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ABSTRACT 

Anti-malware vendors receive several thousand new malware 

(malicious software) variants per day. Due to large volume of 

malware samples, it has become extremely important to group 

them based on their malicious characteristics. Grouping of 

malware variants that exhibit similar behavior helps to generate 

malware signatures more efficiently. Unfortunately, exponential 

growth of new malware variants and huge-dimensional feature 

space, as used in existing approaches, make the clustering task 

very challenging and difficult to scale. Furthermore, malware 

behavior modeling techniques proposed in the literature do not 

scale well, where malware feature space grows in proportion with 

the number of samples under examination.  

In this paper, we propose a scalable malware behavior modeling 

technique that models the interactions between malware and 

sensitive system resources in a coarse-grained manner. Coarse-

grained behavior modeling enables us to generate malware feature 

space that does not grow in proportion with the number of 

samples under examination. A preliminary study shows that our 

approach generates 289 times less malware features and yet 

improves the average clustering accuracy by 6.20% in comparison 

to a state-of-the-art malware clustering technique.  

Categories and Subject Descriptors 

D.2.8 [Operating System]: Security and Protection 

General Terms 

Security, Malware clustering, Malware behavior modeling  

Keywords 

Malware clustering, Coarse-grained behavior modeling 

1. INTRODUCTION 
Despite the common use and widespread availability of various 

anti-virus tools, the growth of malware is phenomenal.  According 

to Symantec, an anti-virus vendor, more than 286,000,000 new 

malware variants were detected in 2010 [2]. If we further zoom-

in, on average around 55,000 new malware samples were reported 

per day during September, 2011 [4]. Identification of malware 

variants significantly improves the signature detection and 

reduces the size of malware signature database. Thus, it has 

become crucial for anti-virus vendors to analyze and cluster 

malware samples based on their malicious behavior. Manual 

inspection and clustering of malware samples are out of question 

due to their dramatic growth in the recent past [2, 4]. Therefore, it 

has to be automated [3, 4]. 

Malware clustering has been studied by several researchers in the 

past [5, 6, 7, 8]. Malware behavior modeling techniques, proposed 

in the literature, generally use n-gram analysis, non-transient state 

changes, system call trace analysis, taint analysis, system call 

dependency graphs and control flow graphs to extract malicious 

features. Given the number of new malware variants reported per 

day, “scalability” is a major problem in existing feature extraction 

techniques, where malware feature space grows in proportion with 

the number of samples under examination. This makes malware 

clustering a challenging task. 

In this paper, we introduce a simple, yet efficient coarse-grained 

malware behavior modeling technique that captures the 

interactions between malware and sensitive system resources at a 

higher level of abstraction. Coarse-grained behavior modeling 

increases the applicability of our approach across all malware 

classes and importantly, enables us to generate malware feature 

space that does not grows in proportion with the number of 

samples under examination. Higher level of abstraction (i.e. 

agnostic to underlying low-level instructions) improves the 

robustness of our approach against basic obfuscation techniques 

[9]. Furthermore, abstracting away the malware and system 

specific details allows us to reduce large amount of noise (i.e. 

features with low information gain) in the feature space. 

The paper is organized as follows. Section 2 describes our coarse-

grained malware behavior modeling. Section 3 explains the 

scalability of clustering technique. Section 4 discusses our 

experiment results. Section 5 summarizes the related work. 

Finally, we conclude with Section 6. 

2. COARSE-GRAINED BEHAVIOR 

MODELING 
Our study of malware found that File, Registry, Process and 

Network are the most security-critical system resources that are 

widely attacked by malware. Hence, the proposed coarse-grained 

behavior modeling approach focuses on these four security-

critical system resources. The modeling approach can be extended 

to cover more system resources if needed, Furthermore, our 

hypothesis is that for the identification of malware family, one 

need to analyze the types of security-sensitive actions it performs 

on these system resources. It is insignificant to analyze the 

number of times or the sequence these actions are performed as 

malware authors often use some basic obfuscation techniques to 

evade malware detection techniques [5]. Next, we shall describe 

our behavior modeling approach. 
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For file resources, we have identified five possible actions – 

{create, modify, read, delete, memory_mapped} – that could be 

performed by a malware. We only considered those actions that 

are closely related to system security. The tasks performed by 

these actions are self explanatory; create action creates a new 

file/directory or opens an existing file, modify action modifies the 

file in concern, read action reads the content of the file, 

memory_mapped action maps the file into a virtual memory that 

can be shared by several processes and finally delete action 

deletes the file/directory. Hence, a malware has a maximum of (25 

– 1) = 31 possible sets of actions that could be performed on file 

resource. Each such possible set is modeled as a File feature of a 

malware. Therefore, altogether there are 31 possible file features 

of a malware.  

