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Real-Time Influence Maximization
on Dynamic Social Streams

Yanhao Wang, Qi Fan, Yuchen Li, Kian-Lee Tan
School of Computing, National University of Singapore, Singapore

{yanhao90, fanqi, liyuchen, tankl}@comp.nus.edu.sg

ABSTRACT
Influence maximization (IM), which selects a set of k users
(called seeds) to maximize the influence spread over a social
network, is a fundamental problem in a wide range of ap-
plications such as viral marketing and network monitoring.
Existing IM solutions fail to consider the highly dynamic
nature of social influence, which results in either poor seed
qualities or long processing time when the network evolves.
To address this problem, we define a novel IM query named
Stream Influence Maximization (SIM) on social streams.
Technically, SIM adopts the sliding window model and main-
tains a set of k seeds with the largest influence value over the
most recent social actions. Next, we propose the Influential
Checkpoints (IC) framework to facilitate continuous SIM
query processing. The IC framework creates a checkpoint
for each window shift and ensures an ε-approximate solu-
tion. To improve its efficiency, we further devise a Sparse
Influential Checkpoints (SIC) framework which selectively
keeps O( logN

β
) checkpoints for a sliding window of size N

and maintains an ε(1−β)
2

-approximate solution. Experimen-
tal results on both real-world and synthetic datasets confirm
the effectiveness and efficiency of our proposed frameworks
against the state-of-the-art IM approaches.

1. INTRODUCTION
Social media advertising has become an indispensable tool

for many companies to promote their business online. Such
trends have generated 26.89 billion dollars advertising rev-
enue for Facebook in 20161. Influence Maximization (IM) is
a key algorithmic problem behind social media viral market-
ing [13,18]. Through the word-of-mouth propagation among
friends, IM aims to select a set of k users such that the source
information (e.g., advertisement) is maximally spread in the
network, and it has been extensively researched [2, 7, 10,11,
16–18, 22, 24–26, 29, 30, 35–38] in the last decade. Besides
viral marketing, IM is also the cornerstone in many other

1https://investor.fb.com/financials/default.aspx
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important applications such as network monitoring [21] and
recommendation [33].

Most existing IM solutions rely on influence probabilities
between users to acquire the seeds. The influence probabil-
ities are usually derived from social actions in online social
networks [15,20], e.g., “retweets” on Twitter. In reality, so-
cial influences are highly dynamic and the propagation ten-
dencies between users can be altered drastically by breaking
news and trending topics. Consequently, the seeds selected
by IM methods [7, 18, 29, 35, 36] that assume static social
influences can quickly become outdated. Recently, there are
some research efforts on IM under dynamic social influences.
However, existing solutions for dynamic IM either cannot of-
fer theoretical guarantees for the qualities of selected seeds
(e.g., [2, 38]) or provide guarantees at the expense of high
processing overhead for updates (e.g., [11, 30]). In fact, the
state-of-the-art dynamic IM solution [30] can only process
several hundred updates per second, which is far lower than
the update rates of real-world social networks, e.g., about
7,500 tweets are generated on Twitter per second2.

To resolve the aforementioned drawbacks and make dy-
namic IM both effective and efficient, we propose a novel
Stream Influence Maximization (SIM) query to track influ-
ential users in real-time. SIM utilizes the widely available
social actions to estimate the social influences and main-
tain the seed set continuously. To capture the short-term
memory effect of social influences [32], where past influ-
ences quickly fade as new influences emerge, SIM adopts
the sliding window model [12] which always considers the
most recent N actions and strives to find k users who col-
lectively have the largest influence value in the current win-
dow. In addition, SIM supports general monotone submod-
ular functions to compute the influence values as such func-
tions are often used to represent the “diminishing returns”
property of social influences in different types of IM prob-
lems [5, 10,16,18,22,24,37].

Due to the NP-hardness of SIM, we focus on processing
it approximately with theoretical bounds. Leveraging the
monotonicity and submodularity of influence functions, a
näıve greedy algorithm [28] can provide a (1 − 1/e) appro-
ximate solution for SIM. However, the greedy algorithm re-
quires O(k · |U |) (|U | is the number of users in the network)
influence function evaluations for each update. Empirically,
it takes around 10 seconds to select 100 seeds from a net-
work with 500, 000 users, which hardly matches the rates of
real-world social streams. Another closely related technique
to SIM is Streaming Submodular Optimization (SSO) [4,19].

2http://www.internetlivestats.com/one-second/
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Existing SSO approaches [4, 19] can provide solutions with
theoretical guarantees for maximizing submodular functions
with cardinality constraints over append-only streams. How-
ever, to the best of our knowledge, none of the proposed SSO
algorithms can support the sliding window model.

In this paper, we propose a novel Influential Checkpoints
(IC) framework to support efficient SIM query processing
with theoretical bounds. IC not only tracks the solution
for the current window but also maintains partial solutions
called Checkpoints for future windows that overlap with the
current window. Therefore, for every subsequent window
shift, the up-to-date solution can be retrieved efficiently. We
further design a generic Set-Stream Mapping (SSM) inter-
face which can adapt many existing SSO algorithms to SIM
so that the solution retrieved for each window has at least
the same approximation ratio as those algorithms. However,
maintaining all O(N) checkpoints incurs significant update
overhead (N is the number of actions in a window). To
support efficient IC maintenance, we propose a Sparse In-
fluential Checkpoints (SIC) framework to selectively main-
tain a subset of checkpoints by leveraging the monotonicity
and subadditivity of the influence values returned by dif-
ferent checkpoints. Consequently, SIC only keeps O( logN

β
)

checkpoints and maintains an ε(1−β)
2

-approximate solution.
We hereby summarize our contributions as follows.
• We address the limitations of existing IM solutions in

supporting fast evolving social networks and propose
a novel SIM query over sliding windows. (Section 3)
• We develop a novel Influential Checkpoints (IC) frame-

work for SIM query processing. It is integrated with a
generic Set-Stream Mapping (SSM) interface to incor-
porate existing ε-approximate SSO algorithms while
retaining their approximation ratios. (Section 4)
• We further propose the SIC framework to selectively

maintain O( logN
β

) checkpoints for a sliding window of
size N . Leveraging the subadditivity and submodular-
ity of the influence values returned by different check-

points, an ε(1−β)
2

-approximation ratio is always guar-
anteed. (Section 5)
• We experimentally evaluate the effectiveness and effi-

ciency of our proposed frameworks. First, the qualities
of the seeds selected by IC and SIC are competitive
with the state-of-the-art IM algorithms in both static
and dynamic settings. Second, SIC achieves speed-
ups of up to 2 orders of magnitude over the static ap-
proaches. Third, SIC achieves up to 8 times speedups
over IC with less than 5% quality losses. (Section 6)

2. RELATED WORK
We summarize the most relevant literature from three ar-

eas: influence maximization, streaming submodular opti-
mization and function estimation on sliding windows.

