
| type(x) = int, ∃(x

1
a

2
| type(a) = int)

∨ ∃(x
1
a

2
| a = b c and type(b, c) = int)).

�

Proof:
DefineiG : ∅ →֒ G. Assume thatG |= Pre(r, c). Then there exists an assignmentα such thatG |=α

Pre(r, c). TheniG |=α Pre(r, c) = ∀(∅ →֒ L | γr, (¬Dang(r) ∧ τ(L,Γ) ⇒ L(r,A(r, c)))). By the
definition of|=α for universally quantified E-conditions, for everyq : Lα →֒ G with q ◦ (∅ →֒ Lα) = iG,
we have thatq |= ¬Dang(r)σα ∧ τ(L,Γ)σα ⇒ L(r,A(r, c))σα . By Lemma7.2 and the definition of⇒,
we have thatq |= Dang(r) ∨ ¬τ(L,Γ) ∨ L(r,A(r, c)).

Suppose thatq 2 L(r,A(r, c)). Thenq must satisfy Dang(r) ∨ ¬τ(L,Γ) meaning thatG 6⇒R (this
conclusion is clear from an examination of Proposition 7.1), i.e. a contradiction of the statement.

Suppose now thatq |= L(r,A(r, c)). From Proposition 7.3 we geth : Rα →֒ H |= A(r, c). From
Proposition 7.2 we getH |= c, the result. ⊓⊔

8. Soundness

In this section, we present our main result that the proof rules of our Hoare logic are sound for proving
partial correctness of graph programs. That is, a graph programP is partially correct with respect to a
preconditionc and a postconditiond (in the sense of Definition 6.1) if there exists a full proof tree whose
root is the triple{c} P {d}.

Theorem 8.1. The proof system comprising the axioms and inference rules of Figures 12is sound for
graph programs, in the sense of partial correctness (Definition 6.1). �

Proof:
To prove soundness, we prove that each single proof rule is correctby appealing to the semantic function
JP KG (see Section 4.3). The result then follows by structural induction on proof trees.

Let c, d, e, inv be E-constraints,P,Q be arbitrary graph programs,R be a set of conditional rule
schemata,r, ri be conditional rule schemata, andG,H,G,G′, H ′ ∈ G(L). Recall that the symbol→
denotes a small-step transition relation on configurations of graphs and programs.

[ruleapp]. Follows from Proposition 7.4.

172 C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs

[nonapp]. Suppose thatG |= ¬App(R). By Proposition 7.1, we get that there does not exist a graphH

such thatG⇒R H, or equivalently,G 6⇒R. From the inference rule [Call2]SOSwe obtain the transition
〈R, G〉 → fail (intuitively, this indicates that the program terminates but without returninga graph). No
graph will ever result; this is captured by the postcondition false, which no graph or morphism can satisfy.

[ruleset]. Suppose that we have a non-empty set of rule schemata{r1, . . . , rn} denoted byR, thatG |= c,
and that we have a non-empty set of graphs

⋃

r∈R{H ∈ G(L) | G⇒r H} such that eachH |= d (if the
set was empty, then [nonapp] would apply). For this set of graphs to be non-empty, at least oner ∈ R
must be applicable toG. That is, there is a direct derivationG ⇒R H for some graphH that satisfies
d. From the inference rule [Call1]SOSand the assumption, we getJRKG = {H ∈ G(L) | 〈R, G〉 → H}
such that eachH |= d.

[comp]. Suppose thatG |= c, JP KG = {G′ ∈ G(L) | 〈P,G〉 →+ G′} such that eachG′ |= e, and
JQKG′ = {H ∈ G(L) | 〈Q,G′〉 →+ H} such that eachH |= d. ThenJP ; QKG = {H ∈ G(L) |
〈P ; Q,G〉 →+ 〈Q,G′〉 →+ H} such that eachH |= d follows from applications of the inference rules
[Seq1]SOSand [Seq2]SOS.

[cons]. Suppose thatG′ |= c′, c ⇒ c′, d′ ⇒ d, andJP KG′ = {H ′ ∈ G(L) | 〈P,G′〉 →+ H ′} such that
eachH ′ |= d′. If G |= c, we haveG |= c′ sincec⇒ c′. By the assumption, we have for eachH ∈ JP KG
thatH |= d′. Fromd′ ⇒ d, we getH |= d.