For example, if a malware performs create, modify, and delete 

actions on a file A, then the malware has a file feature    = 

{create, modify, delete}. If the same malware performs create, 

modify, read and deletes actions on another file B, then it has 

another file feature    = {create, modify, read, delete}. However, 

if the same malware performs create, modify, and delete actions 

on a file C, then these actions on C, does not introduce any new 

feature to this malware as this feature is considered the same as 

file feature   . Therefore, this malware has only two file features 

          . As a result of abstraction, an identical set of actions 

performed on two different file objects (e.g. file A and C) are 

considered as a single malware feature. Our initial experiment that 

will be discussed later shows that such behavior modeling reduces 

the amount of noise in the malware features space while 

accurately capturing the underlying malicious characteristics.  

Likewise, we have identified six possible actions – {create_key, 

delete_key, monitor_key, modify_value, read_value, delete_value} 

– that could be performed by a malware on registry resource. 

Registry actions are responsible for critical system behaviors such 

as startup procedures, internet settings and user-specific settings. 

Create_key action creates a new registry key or opens an existing 

one, delete_key action deletes the key from the registry, 

monitor_key action monitors for changes to any attributes or 

contents of a specified registry key, modify_value action creates or 

replaces a registry key’s value, read_value action reads the value 

entry for a key and delete_value action deletes the value entry of a 

specified registry. Similar to file resource, a malware has a 

maximum of (26 -1) = 63 possible sets of actions that could be 

performed on a registry resource.  Each such possible set is 

modeled as a Registry feature of a malware. Therefore, 

altogether there are 63 possible registry features of a malware. 

For the process resource we have listed five possible actions – 

{create_process, delete_process, create_thread, foreign_memory 

_read, foreign_memory_write} – that could be performed by a 

malware. A process is an executing program and one or more 

threads can run in the context of a process. Create_process action 

creates a process to execute a program, delete_process action 

terminates the process and kill all its threads, create_thread action  

creates a new thread to run within an executing process, 

foreign_memory_read action allows the process to read the shared 

memory  and foreign_memory_write action allows the process to 

write to the shared memory. Hence, a malware has a maximum of 

(25 -1) = 31 possible sets of actions that could be performed on a 

process resource.  Each such possible set is modeled as a Process 

feature of a malware. Therefore, altogether there are 31 possible 

process features of a malware. 

Finally, we have identified four possible actions – {address_scan, 

ping, connection_attempt, conversation} – that could be 

performed by a malware during networ k I/O. Address_scan 

action scans for a given network, ping action checks whether a 

remote target available over the network, connection_attempt 

action attempts to connect to a particular destination over the 

network and conversation action communicates with the 

destination. Similar to other system recourses, a malware has a 

maximum of (24 -1) = 15 possible sets of actions that could be 

performed during network I/O.  Each such possible set is modeled 

as a Network feature of a malware. Therefore, altogether there 

are 15 possible network features of a malware. 

From the description of our behavior modeling, it is understood 

that malware feature space is no longer a function of total number 

of malware samples under examination. Furthermore, upper 

bound for the malware feature space is predetermined before 

running the experiment and importantly, it doesn’t depend on the 

number of malware samples under analysis. Thus, our approach 

enhances the scalability of malware clustering. 

2.1 Feature Encoding 
Once the features are extracted from the malware samples, we use 

bit vector to represent them. In total, there can be a maximum of 

31 + 63 + 31 + 15 = 140 features on all four system resources.  

Hence, we use a bit vector of size 140 to represent the malware 

features. The first 31 bits are used to represent the file features 

next 63 bits are used to represent the registry features another 31 

bits are used to represent the process features and the last 15 bits 

are used to represent the network features.  

Formally, let F, R, P, and N be the set of file features, registry 

features, process features and network features respectively. Let 

                         ,                   
         ,                               and 

                               . Let f, r, p and n be 

the mapping        ,         ,          ,   
         to assign a file, registry, process and network features 

respectively to a positive integer in the respective range that 

serves as the bit position in the feature vector to represent the 

feature. For a malware m, the feature vector V is defined as 

follows; 

     

 
 
 

 
 

                                                            

                                                           

                                                         

                                                        

                                                                                                                

  

The similarity between two malware feature vectors is calculated 

using Euclidian distance d. For example, the similarity between 

feature vectors    and    is calculated as;  

                     
 
 

Where,         are normalized feature vectors of vectors    and    

respectively. Due to normalization,            for identical 

behavior and              for completely different behavior. 

2.2 Feature extraction from behavioral 

reports 
Malware samples are executed in Anubis [1], a dynamic malware 

analysis environment, and the generated malware behavioral 

reports are used for our analysis purposes. These behavioral 

reports give a high-level understanding of malware behavior. 