2.1 Influence Maximization (IM)
IM aims to extract a given number of users that maximize

the influence spread over a network. Previous efforts on
IM can be generally categorized into static methods and
dynamic methods based on their abilities to handle changes
in social influences. Here, we summarize them separately.
IM in Static Networks: There has been a vast amount of
literature on influence maximization (IM) in static networks
over the last decade (see [7,10,18,22,24,26,29,35–37]). The

state-of-the-art static IM method on the classic influence
models (i.e., independent cascade (IC) and linear threshold
(LT)) is IMM [35]. It runs in nearly linear time wrt. the
graph size with a (1 − 1/e − ε) approximation guarantee.
Nevertheless, static IM methods including IMM cannot ef-
ficiently support highly evolving networks since a complete
rerun is required for every update on influence graphs.

There are also many static methods considering different
types of IM problems by extending classic influence models.
For example, topic-aware IM [5, 10] considers the influence
diffusion under topic models; location-aware IM [22, 37] fo-
cuses on maximizing the influence spread in certain spatial
areas; and conformity-aware IM [24] considers users’ confor-
mity tendencies in the influence estimation.
IM in Dynamic Networks: Recently, there are emerg-
ing studies about IM in dynamic networks. However, most
of these methods cannot provide a theoretical guarantee
of their seed quality and may return arbitrarily bad solu-
tions [2, 38]. Chen et al. [11] proposed an Upper Bound
Interchange (UBI) method with a 1/2-approximation ratio.
Nevertheless, UBI is sensitive to the number of users se-
lected. When the size of the seed set increases, both its per-
formance and solution quality degrade dramatically. This
prevents UBI from being practically useful. Very recently,
a new dynamic IM method with a theoretical bound is pre-
sented in [30]. It dynamically maintains a RIS-based [7]
index against changes on graphs and achieves a (1−1/e−ε)
approximation ratio. However, due to the high maintenance
cost, it can only process several hundred of influence graph
updates per second, which cannot meet the requirement of
real-world social streams. Therefore, existing dynamic IM
methods cannot provide high-quality solutions efficiently.

2.2 Streaming Submodular Optimization
Another closely related field to SIM is the Streaming Sub-

modular Optimization (SSO) [3, 4, 19, 31]. SSO adopts the
append-only streaming model where elements arrive one by
one and the objective is to dynamically maintain a set of at
most k elements to maximize a submodular function wrt. all
the observed elements at any time. Saha et al. [31] and
Ausiello et al. [3] developed two approaches for a special
case of SSO (i.e., the online Maximum k-Coverage problem)
with the same 1/4 approximation ratio. The state-of-the-art
SSO solutions are SieveStreaming [4] and Threshold-
Stream [19], both of which achieve a (1/2 − β) approxi-
mation ratio. Unfortunately, SSO algorithms cannot be di-
rectly applied to the sliding window model because they do
not handle the continuous expiry of elements. Nevertheless,
we will show in Section 4.2 that existing SSO algorithms can
serve as checkpoint oracles in the IC and SIC frameworks.

2.3 Function Estimation on Sliding Windows
Several works [8,12] studied how to continuously estimate

a function in the sliding window model. They leverage spe-
cial properties of target functions to achieve sublinear per-
formance and reasonable quality. Let g be the target func-
tion, and A,B,C be three sequences on streams such that
B is a tail subsequence of A and C is contiguous to B.
The exponential histogram [12] is proposed to approximate
weakly additive functions, i.e., g(A) + g(C) ≤ g(A ∪ C) ≤
c(g(A) + g(C)) for some small constant c. The smooth
histogram [8] requires that the target functions are (α, β)-

smooth. Specifically, we say g is (α, β)-smooth if g(B)
g(A)

≥
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1 − β, then g(B∪C)
g(A∪C)

≥ 1 − α for some 0 < β ≤ α < 1.

Following the analysis in [8], smooth histograms are appli-
cable only when g can be computed with an approximation
ratio of at least 0.8 over append-only streams. In this pa-
per, we adopt monotone submodular influence functions [18]
widely used in the social influence analysis. However, such
functions are not weakly additive and existing SSO algo-
rithms [4, 19] cannot provide a more than 1/2 approximate
solution over append-only streams. This implies that both
techniques cannot be directly applied to our scenario.

3. PROBLEM STATEMENT
We consider a social stream over a social network with a

user set U . The social stream comprises unbounded time-
sequenced social actions which are generated by user activ-
ities. Let at = 〈u, at′〉t (t′ < t) be an action at time t
representing the following social activity: user u performs
at at time t responding to an earlier action at′ . Typical
actions include “retweet” on Twitter, “reply” on Reddit,
“comment” on Facebook, to name just a few. If an action
at does not respond to any previous action, e.g., a user u
posted an original tweet, we call it a root action and denote
it by at = 〈u, nil〉t.

Like many data streams, social streams are time-sensitive:
recent actions are more valuable than those in the past. We
adopt the well-recognized sequence-based sliding window [12]
model to capture such essence. Let N be the window size,
a sequence-based sliding window Wt maintains the latest N
actions till at in the stream, i.e., Wt = {at−N+1, . . . , at}.
For simplicity, we use Wt[i] to represent the i-th (i ≥ 1)
action within Wt. Then, we use At ⊆ U to denote the set
of active users who perform at least one action in Wt, i.e.,
At = {Wt[i].u|i = 1, . . . , N}.

Since social actions directly reflect the information diffu-
sion in the social network [15, 16, 20, 34], we define the in-
fluence between users according to their performed actions.
We say user u influences user v in Wt, denoted by (u; v)t,
if there exists an action a performed by user v s.t. a ∈ Wt

and a is directly or indirectly triggered by an action a′ of u.
It is notable that such an a′ is not necessarily in Wt.

We formally define the influence set of a user as follows:

Definition 1. The influence set of a user u ∈ U at time
t, denoted as It(u) ⊆ At, is the set of users who are in-
fluenced by u wrt. the sliding window at time t (i.e., Wt).
Equivalently, It(u) = {v|(u; v)t}.