[if 1]. Case One.Suppose thatG |= c, JP KG = {H ∈ G(L) | 〈P,G〉 →+ H} such that eachH |= d, and
G |= App(R). By Proposition 7.1, executingR onG will result in a graph. Hence by the assumption
and the inference rule [If1]SOS, JifR then P elseQKG = {H ∈ G(L) | 〈ifR then P elseQ,G〉 →
〈P,G〉 →+ H} such that eachH |= d.

Case Two. Suppose thatG |= c, JQKG = {H ∈ G(L) | 〈Q,G〉 →+ H} such that each
H |= d, andG |= ¬App(R). By Proposition 7.1, executingR on G will not result in a graph.
Hence by the assumption and the inference rule [If2]SOS, Jif R then P else QKG = {H ∈ G(L) |
〈ifR then P else Q,G〉 → 〈Q,G〉 →+ H} such that eachH |= d.

[!]. We prove the soundness of this proof rule by induction over the number of executions ofR that do
not result in finite failure. Assume that for any graphG′ such thatG′ |= inv, JRKG′ = {H ′ ∈ G(L) |
〈R, G′〉 → H ′} such that eachH ′ |= inv.

Induction basis.Suppose thatG |= inv. In the case thatR cannot ever be applied toG without finite
failure, only the inference rule [Alap2]SOScan be applied, that is,JR!KG = {G ∈ G(L) | 〈R!, G〉 → G}.
Since the graph is not changed, trivially, the invariant holds, i.e.G |= inv. Since the execution ofR on
G does not result in a graph,G |= ¬App(R).

Induction hypothesis.There is a configuration〈R!, G〉 such that〈R!, G〉 →∗ H, with the property
that ifG |= inv, then we have for eachH in JR!KG = {H ∈ G(L) | 〈R!, G〉 →∗ H} thatH |= inv and
H |= ¬App(R).

Induction step.Suppose that we haveJR!KG = {H ∈ G(L) | 〈R!, G〉 → 〈R!, G〉 →∗ H} where
the first small-step transition arises from an application of [Alap1]SOS. Suppose thatG |= inv. Then by
assumption,G |= inv. It follows from the induction hypothesis that eachH |= inv andH |= ¬App(R).

⊓⊔

C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs 173

9. Conclusion

We have presented the first Hoare-style verification calculus for a practical graph transformation lan-
guage. This required us to extend the nested graph conditions of Habel, Pennemann and Rensink with
expressions as labels and with assignment constraints, in order to deal withGP’s powerful rule schemata
and infinite label alphabet. We have demonstrated the use of the calculus forproving partial correctness
properties of a nondeterministic colouring program and a program checking for 2-colourability. Our
main technical result is that our proof rules are sound with respect to GP’s formal semantics.

It is an open problem whether the calculus is relatively complete, that is, whether for every program
that is partially correct with respect to its pre- and postcondition, there exists a proof of this fact within the
calculus when all valid implicationsc⇒ d of E-constraints are added as axioms. This would correspond
to Cook’s classical result that Hoare logic for imperative programs is relatively complete [7]. In both
cases, the crucial problem is to show that for a given loop and its postcondition, the weakest precondition
can be expressed in the assertion language. However, classical completeness proofs exploit that program
states are mappings from program variables to values, while the states of graph programs are graphs. We
remark that even in the simpler case of the nested graph conditions of Habel,Pennemann and Rensink, it
is open whether the weakest preconditions of loops can be finitely expressed. This is why in [11], infinite
weakest preconditions are generated for loops.

We want to extend our calculus so that the total correctness of graph programs can be proved. Then,
besides ensuring that a program is partially correct, a proof would guarantee that all program runs ter-
minate if started from graphs satisfying the program’s precondition. To achieve this, the proof rule for
loops could be extended by using a termination function#: G(L)→ N. The antecedent{inv}R{inv}
would be strengthened to express that ifG |= inv andG ⇒R H, thenH |= inv and#G > #H. The
proof thatR decreases the measure# would happen outside the Hoare calculus, similar to the proofs of
the implications in the consequence rule.

Another topic for future work is to generalise the calculus such that it can handle conditions of
branching statements and loop bodies that are arbitrary subprograms rather than sets of rule schemata.
This may require a substantial strengthening of the assertion language, in order to incorporate the finite
failure concept of GP’s semantics.

