
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2012

Scalable malware clustering through coarse-grained behavior Scalable malware clustering through coarse-grained behavior

modeling modeling

Mahinthan CHANDRAMOHAN

Hee Beng Kuan TAN

Lwin Khin SHAR
Singapore Management University, lkshar@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons, and the Software Engineering Commons

Citation Citation
CHANDRAMOHAN, Mahinthan; TAN, Hee Beng Kuan; and SHAR, Lwin Khin. Scalable malware clustering
through coarse-grained behavior modeling. (2012). Proceedings of the 20th ACM SIGSOFT Symposium
on the Foundations of Software Engineering, Cary, USA, 2012 November 11-16. 1-4.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4782

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4782&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4782&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4782&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

 Draft

Scalable Malware Clustering Through Coarse-Grained
Behavior Modeling

 Mahinthan Chandramohan, Hee Beng Kuan Tan, Lwin Khin Shar

School of Electrical and Electronic Engineering
Block S2, Nanyang Technological University

Nanyang Avenue,Singapore 639798.

{mahintha001, ibktan, shar0035}@e.ntu.edu.sg

ABSTRACT

Anti-malware vendors receive several thousand new malware

(malicious software) variants per day. Due to large volume of

malware samples, it has become extremely important to group

them based on their malicious characteristics. Grouping of

malware variants that exhibit similar behavior helps to generate

malware signatures more efficiently. Unfortunately, exponential

growth of new malware variants and huge-dimensional feature

space, as used in existing approaches, make the clustering task

very challenging and difficult to scale. Furthermore, malware

behavior modeling techniques proposed in the literature do not

scale well, where malware feature space grows in proportion with

the number of samples under examination.

In this paper, we propose a scalable malware behavior modeling

technique that models the interactions between malware and

sensitive system resources in a coarse-grained manner. Coarse-

grained behavior modeling enables us to generate malware feature

space that does not grow in proportion with the number of

samples under examination. A preliminary study shows that our

approach generates 289 times less malware features and yet

improves the average clustering accuracy by 6.20% in comparison

to a state-of-the-art malware clustering technique.

Categories and Subject Descriptors

D.2.8 [Operating System]: Security and Protection

General Terms

Security, Malware clustering, Malware behavior modeling

Keywords

Malware clustering, Coarse-grained behavior modeling

1. INTRODUCTION
Despite the common use and widespread availability of various

anti-virus tools, the growth of malware is phenomenal. According

to Symantec, an anti-virus vendor, more than 286,000,000 new

malware variants were detected in 2010 [2]. If we further zoom-

in, on average around 55,000 new malware samples were reported

per day during September, 2011 [4]. Identification of malware

variants significantly improves the signature detection and

reduces the size of malware signature database. Thus, it has

become crucial for anti-virus vendors to analyze and cluster

malware samples based on their malicious behavior. Manual

inspection and clustering of malware samples are out of question

due to their dramatic growth in the recent past [2, 4]. Therefore, it

has to be automated [3, 4].

Malware clustering has been studied by several researchers in the

past [5, 6, 7, 8]. Malware behavior modeling techniques, proposed

in the literature, generally use n-gram analysis, non-transient state

changes, system call trace analysis, taint analysis, system call

dependency graphs and control flow graphs to extract malicious

features. Given the number of new malware variants reported per

day, “scalability” is a major problem in existing feature extraction

techniques, where malware feature space grows in proportion with

the number of samples under examination. This makes malware

clustering a challenging task.

In this paper, we introduce a simple, yet efficient coarse-grained

malware behavior modeling technique that captures the

interactions between malware and sensitive system resources at a

higher level of abstraction. Coarse-grained behavior modeling

increases the applicability of our approach across all malware

classes and importantly, enables us to generate malware feature

space that does not grows in proportion with the number of

samples under examination. Higher level of abstraction (i.e.

agnostic to underlying low-level instructions) improves the

robustness of our approach against basic obfuscation techniques

[9]. Furthermore, abstracting away the malware and system

specific details allows us to reduce large amount of noise (i.e.

features with low information gain) in the feature space.