Intuitively, the influence set of u denotes the set of users
who recently performed actions under the impact of u. The
concept of the influence set can be naturally extended to a
set of users. In particular, let S = {u1, . . . , uk} be a set of k
users, the influence set of S wrt. Wt is a union of the influ-
ence sets of all its members, i.e., It(S) = ∪u∈SIt(u). Then

the influence value of S is measured by f(It(S)) : 2|U| →
R≥0. We consider f(It(·)) as a nonnegative monotone3 sub-
modular4 function [28] which is widely adopted by many IM
problems for its natural representation of the “diminishing
returns” property on the social influence [18].

For ease of presentation, we only consider the cardinality
function, i.e., f(It(·)) = |It(·)|, as the influence function in

3A set function g is monotone if for all A ⊆ B, g(A) ≤ g(B).
4A set function g is submodular if for all A ⊆ B, and any
element x 6∈ B, g(A ∪ {x})− g(A) ≥ g(B ∪ {x})− g(B).

User I8(u)

u1 {u1,u2,u3}

u2 {u2}

u3 {u1,u3,u4,u5}

u4 {u4}

u5 {u4,u5}

u6

a1 <u1, nil>1

a2 <u2, a1>2

a3 <u3, nil>3

a4 <u3, a1>4

a5 <u4, a3>5

a6 <u1, a3>6

a7 <u5, a3>7

a8 <u4, a7>8

a9 <u2, nil>9

a10 <u6, a9>10

User I10(u)

u1 {u1,u3}

u2 {u2,u6}

u3 {u1,u3,u4,u5}

u4 {u4}

u5 {u4,u5}

u6 {u6}

(a) Social action stream (b) Influence sets at time 8 (c) Influence sets at time 10

(d) Diffusion

a10a9a3 a6

a5

a7 a8a4

a2

a1

Figure 1: A social action stream and the influences
of users over the sliding windows.

the remaining of this paper. It should be noted that any
other monotone submodular influence functions can also be
used in our frameworks.

Example 1 illustrates our definition of influence over the
sliding windows on a social action stream.

Example 1. Figure 1(a) gives an example of a social ac-
tion stream. Given the window sizeN = 8, two windows, W8

and W10, are highlighted in blue and red boxes respectively.
In Figure 1(b), I8(u1) = {u1, u2, u3} as a1,a6 are performed
by u1 and a2,a4 performed by u2,u3 respectively are trig-
gered by a1 in W8. When the window shifts from W8 to W10,
a1,a2 expire while a9,a10 arrive. Then, I10(u1) = {u1, u3}
as Figure 1(c). Due to the expiry of a2, u2 is deleted from
I10(u1). However, since a4 has not expired yet, u1 still in-
fluences u3 in W10 regardless of the expiry of a1.

As new actions arrive at high speed while old ones expire
at the same rate, users with the largest influence values keep
evolving. To track the influential users over social streams
in real-time, we propose a Stream Influence Maximization
(SIM) query which is formally defined as follows:

Definition 2. Let Wt be the sliding window at time t,
Stream Influence Maximization (SIM) is a continuous query
on a social stream that returns a set of at most k users Soptt

who collectively achieve the largest influence value wrt. Wt:

Soptt = argmaxS∈U∧|S|≤k f(It(S)) (1)

We continue with the running example in Figure 1 to show
how SIM keeps track of the most influential users over the
sliding windows.

Example 2. Given k = 2, SIM returns Sopt8 = {u1, u3} as
the most influential users at time 8 since I8(Sopt8 ) = I8(u1)∪
I8(u3) contains all users in A8. We have f(I8(Sopt8 )) = 5
using the cardinality function. However, as a1,a2 expire
while a9,a10 arrive at time 10, f(I10(Sopt8 )) = 4 as u2 is
deleted from I10(Sopt8 ). Thus, SIM returns Sopt10 = {u2, u3}
in W10 because I10(Sopt10 ) contains all users in A10. We have
f(I10(Sopt10 )) = 6 accordingly.

Note that the solutions proposed in this paper also sup-
port the case where the sliding window shifts for more than
one action. For simplicity, we focus on presenting solutions
for handling sliding windows with a single action shift at a
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Table 1: Frequently used notations
Symbol Definition and Description
U the set of all users in a social network
at = 〈u, at′ 〉t a user u performs an action at time t trig-

gered by an action at′ (t
′ < t)

N the size of the sliding window
L the number of actions for each window shift,

L = 1 by default
Wt,Wt[i] the sliding window at time t, and the i-th

action in the window
It(u), It(S) the influence set of a user u or a set of users

S wrt. Wt

It[i](u), It[i](S) the influence set of u or S for contiguous
actions {Wt[i], . . . ,Wt[N ]}

f a monotone submodular influence function
k the cardinality constraint of SIM
Λt[i] an influential checkpoint maintaining an ε-

approximate solution of SIM for {Wt[i], . . . ,
Wt[N ]}

Soptt ,OPTt the optimal seed set of SIM wrt. Wt, and

its influence value OPTt = f(It(S
opt
t ))

Soptt [i],OPTt[i] the optimal seed set of SIM for {Wt[i], . . . ,
Wt[N ]}, and its influence value

time and leave the discussion on handling multiple action
shifts at a time to Section 5.3.

It can be shown that SIM is NP-hard by reducing a well-
known NP-hard problem, i.e., Maximum k-Coverage [3, 14,
31], to SIM in polynomial time. (see the proof of Theorem
1 in [1] for details).

Before moving on to the technical parts of this paper, we
summarize the frequently used notations in Table 1.

4. INFLUENTIAL CHECKPOINTS
Since SIM is NP-hard, it is infeasible to maintain the op-

timal seed set for each sliding window in polynomial time.
Therefore, our goal is to maintain an approximate solution
achieving a bounded ratio to the optimal one efficiently. A
näıve scheme is to run the greedy algorithm [28] for each win-
dow shift. The greedy algorithm starts with an empty user
set S0 = ∅, and at each iteration i (1 ≤ i ≤ k), it incremen-
tally adds a user u to the partial user set Si−1 maximizing
f(It(Si−1 ∪ {u})) − f(It(Si−1)). Although it guarantees a
(1 − 1/e) approximate solution, which is the best possible
approximation ratio for submodular maximization with car-
dinality constraints [28], O(k · |U |) influence function evalua-
tions are needed for each update. Such an inefficient update
scheme makes the greedy algorithm unable to handle a large
window size with new actions arriving at high speed.