From the behavioral reports, malware features are extracted in two 

steps as explained below. 
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Step 1 - extraction: System resources and the actions performed 

on those resources are extracted as <resource_object_id: 

set_of_actions> pairs, where resource_object_id represents the 

name of system resource object and the set_of_actions represent 

the set of actions performed by malware on the resource object.  

Step 2 - abstraction:  We abstract away the system specific 

details, that is; replace individual system resource object name 

(e.g. a.txt, b.txt, etc…) with the resource type; File, Registry, 

Process and Network. Finally, remove the duplicate features from 

the abstracted feature set.  

 

Listing 1: Sample malware behavioral report 

 

Listing 2: Result of step 1 

 

Listing 3: Result of step 2 

A sample malware behavioral report, with only file activities, is 

shown in Listing 1, while output of step 1 and 2 are shown in 

Listings 2 and 3 respectively. Listing 2 shows the File features 

extracted in step 1 from malware behavioral report. It can be seen 

that the actions performed, by the malware, on file resource 

objects b.txt and c.txt are identical. Thus, in step 2 we remove 

these duplicate features. Listing 3 shows the final set of File 

features that are used to generate malware feature vector as 

explained in section 2.1.  

2.3 Feature pruning 
Once the malware features are extracted, we prune the features 

with low information gain. A feature that appears in only one 

sample (i.e. unique feature) doesn’t help to find other samples that 

behave similarly [5] and common features that appear in most (or 

all) of the malware samples may lead to group two samples 

together even if they both actually belong to two different 

malware classes. Following the approach in [5], we prune those 

features that appear in only one malware and features that appear 

in 90% (or more) of the malware samples.    

3. SCALABLE CLUSTERING  
Apart from scalable behavior modeling, clustering algorithm itself 

has to be scalable in order to cluster large volume of malware 

samples. For large-scale clustering there are two major techniques 

proposed in the literature; (1) Locality Sensitive Hashing (LSH) 

based clustering used by Bayer et al. [5] and, (2) prototype based 

clustering technique introduced by Rieck et al. [6]. 

Prototype based clustering technique is simple, yet effective for 

malware clustering. From a set of malware samples, prototypes 

are selected based on a threshold value to represent the entire 

malware samples. These selected prototypes are then clustered 

using hierarchical clustering and finally, un-clustered malware 

samples are assigned to the closest prototype (refer to the original 

paper [6] for actual implementation).  Since our focus, in this 

paper, is not on scalable clustering algorithms, we adopt the 

prototype based clustering technique to evaluate the performance 

and applicability of our behavior modeling approach to real-world 

malware clustering problems. It is also noted that we use F-

Measure, introduced by Van Rijsbergen [10], to evaluate the 

clustering accuracy. 

4. PRELIMINARY EXPERIMENTAL 

RESULTS 
In this section, we discuss our preliminary experimental results to 

evaluate the accuracy and scalability of our coarse-grained 

malware behavior modeling approach. The experiment was 

carried out on a dataset provided by Bayer et al. [5]. Initially we 

had 2658 malware behavioral reports out of which 6 reports were 

discarded due to problems in file parsing. Hence, we carried out 

the experiment using 2652 malware samples. Based on these 2652 

samples, we compare our clustering accuracy against a state-of-

the-art malware clustering technique proposed by Bayer et al. [5] 

and the results obtained by Malheur [6]. Malheur is a tool 

developed by Rieck et al. [6] to automatically analyze the 

malware behavior. It is also noted that we use Malheur in “text” 

mode, where it supports both “text” for textual and XML reports, 

and “MIST” for reports using malware instruction set (refer to [6] 

for more details). 

Bailey et al. [7] pointed out that malware labels given by anti-

virus products suffer from inconsistency and their labels are 

frequently incorrect. Thus, we have decided to evaluate the 

clustering accuracy using malware labels given by five different 

anti-virus products. This enables us to evaluate the robustness of 

our malware clustering technique across five different 

benchmarks and therefore reduces the biasness.  The anti-virus 

products include F-Secure, Ikarus, Symantec, Kaspersky and 

VirusBuster and the corresponding malware labels are obtained 

from Virustotal tool [3]. In this experiment, we only use malware 

family name and the variant name is ignored. For example, we 

group both Worm.Allaple.A and Worm.Allaple.B together and call 

it Allapale malware family.  

The experiment results are shown in Table 1. In terms of 

clustering accuracy, from the experiment results it can be seen 

that our approach clearly outperformed Bayer et al. and Malheur. 

Using Bayer’s results as base we measured the average 

improvement to clustering accuracy. Our approach improved the 

clustering accuracy by 6.20% whereas Malheur improved it by 

only 1.90%.It is also evident that our approach consistently 

performed well against all five benchmarks. 