The paper is organized as follows. Section 2 describes our coarse-

grained malware behavior modeling. Section 3 explains the

scalability of clustering technique. Section 4 discusses our

experiment results. Section 5 summarizes the related work.

Finally, we conclude with Section 6.

2. COARSE-GRAINED BEHAVIOR

MODELING
Our study of malware found that File, Registry, Process and

Network are the most security-critical system resources that are

widely attacked by malware. Hence, the proposed coarse-grained

behavior modeling approach focuses on these four security-

critical system resources. The modeling approach can be extended

to cover more system resources if needed, Furthermore, our

hypothesis is that for the identification of malware family, one

need to analyze the types of security-sensitive actions it performs

on these system resources. It is insignificant to analyze the

number of times or the sequence these actions are performed as

malware authors often use some basic obfuscation techniques to

evade malware detection techniques [5]. Next, we shall describe

our behavior modeling approach.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

 Draft

For file resources, we have identified five possible actions –

{create, modify, read, delete, memory_mapped} – that could be

performed by a malware. We only considered those actions that

are closely related to system security. The tasks performed by

these actions are self explanatory; create action creates a new

file/directory or opens an existing file, modify action modifies the

file in concern, read action reads the content of the file,

memory_mapped action maps the file into a virtual memory that

can be shared by several processes and finally delete action

deletes the file/directory. Hence, a malware has a maximum of (25

– 1) = 31 possible sets of actions that could be performed on file

resource. Each such possible set is modeled as a File feature of a

malware. Therefore, altogether there are 31 possible file features

of a malware.

For example, if a malware performs create, modify, and delete

actions on a file A, then the malware has a file feature =

{create, modify, delete}. If the same malware performs create,

modify, read and deletes actions on another file B, then it has

another file feature = {create, modify, read, delete}. However,

if the same malware performs create, modify, and delete actions

on a file C, then these actions on C, does not introduce any new

feature to this malware as this feature is considered the same as

file feature . Therefore, this malware has only two file features

 . As a result of abstraction, an identical set of actions

performed on two different file objects (e.g. file A and C) are

considered as a single malware feature. Our initial experiment that

will be discussed later shows that such behavior modeling reduces

the amount of noise in the malware features space while

accurately capturing the underlying malicious characteristics.

Likewise, we have identified six possible actions – {create_key,

delete_key, monitor_key, modify_value, read_value, delete_value}

– that could be performed by a malware on registry resource.

Registry actions are responsible for critical system behaviors such

as startup procedures, internet settings and user-specific settings.

Create_key action creates a new registry key or opens an existing

one, delete_key action deletes the key from the registry,

monitor_key action monitors for changes to any attributes or

contents of a specified registry key, modify_value action creates or

replaces a registry key’s value, read_value action reads the value

entry for a key and delete_value action deletes the value entry of a

specified registry. Similar to file resource, a malware has a

maximum of (26 -1) = 63 possible sets of actions that could be

performed on a registry resource. Each such possible set is

modeled as a Registry feature of a malware. Therefore,

altogether there are 63 possible registry features of a malware.

For the process resource we have listed five possible actions –

{create_process, delete_process, create_thread, foreign_memory

_read, foreign_memory_write} – that could be performed by a

malware. A process is an executing program and one or more

threads can run in the context of a process. Create_process action

creates a process to execute a program, delete_process action

terminates the process and kill all its threads, create_thread action

creates a new thread to run within an executing process,

foreign_memory_read action allows the process to read the shared

memory and foreign_memory_write action allows the process to

write to the shared memory. Hence, a malware has a maximum of

(25 -1) = 31 possible sets of actions that could be performed on a

process resource. Each such possible set is modeled as a Process

feature of a malware. Therefore, altogether there are 31 possible

process features of a malware.

Finally, we have identified four possible actions – {address_scan,

ping, connection_attempt, conversation} – that could be

performed by a malware during networ k I/O. Address_scan

action scans for a given network, ping action checks whether a

remote target available over the network, connection_attempt

action attempts to connect to a particular destination over the

network and conversation action communicates with the

destination. Similar to other system recourses, a malware has a

maximum of (24 -1) = 15 possible sets of actions that could be

performed during network I/O. Each such possible set is modeled

as a Network feature of a malware. Therefore, altogether there

are 15 possible network features of a malware.