A key challenge for efficiently supporting SIM over sliding
windows is to handle the expiry of old actions and the arrival
of new actions simultaneously. Such a compound update
pattern brings about fluctuations on users’ influence sets
which potentially degrade the quality of previously main-
tained seeds. In the remaining of this section, we present
a novel Influential Checkpoints (IC) framework, which con-
sists of a sequence of checkpoint oracles to efficiently handle
the expiry and the arrival of actions simultaneously. We
first give an overview of the IC framework in Section 4.1.
Then, we describe how to construct a checkpoint oracle in
Section 4.2. Finally, we take SieveStreaming [4] as an
example to illustrate the Set-Stream Mapping interface in
Section 4.3.

4.1 The Influential Checkpoints Framework
The high level idea of the IC framework is to avoid han-

dling the expiry of old actions when the window shifts. To-
wards this goal, the framework maintains a partial result
(i.e., an influential checkpoint) incrementally for each win-
dow shift. When an old action expires, the outdated result
is simply deleted. In this way, the sliding window model is
transformed to a simpler append-only model for each check-
point, where many existing approaches [4, 19] can provide
theoretically bounded approximate solutions.

Technically, let an influential checkpoint Λt[i] (1 ≤ i ≤ N)
denote a checkpoint oracle5 which provides an ε-approximate
solution for SIM over contiguous actions {Wt[i], . . . ,Wt[N ]}.
By maintaining N checkpoints (i.e., Λt[1], . . . ,Λt[N ]), a sim-
ple procedure to handle a window shift from Wt−1 to Wt is
presented in Algorithm 1. Whenever a new action at arrives,
the oldest checkpoint in Wt−1 (i.e., Λt−1[1]) expires and a
new checkpoint Λt[N ] is added to Wt (Line 2). After adding
the remaining checkpoints in Wt−1 to Wt (Lines 3-4), each
checkpoint in Wt processes at as an appending action to
update its partial solution (Lines 5-6). To answer the SIM
query for Wt, we simply return the solution of Λt[1].

Algorithm 1 IC Maintenance

Require: IC:{Λt−1[1], . . . ,Λt−1[N ]}
1: — on receiving action at —
2: Delete Λt−1[1], create Λt[N ];
3: for all Λt−1[i] do
4: Λt[i− 1]← Λt−1[i];
5: for all Λt[i] do
6: Λt[i].process(at);
7: — on query —
8: return the solution of Λt[1];

It is not hard to see that once each checkpoint oracle main-
tains an ε-approximate solution for its append-only action
stream, IC always returns the solution with the same appro-
ximation ratio.

Example 3. Figure 2 illustrates the maintenance of check-
points in the IC framework following Example 1. Let N = 8
and k = 2. The number of checkpoints always equals to
the window size (i.e., 8). When action a10 arrives, a2 will
expire. Consequently, the checkpoint Λ10[8] is created and
Λ9[1] is deleted. When the SIM query is issued at time 10,
the solution of Λ10[1] (i.e.,{u2, u3}) is returned.

4.2 Checkpoint Oracle
The approximation ratio of IC relies on the checkpoint

oracle providing an ε-approximate solution over an append-
only action stream. Although submodular maximization in
an append-only stream has attracted many research inter-
ests [3,4,19,31], they focused on a different set-stream model
where elements in the stream are sets instead of actions. In
general, an algorithm A on an append-only set-stream con-
tains two components: f ′(·) is a monotone submodular ob-
jective function and CXt is a candidate solution containing
no more than k sets from t observed sets (i.e., X1, . . . , Xt).
Given a stream of sets {X1, X2, . . . , Xm}, the objective of
A is to maximize f ′(CXt) at any time t (1 ≤ t ≤ m). Al-
though this problem resembles our problem, the set-stream

5We overload the notation Λt[i] to denote the influence value
returned by the oracle when it is clear in the context.
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a1 a2 a3 a4 a5 a6 a7 a8
8[1]=5 8[2]=5 8[3]=4 8[4]=4 8[5]=3 8[6]=3 8[7]=2 8[8]=1

a1 a2 a3 a4 a5 a6 a7 a8 a9
9[1]=5 9[2]=5 9[3]=5 9[4]=4 9[5]=4 9[6]=3 9[7]=2 9[8]=1

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
10[1]=6 10[2]=6 10[3]=5 10[4]=5 10[5]=4 10[6]=3 10[7]=2 10[8]=1

Checkpoints Seed users

8[1] u1,u3

8[2] u1,u3

8[3] u3

…… ……

8[8] u3

Checkpoints Seed users

10[1] u2,u3

10[2] u2,u3

10[3] u2,u3

…….. ……

10[8] u2

……

Figure 2: An example of checkpoint maintenance in IC.

model cannot directly fit in our scenario due to the follow-
ing mismatch: it strives to keep k sets from a stream of sets
but all observed sets are immutable. However, SIM aims to
maintain k users from a sequence of actions and each arrival
action may induce updates in existing users’ influence sets.

To bridge the gap between the two stream models and
leverage existing algorithms based on the set-stream model,
we propose a generic Set-Stream Mapping (SSM) interface.
The interface makes two adaptations for a set-stream algo-
rithm to serve as the checkpoint oracle. First, the candi-
date solution CX is adapted to store k users. Second, the
objective function f ′ is adapted to the influence function
f(It[i](·)), where It[i] denotes the influence set of user(s)
over contiguous actions {Wt[i], . . . ,Wt[N ]}. Subsequently,
SSM maps an action stream to a set-stream and feeds the
set-stream to Λt[i]. Whenever a new action at arrives, the
following steps are taken for each Λt[i]:
(1) Identify users u1, u2, . . . , ud whose It[i](·) is updated.
(2) Feed Λt[i] with a stream S′t = {It[i](u1), . . . , It[i](ud)}.
(3) Update the solution of Λt[i] for each It[i](u) ∈ S′t.

There are several choices of oracles that are developed for
the set-stream model with differences on the solution quality,
update performance, and function generality. Typical ora-
cles are listed in Table 2. An important conclusion is that
our SSM procedure does not affect the quality guarantee of
the mapped algorithms. Formally:

Theorem 1. Let A be an ε-approximate SSO algorithm
in the set-stream model and A be the mapped algorithm of
A using SSM. Then, A is also ε-approximate for SIM.