Finally, we would like to increase the expressiveness of E-conditions by following Habel and Radke
[14] in introducing graph variables that represent graphs generatedby hyperedge-replacement systems. It
is shown in [14] that this allows to specify graph properties such as connectedness and acyclicity, which
are not first-order properties and hence beyond the power of (finite)nested conditions and E-conditions.

Acknowledgements. We are grateful to the anonymous referees for their detailed and thoughtful com-
ments which helped to improve this paper.

References

[1] Krzysztof R. Apt, Frank S. de Boer, and Ernst-Rüdiger Olderog.Verification of Sequential and Concurrent
Programs. Springer-Verlag, third edition, 2009.

[2] Adam Bakewell, Detlef Plump, and Colin Runciman. Checking the shape safety of pointer manipulations.
In Int. Seminar on Relational Methods in Computer Science (RelMiCS 7), Revised Selected Papers, volume
3051, pages 48–61. Springer-Verlag, 2004.

174 C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs

[3] Adam Bakewell, Detlef Plump, and Colin Runciman. Specifying pointer structures by graph reduction. In
Applications of Graph Transformations With Industrial Relevance (AGTIVE 2003), Revised Selected and
Invited Papers, volume 3062, pages 30–44. Springer-Verlag, 2004.

[4] Paolo Baldan, Andrea Corradini, and Barbara König. A framework for the verification of infinite-state graph
transformation systems.Information and Computation, 206(7):869–907, 2008.

[5] Enrico Biermann, Claudia Ermel, and Gabriele Taentzer.Precise semantics of EMF model transformations by
graph transformation. InProc. Model Driven Engineering Languages and Systems (MoDELS 2008), volume
5301, pages 53–67. Springer-Verlag, 2008.

[6] Dénes Bisztray, Reiko Heckel, and Hartmut Ehrig. Compositional verification of architectural refactorings.
In Proc. Architecting Dependable Systems VI (WADS 2008), volume 5835, pages 308–333. Springer-Verlag,
2009.

[7] Stephen A. Cook. Soundness and completeness of an axiom system for program verification.SIAM Journal
of Computing, 7(1):70–90, 1978.

[8] Rubino Geiß, Gernot Veit Batz, Daniel Grund, Sebastian Hack, and Adam M. Szalkowski. GrGen: A fast
SPO-based graph rewriting tool. InProc. International Conference on Graph Transformation (ICGT 2006),
volume 4178, pages 383–397. Springer-Verlag, 2006.

[9] Lars Grunske, Leif Geiger, Albert Z̈undorf, Niels Van Eetvelde, Pieter Van Gorp, and Dániel Varŕo. Using
graph transformation for practical model-driven softwareengineering. In Sami Beydeda, Matthias Book, and
Volker Gruhn, editors,Model-Driven Software Development, pages 91–117. Springer-Verlag, 2005.

[10] Annegret Habel and Karl-Heinz Pennemann. Correctnessof high-level transformation systems relative to
nested conditions.Mathematical Structures in Computer Science, 19(2):245–296, 2009.

[11] Annegret Habel, Karl-Heinz Pennemann, and Arend Rensink. Weakest preconditions for high-level pro-
grams. InProc. Graph Transformations (ICGT 2006), volume 4178, pages 445–460. Springer-Verlag, 2006.

[12] Annegret Habel and Detlef Plump. Computational completeness of programming languages based on graph
transformation. InProc. Foundations of Software Science and Computation Structures (FOSSACS 2001),
volume 2030, pages 230–245. Springer-Verlag, 2001.

[13] Annegret Habel and Detlef Plump. Relabelling in graph transformation. InProc. International Conference
on Graph Transformation (ICGT 2002), volume 2505, pages 135–147. Springer-Verlag, 2002.

[14] Annegret Habel and Hendrik Radke. Expressiveness of graph conditions with variables. InProc. Colloquium
on Graph and Model Transformation on the Occasion of the 65thBirthday of Hartmut Ehrig, volume 30 of
Electronic Communications of the EASST, 2010.

[15] Frank Hermann, Hartmut Ehrig, Fernando Orejas, and Ulrike Golas. Formal analysis of functional behaviour
for model transformations based on triple graph grammars. In Proc. Graph Transformations (ICGT 2010),
volume 6372, pages 155–170. Springer-Verlag, 2010.

[16] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM, 12(10):576–
580, 1969.

[17] Karsten Ḧolscher, Paul Ziemann, and Martin Gogolla. On translating UML models into graph transformation
systems.Journal of Visual Languages Computing, 17(1):78–105, 2006.