From the description of our behavior modeling, it is understood

that malware feature space is no longer a function of total number

of malware samples under examination. Furthermore, upper

bound for the malware feature space is predetermined before

running the experiment and importantly, it doesn’t depend on the

number of malware samples under analysis. Thus, our approach

enhances the scalability of malware clustering.

2.1 Feature Encoding
Once the features are extracted from the malware samples, we use

bit vector to represent them. In total, there can be a maximum of

31 + 63 + 31 + 15 = 140 features on all four system resources.

Hence, we use a bit vector of size 140 to represent the malware

features. The first 31 bits are used to represent the file features

next 63 bits are used to represent the registry features another 31

bits are used to represent the process features and the last 15 bits

are used to represent the network features.

Formally, let F, R, P, and N be the set of file features, registry

features, process features and network features respectively. Let

 ,
 , and

 . Let f, r, p and n be

the mapping , , ,
 to assign a file, registry, process and network features

respectively to a positive integer in the respective range that

serves as the bit position in the feature vector to represent the

feature. For a malware m, the feature vector V is defined as

follows;

The similarity between two malware feature vectors is calculated

using Euclidian distance d. For example, the similarity between

feature vectors and is calculated as;

Where, are normalized feature vectors of vectors and

respectively. Due to normalization, for identical

behavior and for completely different behavior.

2.2 Feature extraction from behavioral

reports
Malware samples are executed in Anubis [1], a dynamic malware

analysis environment, and the generated malware behavioral

reports are used for our analysis purposes. These behavioral

reports give a high-level understanding of malware behavior.

From the behavioral reports, malware features are extracted in two

steps as explained below.

 Draft

Step 1 - extraction: System resources and the actions performed

on those resources are extracted as <resource_object_id:

set_of_actions> pairs, where resource_object_id represents the

name of system resource object and the set_of_actions represent

the set of actions performed by malware on the resource object.

Step 2 - abstraction: We abstract away the system specific

details, that is; replace individual system resource object name

(e.g. a.txt, b.txt, etc…) with the resource type; File, Registry,

Process and Network. Finally, remove the duplicate features from

the abstracted feature set.

Listing 1: Sample malware behavioral report

Listing 2: Result of step 1

Listing 3: Result of step 2

A sample malware behavioral report, with only file activities, is

shown in Listing 1, while output of step 1 and 2 are shown in

Listings 2 and 3 respectively. Listing 2 shows the File features

extracted in step 1 from malware behavioral report. It can be seen

that the actions performed, by the malware, on file resource

objects b.txt and c.txt are identical. Thus, in step 2 we remove

these duplicate features. Listing 3 shows the final set of File

features that are used to generate malware feature vector as

explained in section 2.1.

2.3 Feature pruning
Once the malware features are extracted, we prune the features

with low information gain. A feature that appears in only one

sample (i.e. unique feature) doesn’t help to find other samples that

behave similarly [5] and common features that appear in most (or

all) of the malware samples may lead to group two samples

together even if they both actually belong to two different

malware classes. Following the approach in [5], we prune those

features that appear in only one malware and features that appear

in 90% (or more) of the malware samples.

3. SCALABLE CLUSTERING
Apart from scalable behavior modeling, clustering algorithm itself

has to be scalable in order to cluster large volume of malware

samples. For large-scale clustering there are two major techniques

proposed in the literature; (1) Locality Sensitive Hashing (LSH)

based clustering used by Bayer et al. [5] and, (2) prototype based

clustering technique introduced by Rieck et al. [6].

Prototype based clustering technique is simple, yet effective for

malware clustering. From a set of malware samples, prototypes

are selected based on a threshold value to represent the entire

malware samples. These selected prototypes are then clustered

using hierarchical clustering and finally, un-clustered malware

samples are assigned to the closest prototype (refer to the original

paper [6] for actual implementation). Since our focus, in this

paper, is not on scalable clustering algorithms, we adopt the

prototype based clustering technique to evaluate the performance

and applicability of our behavior modeling approach to real-world

malware clustering problems. It is also noted that we use F-

Measure, introduced by Van Rijsbergen [10], to evaluate the

clustering accuracy.