Proof. To show A is also ε-approximate, we consider an
append-only set-stream generated by SSM over the action
stream. At any time t, let OPTt be the optimal influence
value of SIM wrt. Wt, and OPT∗t be the optimal influence
value achieved by any set of at most k sets from the mapped
set-stream. We treat all influence sets in the mapped stream
as independent sets regardless of whether they belong to
the same user. We run A on the mapped set-stream till
time t and produce a result with at most k sets: CXt =
{Ita(uta), . . . , Itb(utb)}. Note that the influential sets in
CXt may be outdated and refer to the same user. Neverthe-
less, we can still use CXt to approximate OPTt without af-
fecting the approximation ratio. To obtain the seed set from
CXt, we select a set of distinct users Ut from CXt. Since the
influence function f is monotone and the up-to-date influ-
ence set of any user always grows larger in the append-only
stream, we have f(It(Ut)) ≥ f(∪X∈CXtX). Moreover, CXt
is an ε-approximate solution over the append-only stream,
i.e., f(∪X∈CXtX) ≥ εOPT∗t . As the up-to-date influence
sets always appear in the append-only set-stream, we have
OPT∗t ≥ OPTt, and thus f(It(Ut)) ≥ εOPTt. Therefore, Ut
is an ε-approximate solution for SIM wrt. Wt.

Table 2: Candidate checkpoint oracles
Oracle Quality Update Function

SieveStreaming [4] 1/2 − β O( log k
β ) General

ThresholdStream [19] 1/2 − β O( log k
β ) General

Blog Watch [31] 1/4 O(k) Cardinality
MkC [3] 1/4 O(k log k) Cardinality

According to the SSM steps, an action at is mapped to
at most d influence sets, where d is the number of ancestors
of at in its propagation. In practice, d is usually small, e.g.,
d is less than 5 on average as shown in our experiments
(see Table 3). Since the number of checkpoints in the IC
framework is N , the total number of checkpoint evaluations
is O(dN). If the update complexity of the checkpoint oracle
for each set is O(g), the total time complexity of the IC
framework for each action is O(dgN).

In the remaining of this section, we conduct a case study
on using SieveStreaming [4] as the checkpoint oracle. The
adoption of other oracles can be similarly inferred.

4.3 A Case Study on SieveStreaming
The SieveStreaming Algorithm: SieveStreaming [4]
works as follows: Given a monotone submodular function
f ′ and the optimal value OPT′ of f ′ over the entire stream
under a cardinality constraint, SieveStreaming maintains
a candidate solution CX that includes an incoming set Xt
if CX has less than k sets and the following holds:

f ′(CX ∪ {Xt})− f ′(CX) ≥
OPT′

2
− f ′(CX)

k − |CX|

However, since OPT′ is unknown in advance, SieveStream-
ing maintains a sequence of possible values for OPT′, i.e.,
Ω = {(1 + β)j |j ∈ Z,m ≤ (1 + β)j ≤ 2 · k · m} where
m = maxX f({X}) that has been observed. Accordingly,
SieveStreaming keeps |Ω| = O( log k

β
) instances to ensure

at least one of them achieves a (1/2−β) approximation ratio
(see [4] for details).
Set-Stream Mapping for SieveStreaming: Following
SSM, we create Λt[i] as follows: Let CXi be the user set
maintained by Λt[i]. For each user u with her updated in-
fluence set It[i](u), Λt[i] selects u to CXi if |CXi| < k and:

f(It[i](CXi∪{u}))−f(It[i](CXi)) ≥
OPTt[i]

2
− f(It[i](CXi))

k − |CXi|

where OPTt[i] is the optimal influence value achievable on
all actions from Wt[i] to Wt[N ]. Similar to SieveStream-
ing, each Λt[i] keeps a set of possible values for OPTt[i],
i.e., Ωt[i] = {(1 + β)j |j ∈ Z,m ≤ (1 + β)j ≤ 2 · k · m}
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Checkpoint ID 1

Seed Users u1,u3

Influence Value f=5

Max Cardinality 4

j Contents

6 OPT=1.36, seeds={u1,u3}, f=5

7 OPT=1.37, seeds={u1,u3}, f=5

8 OPT=1.38, seeds={u1,u3}, f=5

9 OPT=1.39, seeds={u1,u3}, f=5

10 OPT=1.310, seeds={u3}, f=4

(b) SieveStreaming Instances(a) Meta Information

Figure 3: Contents of Checkpoint Λ8[1].

where m denotes the maximum influence value of a sin-
gle influence set over the actions {Wt[i], . . . ,Wt[N ]}, i.e.,
m = maxu∈U f(It[i](u)). And |Ωt[i]| = O( log k

β
) correspond-

ing instances are maintained. To answer the SIM query, we
always maintain the candidate user set achieving the largest
influence value within the checkpoint. Figure 3 illustrates
the content of a checkpoint when SieveStreaming is used
as the checkpoint oracle.

Example 4. Figure 3 illustrates the contents of Λ8[1] in
Example 3. Λ8[1] consists of the meta information and a
sequence of SieveStreaming instances. In the meta infor-
mation, the Checkpoint ID indicates the relative position of
this checkpoint in the current window. The Seed Users and
the Influence Value are maintained for query processing and
checkpoint maintenance (as shown in Figure 3). The Max
Cardinality is the maximum cardinality of a single user’s
influence set, i.e., |I8(u3)| = 4 for Λ8[1]. Suppose β = 0.3,
5 candidates with j = 6, . . . , 10 are maintained for Λ8[1]
(4 < 1.36 < . . . < 1.310 < 16). Each instance is maintained
independently over the mapped set-stream and the instance
with the largest influence value is used as the candidate so-
lution (i.e., Instance with j = 6 highlighted in Figure 3).

Combining the results of Table 2 with Theorem 1, we
can see that at least one user set maintained by Λt[1] guar-
antees a (1/2 − β)-approximate solution for SIM wrt. Wt

when SieveStreaming is used as the checkpoint oracle.
In addition, the time complexity of IC for each update is
O( dN log k

β
), since the update complexity of SieveStream-

ing is O( log k
β

).

5. SPARSE INFLUENTIAL CHECKPOINTS
In the IC framework, N checkpoints should be maintained

to guarantee an ε-approximation ratio. This implies that
O(dN) checkpoint oracle updates need to be performed for
each arrival action. However, real world applications often
require millions of actions in one window. Therefore, it in-
curs prohibitive cost to maintain all checkpoints in practice.