[18] Marieke Huisman and Bart Jacobs. Java program verification via a Hoare Logic with abrupt termination.
In Proc. Fundamental Approaches to Software Engineering (FASE 2000), volume 1783, pages 284–303.
Springer-Verlag, 2000.

C.M. Poskitt and D. Plump / Hoare-Style Verification of Graph Programs 175

[19] Barbara K̈onig and Javier Esparza. Verification of graph transformation systems with context-free speci-
fications. InProc. Graph Transformations (ICGT 2010), volume 6372, pages 107–122. Springer-Verlag,
2010.

[20] Barbara K̈onig and Vitali Kozioura. Towards the verification of attributed graph transformation systems. In
Proc. Graph Transformations (ICGT 2008), volume 5214, pages 305–320. Springer-Verlag, 2008.

[21] Sabine Kuske, Martin Gogolla, Hans-Jörg Kreowski, and Paul Ziemann. Towards an integrated graph-based
semantics for UML.Software and Systems Modeling, 8:403–422, 2009.

[22] Greg Manning and Detlef Plump. The GP programming system. In Proc. Graph Transformation and Visual
Modelling Techniques (GT-VMT 2008), volume 10 ofElectronic Communications of the EASST, 2008.

[23] Ulrich Nickel, J̈org Niere, and Albert Z̈undorf. The FUJABA environment. InProc. International Conference
on Software Engineering (ICSE 2000), pages 742–745. ACM Press, 2000.

[24] Hanne Riis Nielson and Flemming Nielson.Semantics with Applications: An Appetizer. Springer-Verlag,
2007.

[25] Tobias Nipkow. Hoare logics in Isabelle/HOL. In HelmutSchwichtenberg and Ralf Steinbrüggen, editors,
Proof and System-Reliability, pages 341–367. Kluwer Academic Publishers, 2002.

[26] Simon L. Peyton Jones.The Implementation of Functional Programming Languages. Prentice-Hall, 1987.

[27] Rinus Plasmeijer and Marko van Eekelen.Functional Programming and Parallel Graph Rewriting. Addison-
Wesley, 1993.

[28] Detlef Plump. The graph programming language GP. InProc. Algebraic Informatics (CAI 2009), volume
5725, pages 99–122. Springer-Verlag, 2009.

[29] Detlef Plump and Sandra Steinert. The semantics of graph programs. InProc. Rule-Based Programming
(RULE 2009), volume 21 ofElectronic Proceedings in Theoretical Computer Science, pages 27–38, 2010.

[30] Arnd Poetzsch-Heffter and Peter Müller. A programming logic for sequential Java. InProc. Programming
Languages and Systems (ESOP 1999), pages 162–176, 1999.

[31] Christopher M. Poskitt and Detlef Plump. A Hoare calculus for graph programs. InProc. International
Conference on Graph Transformation (ICGT 2010), volume 6372, pages 139–154. Springer-Verlag, 2010.

[32] Arend Rensink,Ákos Schmidt, and D́aniel Varŕo. Model checking graph transformations: A comparison
of two approaches. InProc. Graph Transformations (ICGT 2004), volume 3256, pages 226–241. Springer-
Verlag, 2004.

[33] Stefan Rieger and Thomas Noll. Abstracting complex data structures by hyperedge replacement. InProc.
Graph Transformations (ICGT 2008), volume 5214, pages 69–83. Springer-Verlag, 2008.

[34] Andy Scḧurr, Andreas Winter, and Albert Z̈undorf. The PROGRES approach: Language and environment.
In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors, Handbook of Graph Grammars and
Computing by Graph Transformation, volume 2, chapter 13, pages 487–550. World Scientific, 1999.

[35] Gabriele Taentzer. AGG: A graph transformation environment for modeling and validation of software. In
Applications of Graph Transformations With Industrial Relevance (AGTIVE 2003), Revised Selected and
Invited Papers, volume 3062, pages 446–453. Springer-Verlag, 2004.

[36] Dániel Varŕo, Gergely Varŕo, and Andŕas Pataricza. Designing the automatic transformation of visual lan-
guages.Science of Computer Programming, 44(2):205–227, 2002.

[37] David von Oheimb. Hoare logic for Java in Isabelle/HOL.Concurrency and Computation: Practice and
Experience, 13(13):1173–1214, 2001.

	Hoare-style verification of graph programs
	Citation

	Posk-Plum-new.dvi