4. PRELIMINARY EXPERIMENTAL

RESULTS
In this section, we discuss our preliminary experimental results to

evaluate the accuracy and scalability of our coarse-grained

malware behavior modeling approach. The experiment was

carried out on a dataset provided by Bayer et al. [5]. Initially we

had 2658 malware behavioral reports out of which 6 reports were

discarded due to problems in file parsing. Hence, we carried out

the experiment using 2652 malware samples. Based on these 2652

samples, we compare our clustering accuracy against a state-of-

the-art malware clustering technique proposed by Bayer et al. [5]

and the results obtained by Malheur [6]. Malheur is a tool

developed by Rieck et al. [6] to automatically analyze the

malware behavior. It is also noted that we use Malheur in “text”

mode, where it supports both “text” for textual and XML reports,

and “MIST” for reports using malware instruction set (refer to [6]

for more details).

Bailey et al. [7] pointed out that malware labels given by anti-

virus products suffer from inconsistency and their labels are

frequently incorrect. Thus, we have decided to evaluate the

clustering accuracy using malware labels given by five different

anti-virus products. This enables us to evaluate the robustness of

our malware clustering technique across five different

benchmarks and therefore reduces the biasness. The anti-virus

products include F-Secure, Ikarus, Symantec, Kaspersky and

VirusBuster and the corresponding malware labels are obtained

from Virustotal tool [3]. In this experiment, we only use malware

family name and the variant name is ignored. For example, we

group both Worm.Allaple.A and Worm.Allaple.B together and call

it Allapale malware family.

The experiment results are shown in Table 1. In terms of

clustering accuracy, from the experiment results it can be seen

that our approach clearly outperformed Bayer et al. and Malheur.

Using Bayer’s results as base we measured the average

improvement to clustering accuracy. Our approach improved the

clustering accuracy by 6.20% whereas Malheur improved it by

only 1.90%.It is also evident that our approach consistently

performed well against all five benchmarks.

In terms of scalability, we analyzed the relationship between

malware feature space and the number of samples under

examination. We compared the number of features generated by

our approach against Bayer et al. and Malheur. Table 2 shows the

relationship between feature space and number of malware

samples. From Table 2, it is evident that number of features

generated by Bayer et al. and Malheur grow in proportion with the

number of malware samples under examination. Whereas, in our

approach the growth rate of malware feature space is insignificant

and only 56 features were analyzed. Hence, the experiment result

shows that our method reduces the malware feature space by

16,160/56 = 289 and 5,171,871/56 = 92,355 times comparing with

Bayer et al. and Malheur methods respectively.

<C:\a.txt: {file_created, file_modified, file_read}>

<C:\b.txt: {file_read, file_deleted}>

<C:\c.txt: {file_read, file_deleted}>

<file_activities>

<file_created name = “C:\a.txt”/>

<file_read name = “C:\a.txt”/>

<file_read name = “C:\b.txt”/>

<file_read name = “C:\c.txt”/>

<file_modified name = "C:\a.txt”/>

<file_deleted name = "C:\b.txt”/>

<file_deleted name = "C:\c.txt”/>

</file_activities>

{file_created, file_modified, file_read},

{file_read, file_deleted}

File feature =

 Draft

Table 1: Preliminary experiment results

Anti-Virus Vendors
F-Measure Using Bayer’s results as base

Bayer et al. Malheur Ours Improvement by Malheur Improvement by our approach

F-Secure 0.870 0.891 0.923 2.41 % 6.09 %

Ikarus 0.882 0.894 0.948 1.36 % 7.48 %

Symantec 0.874 0.889 0.916 1.72 % 4.81 %

Kaspersky 0.876 0.893 0.930 1.94 % 6.16 %

VirusBuster 0.870 0.888 0.926 2.07 % 6.44 %

In this experiment, our approach has an upper bound of 140

features. It is also noted that there is no strict upper bound for

malware feature space as it can vary based on the types of

sensitive system resources and the corresponding security-critical

actions considered. Though we have not verified extensively, our

initial experiment shows that our approach has the advantage of

predetermining the feature space before clustering process in such

a way that it doesn’t grow in proportion with number of malwares.