To reduce the number of checkpoints maintained and thus
improve the update efficiency, we design a Sparse Influential
Checkpoints (SIC) framework to selectively maintain a sub-
set of checkpoints without losing too much solution accuracy
as the window shifts. Specifically, the number of checkpoints
maintained by SIC is logarithmic with the window size N

while its approximation ratio remains ε(1−β)
2

for any β > 0
if the checkpoint oracle is ε-approximate.

In this section, we first present the SIC framework and
demonstrate its checkpoint maintenance in Section 5.1. In
Section 5.2, we analyze the theoretical soundness and the
complexity of SIC. Finally, we discuss how to generalize IC
and SIC to handle multiple window shifts in Section 5.3.

5.1 The SIC Framework
The idea of SIC is to leverage a subset of checkpoints to

approximate the rest. On the one hand, to reduce the up-
date cost, the number of checkpoints maintained should be
as small as possible; on the other hand, the approximation
ratio should remain tight. To achieve both goals, we propose
a strategy to safely remove some checkpoints in the current
window while ensuring the remaining checkpoints are able
to approximate any windows with a bounded ratio.

We consider a sequence of checkpoints {Λt[x0],Λt[x1], . . . ,
Λt[xs]} maintained by SIC at time t. Intuitively, given any
three consecutive checkpoints Λt[xi−1], Λt[xi], Λt[xi+1] kept
by SIC and a parameter β ∈ (0, 1), as long as (1−β)Λt[xi−1]
is less than Λt[xi] and Λt[xi+1], we can safely delete Λt[xi]
as Λt[xi+1] is at least (1−β)-approximate to Λt[xi]. Given a
checkpoint oracle with an ε-approximation for SIM, it is not
hard to identify that using Λt[xi+1] for OPTt[xi] offers an
ε(1−β) approximate solution. Although such a maintenance
strategy is simple, we need to ensure that the approximation
ratio does not degrade seriously over time, i.e., the ratio

should be at least ε(1−β)
2

at any time t′ > t. We leave
this rather complex analysis to Section 5.2 and focus on
describing the maintenance procedure in the remaining of
this subsection for ease of presentation.

Algorithm 2 SIC Maintenance

Require: SIC:{Λt−1[x0],Λt−1[x1], ...,Λt−1[xs]}
1: — on receiving action at —
2: Create Λt[xs+1] where xs+1 = N ;
3: for all Λt−1[xi] do
4: Λt[xi]← Λt−1[xi], xi ← xi − 1;
5: for all Λt[xi] do
6: Λt[xi].process(at);
7: for all xi do
8: Λ− ← ∅;
9: for all xj > xi do

10: if xj+1 ≤ xs and Λt[xj ] ≥ (1−β)Λt[xi] and Λt[xj+1] ≥
(1− β)Λt[xi] then

11: Λ− ← Λ− ∪ {Λt[xj ]};
12: else
13: break;
14: Delete all checkpoints in Λ− from SIC;
15: Shift the remaining checkpoints accordingly;
16: if x1 = 0 then
17: Delete Λt[x0] and shift the remaining checkpoints;
18: — on query —
19: return the solution of Λt[x1];

Algorithm 2 presents how to efficiently maintain the check-
points over sliding windows in the SIC framework. Similar
to the maintenance of IC, upon receiving a new action at,
we create a new checkpoint for at (Line 2), add all check-
points in Wt−1 to Wt, and use at to update all checkpoints
in Wt (Lines 3-6). Then the efficient deletion of checkpoints
are presented in Lines 7-15. For each checkpoint Λt[xi], we
find the first xj (j ≥ i) such that Λt[xj ] ≥ (1−β)Λt[xi] and
Λt[xj+1] < (1 − β)Λt[xi]. Then, all checkpoints between xi
and xj are deleted and will be approximated by Λt[xj ] in
the subsequent window shifts. Finally, if the second check-
point (i.e., Λt[x1]) has expired, the earliest checkpoint (i.e.,
Λt[x0]) will be deleted (Lines 16-17). It is notable that an
additional checkpoint (Λt[x0]) is stored in SIC to keep track
of the solution over a window with size larger than N . Since
Λt[x0] approximates the upper bound of the optimal solu-
tion for the current window and Algorithm 2 always main-
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a1 a2 a3 a4 a5 a6 a7 a8
8[1]=5 8[4]=4 8[5]=3 8[6]=3 8[7]=2 8[8]=1

a1 a2 a3 a4 a5 a6 a7 a8 a9
9[0]=5 9[3]=5 9[5]=4 9[6]=3 9[7]=2 9[8]=1

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
10[0]=6 10[4]=5 10[5]=4 10[6]=3 10[7]=2 10[8]=1

Checkpoints Seed users

8[x1=1] u1,u3

8[x2=4] u3

8[x3=6] u3

…… ……

8[x5=8] u3

Checkpoints Seed users

10[x0=0] u2,u3

10[x1=4] u2,u3

10[x2=5] u2,u3

…… ……

10[x5=8] u2

……

Figure 4: An example of checkpoint maintenance in SIC.

tains a bounded ratio between two neighboring checkpoints,
a bounded approximation ratio is guaranteed by using Λt[x1]
as the solution for the current window. Figure 4 and Exam-
ple 5 provide the running example of the SIC maintenance.

Example 5. Figure 4 illustrates the maintenance of check-
points in the SIC framework following Example 1. Let
N = 8, k = 2 and β = 0.3. There are initially 6 checkpoints
in SIC at time 8. According to Algorithm 2, Λ8[5] is deleted
from SIC since Λ8[6] = 3 > (1 − 0.3) × 3 = (1 − β)Λ8[4].
At time 8, Λ8[1] will be used to answer the SIM query. As
the window shifts at time 9 with the arrival of a9, a1 and
Λ8[1] (which later becomes Λ9[0]) expire. But Λ9[0] is stored
because Λ9[3] has not expired yet. Then all checkpoints will
be updated according to a9. After the update procedure, we
find Λ9[3] can be deleted since Λ9[5] > (1−β)Λ9[0]. Finally,
all checkpoints are updated according to a10 at time 10 and
no checkpoint is to be deleted. Λ10[4] will be used to answer
the SIM query at time 10.

In the following, we will demonstrate the theoretical soun-
dness of SIC and also analyze the complexity of SIC.