In terms of scalability, we analyzed the relationship between 

malware feature space and the number of samples under 

examination. We compared the number of features generated by 

our approach against Bayer et al. and Malheur. Table 2 shows the 

relationship between feature space and number of malware 

samples. From Table 2, it is evident that number of features 

generated by Bayer et al. and Malheur grow in proportion with the 

number of malware samples under examination. Whereas, in our 

approach the growth rate of malware feature space is insignificant 

and only 56 features were analyzed. Hence, the experiment result 

shows that our method reduces the malware feature space by 

16,160/56 = 289 and 5,171,871/56 = 92,355 times comparing with 

Bayer et al. and Malheur methods respectively. 

<C:\a.txt: {file_created, file_modified, file_read}>  

<C:\b.txt: {file_read, file_deleted}>  

<C:\c.txt: {file_read, file_deleted}> 

<file_activities> 

<file_created      name = “C:\a.txt”/> 

<file_read      name = “C:\a.txt”/> 

<file_read      name = “C:\b.txt”/> 

<file_read      name = “C:\c.txt”/> 

<file_modified     name = "C:\a.txt”/> 

<file_deleted       name = "C:\b.txt”/> 

<file_deleted       name = "C:\c.txt”/> 

</file_activities> 

{file_created, file_modified, file_read}, 

{file_read, file_deleted} 

 

File feature = 
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Table 1: Preliminary experiment results 

Anti-Virus Vendors 
F-Measure Using Bayer’s results as  base 

Bayer et al. Malheur Ours Improvement by Malheur Improvement by our approach 

F-Secure 0.870 0.891 0.923 2.41 % 6.09 % 

Ikarus 0.882 0.894 0.948 1.36 % 7.48 % 

Symantec 0.874 0.889 0.916 1.72 % 4.81 % 

Kaspersky 0.876 0.893 0.930 1.94 % 6.16 % 

VirusBuster 0.870 0.888 0.926 2.07 % 6.44 % 

In this experiment, our approach has an upper bound of 140 

features. It is also noted that there is no strict upper bound for 

malware feature space as it can vary based on the types of 

sensitive system resources and the corresponding security-critical 

actions considered. Though we have not verified extensively, our 

initial experiment shows that our approach has the advantage of 

predetermining the feature space before clustering process in such 

a way that it doesn’t grow in proportion with number of malwares.  

Table 2: Relationship between malware sample size and 

feature space  

Number of 

malware 

samples 

Feature space 

Bayer et al. Malheur Ours 

500 6,380 18,059 42 

1000 9,007 623,300 47 

1500 11,349 1,561,985 51 

2000 12,797 2,594,645 52 

2652 16,160 5,171,871 56 

5. RELATED WORK 
Apart from scalability of malware feature space, which is 

common to all, there are several other issues in the existing 

malware clustering techniques. Lee et al. [8] proposed a behavior-

based malware classification tool that compares the sequence of 

system calls to determine the similarity between two executables.  

The fine-grained approach makes it difficult to abstract the 

underlying malicious behavior. Hence, restricts it applicability. 

Bailey et al. [7] modeled the malware behavior as non-transient 

state changes. Though, state changes are a higher level abstraction 

than single system calls, this approach fails to identify the 

relationship between two states. Bayer et al. [5] models the 

runtime behavior of a malware using OS objects and operations in 

a fine-grained manner. The system and malware-specific details 

such as file names, registry values, IP addresses and other 

parameters of system operations, introduce unnecessary features 

and increase the amount of noise in the malware features space. 

Rieck et al. [6] proposed Malheur that models the system call 

sequences using n-grams. The malware feature space generated by 

Malheur is very huge and n-gram analysis is not obfuscation-

resilient.   

6. CONCLUSION AND FUTURE WORK 
In this paper, we have introduced a novel coarse-grained malware 

behavior modeling technique that addresses the scalability 

problem in malware clustering.  Our approach finds an upper 

bound for malware feature space and reduces the amount of noise 

in the extracted features. Furthermore, preliminary experiment 

result shows that our approach improves the clustering accuracy 

by 6.20% while reducing the feature space by 289 times against a 

state-of-the-art malware clustering technique.  

In the future, we have planned to extend this experiment to larger 

dataset and evaluate the scalability of our behavior modeling 

technique in terms of time and space requirements. As malware 

may evolve their behavior from time to time, there could be a 

need to extend the proposed behavioral framework to cover more 

system resources and actions to address the evolution of malware 

behavior. We would like to conduct extensive experiments to 

statistically verify the growth of malware feature space in terms of 

number of malware samples examined. Last but not least, we 

would like to seek feedbacks from peers on the practicality of the 

proposed approach for malware clustering and the possible ways 

to improve it further. 
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