Table 2: Relationship between malware sample size and

feature space

Number of

malware

samples

Feature space

Bayer et al. Malheur Ours

500 6,380 18,059 42

1000 9,007 623,300 47

1500 11,349 1,561,985 51

2000 12,797 2,594,645 52

2652 16,160 5,171,871 56

5. RELATED WORK
Apart from scalability of malware feature space, which is

common to all, there are several other issues in the existing

malware clustering techniques. Lee et al. [8] proposed a behavior-

based malware classification tool that compares the sequence of

system calls to determine the similarity between two executables.

The fine-grained approach makes it difficult to abstract the

underlying malicious behavior. Hence, restricts it applicability.

Bailey et al. [7] modeled the malware behavior as non-transient

state changes. Though, state changes are a higher level abstraction

than single system calls, this approach fails to identify the

relationship between two states. Bayer et al. [5] models the

runtime behavior of a malware using OS objects and operations in

a fine-grained manner. The system and malware-specific details

such as file names, registry values, IP addresses and other

parameters of system operations, introduce unnecessary features

and increase the amount of noise in the malware features space.

Rieck et al. [6] proposed Malheur that models the system call

sequences using n-grams. The malware feature space generated by

Malheur is very huge and n-gram analysis is not obfuscation-

resilient.

6. CONCLUSION AND FUTURE WORK
In this paper, we have introduced a novel coarse-grained malware

behavior modeling technique that addresses the scalability

problem in malware clustering. Our approach finds an upper

bound for malware feature space and reduces the amount of noise

in the extracted features. Furthermore, preliminary experiment

result shows that our approach improves the clustering accuracy

by 6.20% while reducing the feature space by 289 times against a

state-of-the-art malware clustering technique.

In the future, we have planned to extend this experiment to larger

dataset and evaluate the scalability of our behavior modeling

technique in terms of time and space requirements. As malware

may evolve their behavior from time to time, there could be a

need to extend the proposed behavioral framework to cover more

system resources and actions to address the evolution of malware

behavior. We would like to conduct extensive experiments to

statistically verify the growth of malware feature space in terms of

number of malware samples examined. Last but not least, we

would like to seek feedbacks from peers on the practicality of the

proposed approach for malware clustering and the possible ways

to improve it further.

7. ACKNOWLEDGMENTS
We would like to thank both Paolo Milani for providing us the

dataset used in Bayer et al. [5] and Konrad Rieck for providing us

the Malheur tool [6].

8. REFERENCES

[1] ANUBIS: http://anubis.seclab.tuwien.ac.at

[2] Threat Reportt-2010: http://www.symantec.com/threatreport/

[3] Virustotal tool: https://www.virustotal.com/

[4] A Look at One Day of Malware Samples: http://blogs.

mcafee.com/mcafee-labs/a-look-at-one-day-of-malware-

samples

[5] Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C and

Kirda, E. Scalable, Behavior-based Malware Clustering. In

Proceedings of the 16th NDSS, 2009.

[6] Rieck, K., Trinius, P., Willems, C and Holz, T. Automatic

analysis of malware behavior using machine learning. TR,

Berlin Institute of Technology. 2009.

[7] Bailey, M., Andersen, J., Mao,Z.M and Jahanian, F.

Automated Classification and Analysis of Internet Malware.

In Proceedings of RAID. 2007.

[8] Lee, T and Mody, J.J. Behavioral Classifcation. In

Proceedings of EICAR, Hamburg, Germany. April 2006.

[9] You, I., Yim, K. Malware Obfuscation Techniques: A Brief

Survey. Int. Conf. on Broadband, Wireless Computing,

Communication and Applications pp. 297–300. 2010.

[10] Rijsbergen, V. C. J. Information Retrieval, 2nd edition. Dept.

of Computer Science, University of Glasgow. 1979.

http://anubis.seclab.tuwien.ac.at/
http://www.symantec.com/threatreport/
https://www.virustotal.com/

	Scalable malware clustering through coarse-grained behavior modeling
	Citation

	Proceedings Template - WORD