5.2 Theoretical Analysis
To establish our theoretical claims for SIC, we first analyze

the property of the optimal checkpoint oracle which always
returns the optimal solution for SIM over an append-only
action stream. There are two important properties of the
optimal checkpoint oracle.

Definition 3 (Monotonicity & Subadditivity).
Let ta ≤ tb be two timestamps and W ta

tb
represents a window

containing a set of contiguous actions: ata , ..., atb with the
corresponding checkpoint denoted as Λtatb . Given any t1, t2, t3

s.t. t1 ≤ t2 ≤ t3, the checkpoint is monotone if Λt1t3 ≥ Λt1t2 .

Moreover, the checkpoint is subadditive if Λt1t3 ≤ Λt1t2 + Λt2t3 .

Lemma 1. Let ta ≤ tb be two timestamps and OPTtatb de-
note the optimal oracle (as well as the optimal value) for
W ta
tb

. The optimal oracle is both monotone and subadditive.

The proof of Lemma 1 can be found in [1]. We omit it
here due to space limitations. We note that although the
optimal checkpoint oracle is both monotone and subaddi-
tive, it is intractable unless P = NP . In practice, we uti-
lize the approximate checkpoint oracles as listed in Table 2.
The approximate oracles are monotone. This is essential
due to their greedy nature: updating the maintained result
only when this update increases the function value. Given
the monotonicity of the approximate checkpoint oracles, the
monotonicity and subadditivity of the optimal oracle, we are
ready to prove that the checkpoint maintenance strategy
used in SIC is theoretically bounded.

Lemma 2. Given any t1, t2, t3, t4 s.t. t1 ≤ t2 ≤ t3 ≤ t4,

∀β ∈ (0, 1), if (1− β)Λt1t3 ≤ Λt2t3 , then ε(1−β)
2

OPTt1t4 ≤ Λt2t4 .

Proof. The following inequalities hold:

Λt2t4 ≥
1

2
(Λt2t3 + Λt2t4) ≥ 1

2
((1− β)Λt1t3 + Λt2t4)

≥ 1− β
2

(Λt1t3 + Λt2t4) ≥ ε(1− β)

2
(OPTt1t3 + OPTt2t4)

≥ ε(1− β)

2
OPTt1t4

where the first inequality holds from the monotonicity of the
approximate checkpoint oracles; the second inequality is due
to the condition that Λt2t3 ≥ (1−β)Λt1t3 ; the third inequality is
obvious since β ∈ (0, 1); the fourth inequality holds because
of the approximation ratio of checkpoint oracles and the
final inequality holds as the optimal checkpoint oracle is
both monotone and subadditive.

According to Lemma 2, if (1 − β)Λt1t3 ≤ Λt2t3 , using the
checkpoint oracle started at t2 to approximate any check-

points between t1 and t2 always achieves an ε(1−β)
2

appro-
ximation for any number of appending actions. Next, we
present Lemma 3 to demonstrate the property of the check-
points maintained by Algorithm 2.

Lemma 3. The SIC on window Wt contains s checkpoints
Λt[x0],Λt[x1], . . . ,Λt[xs] (x0 < x1 < . . . < xs) maintained
by Algorithm 2. Given a constant β ∈ (0, 1), any neighboring
checkpoints Λt[xi], Λt[xi+1] and Λt[xi+2] satisfy one of the
following conditions:

1. if Λt[xi+1] ≥ (1−β)Λt[xi], then Λt[xi+2] < (1−β)Λt[xi].

2. if xi+1 6= xi + 1 ∧ Λt[xi+1] < (1 − β)Λt[xi], then ε(1−β)
2
·

OPTt[xi] ≤ Λt[xi+1].
3. xi+1 = xi + 1 ∧ Λt[xi+1] < (1− β)Λt[xi].

Proof. We prove the lemma by induction. As the base
case, there are only 2 actions in the window and either con-
dition 1 or condition 3 holds.

Next, assuming Lemma 3 holds at time t and we show
that it still holds after the update procedure in Algorithm 2
at time t+ 1. Let Λt[xi] be a checkpoint instantiated before
t+1 and is not deleted during the update procedure at t+1,
then Λt[xi+1] is the subsequent checkpoint of Λt+1[xi] at
time t. Next, we discuss all possible cases when performing
the update procedure of Algorithm 2 at time t+ 1:
Case 1: xi+1 6= xi+1 and Λt[xi+1] is deleted at t+1. In this
case, we have Λt+1[xi+1] ≥ (1−β)Λt+1[xi] and Λt+1[xi+2] <
(1 − β)Λt+1[xi] according to Lines 7-15 of Algorithm 2. In
this case, condition 1 holds at t+ 1.
Case 2: xi+1 6= xi + 1 and Λt+1[xi+1] is not deleted at
t+ 1. In this case, Λt+1[xi+1] must become the subsequent
checkpoint of Λt+1[xi] at some time t′ ≤ t. Then, at t′,
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we have Λt′ [xi+1] ≥ (1− β)Λt′ [xi]. According to Lemma 2,

Λt+1[xi+1] ≥ ε(1−β)
2

OPTt+1[xi] holds. Because Λt+1[xi+1]
is not deleted at t + 1, we have either condition 1 (when
Λt+1[xi+1] ≥ (1 − β)Λt+1[xi]) or condition 2 holds (when
Λt+1[xi+1] < (1− β)Λt+1[xi]) at t+ 1.
Case 3: xi+1 = xi + 1. If Λt+1[xi+1] ≥ (1 − β)Λt+1[xi],
then condition 1 holds since Λt+1[xi+1] is not deleted at
t+ 1; otherwise, condition 3 holds.

Therefore, at least one condition in Lemma 3 holds in all
possible cases at t+ 1 and we conclude the proof.

Leveraging Lemma 3, we are able to analyze SIC theo-
retically. First, from conditions 1 and 2, we can infer that
if there are checkpoints deleted between xi and xi+1, the
ratios between Λt[xi+1] and the optimal solution of deleted

checkpoints are guaranteed to be at least ε(1−β)
2

. Next, by
collectively examining conditions 1–3, we can see that there
is at least one checkpoint in Λt[xi+1] and Λt[xi+2] return-
ing an influence value of smaller than (1−β)Λt[xi], and thus
the number of checkpoints maintained is O( logN

β
). Based on

these intuitions, we then formally state the approximation
guarantee and the complexity of SIC in Theorems 2–4:

Theorem 2. SIC maintains a ε(1−β)
2

-approximate solu-
tion for SIM in Λt[x1] when an ε-approximate checkpoint
oracle is used.

Proof. We use OPTt to denote the optimal solution of

SIM w.r.t. Wt and we prove that ε(1−β)
2

is a lower bound
for the ratio between Λt[x1] and OPTt.

Let Λt[x0] be the expired checkpoint just before Λt[x1].
Since Λt[x0] and Λt[x1] are neighboring checkpoints in SIC,
one of the conditions in Lemma 3 holds at time t.

If condition 3 in Lemma 3 holds, we have OPTt ≤ εΛt[x1]
since Λt[x1] directly maintains an approximate solution on
Wt. Otherwise, we have: OPTt ≤ OPTt[x0] ≤ 2

ε(1−β)Λt[x1]

since Λt[x0] has expired. Thus, SIC maintains an at least
ε(1−β)

2
-approximate solution in Λt[x1].

Theorem 3. SIC obtains a (1/4 − β)-approximate solu-
tion for SIM when SieveStreaming is used as the check-
point oracle.

Proof. Since the SieveStreaming algorithm guaran-
tees a (1/2 − β) approximation ratio to the optimal solu-
tion, SIC with SieveStreaming as the checkpoint oracle
preserves a 1

2
( 1
2
−β)(1−β) approximation guarantee accord-

ing to Theorem 2. As 1
2
( 1
2
−β)(1−β) = 1

4
− 3

4
β+β2 > 1

4
−β,

we get at least a (1/4−β)-approximate solution for SIM.

Theorem 4. The number of checkpoints maintained by
SIC wrt. a sliding window of size N is O( logN

β
).

Proof. Lemma 3 guarantees either Λt[xi+1] or Λt[xi+2]
is less than (1−β)Λt[xi]. Since Λt[x1]/Λt[N ] is bounded by
O(N), the number of checkpoints is at most 2·logN

log(1−β)−1 for

β ∈ (0, 1). Therefore, the number of checkpoints maintained
by SIC is O( logN

β
).

As the time complexity for a checkpoint to update each
action is O(dg) if each checkpoint takes O(g) to evaluate one
influence set and the number of checkpoints maintained by
SIC is O( logN

β
), the time complexity of SIC to update each

action is O( dg logN
β

). When SieveStreaming is used as the

checkpoint oracle, we have g = O( log k
β

) and thus the time

complexity of SIC for each update is O( d logN log k
β2 ).

5.3 Handling Multiple Window Shifts
Although we have discussed how to handle SIM queries for

windows which shift for one action at a time, many applica-
tions do not require to retrieve the result at such an intense
rate. Hereby, we discuss how to handle multiple window
shifts, i.e., each window shift receives L new actions while
the earliest L actions become expired at the same time.

To handle multiple window shifts for IC, we create only
one new checkpoint and delete the earliest checkpoint when
the window shifts from Wt to Wt+L. Subsequently, all ac-
tions from at+1 to at+L are collected to update all check-
points in the window. Thus, the number of checkpoints
created for multiple window shifts will be

⌈
N
L

⌉
. On top of

the IC maintenance strategy, we still use the same SIC algo-
rithm over the checkpoints created by IC to support multiple
window shifts.

Lastly, the aforementioned maintenance strategies still pre-
serve the theoretical results as there is no fundamental dif-
ferences between handling single window shift and multiple
window shifts using our proposed frameworks.

6. EXPERIMENTAL RESULTS
In this section, we evaluate the efficiency and effectiveness

of our proposed frameworks on several real-world and syn-
thetic datasets. First, we compare IC and SIC for influence
values and processing efficiency with varying β. Then, we
compare the solution qualities and throughputs of all ap-
proaches with different seed set sizes. Finally, we evaluate
the scalability of all compared approaches.

6.1 Experimental Setup
Datasets: We collect two real-world datasets and synthe-
size two datasets for extensive studies.
• Reddit: Reddit is an online forum where user actions

include post and comment. We collect all Reddit comment
actions in May 2015 from kaggle6 and query the Reddit
API for the post actions in the same period. The dataset
contains 48, 104, 875 actions from 2, 628, 904 users.
• Twitter: Twitter is an online social network where ac-

tions include tweet, retweet, quote and reply. We crawl
these actions for one week via Twitter stream API7 on
trending topics such as US presidential election, 2016 NBA
finals and Euro 2016. The dataset contains 9, 724, 908 ac-
tions from 2, 881, 154 users.
• Synthetic Datasets: We synthesize two action streams

with different response patterns to test the robustness of
the proposed solutions. There are two types of actions in
concern: post and follow. We use the R-MAT model [9] to
synthesize 5 different power law graphs with the number
of users ranging from 1-5 million (2 million by default).
For each synthetic graph, we generate 10 million actions
by randomly selecting a user to perform either a post or a
follow action. If an action at is follow, it will respond to a
previous action at′ with a response distance ∆ = t−t′. To
demonstrate different response patterns, two datasets are
generated based on the distances conforming to exponen-
tial distributions with different parameters: (1)SYN-O:
∆ ∼ exp(λ = 2.0 × 10−6), which indicates “old posts get

6https://www.kaggle.com/reddit/
reddit-comments-may-2015
7https://dev.twitter.com/streaming/overview
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Table 3: Statistics on datasets
Dataset Users Actions Resp. dist. Avg. depth
Reddit 2,628,904 48,104,875 404,715 4.58
Twitter 2,881,154 9,724,908 294,609 1.87
SYN-O 1M–5M 10,000,000 500,000 2.5
SYN-N 1M–5M 10,000,000 5,000 2.59

more followers”; (2)SYN-N: ∆ ∼ exp(λ = 2.0 × 10−4),
which represents “recent posts get more followers”.

The statistics of these datasets are summarized in Table 3.
Approaches: All approaches compared in the experiments
are listed as follows:
• IMM [35]: To support our argument on the effective-

ness, we use the state-of-the-art IM algorithm on static
graphs as a baseline. At each time t, we construct an
influence graph Gt by treating users as vertices and the
influence relationships between users wrt. Wt as directed
edges. The edge probabilities between users are assigned
by the weighted cascade (WC) [18] model. To extract the
influential users at time t, we set the parameters of IMM
to be ε = 0.5, l = 1 [35] and run the algorithm on the
generated influence graph Gt.
• UBI [11]: We use the state-of-the-art method for IM on

dynamic graphs as another baseline. The generation of
influence graphs is the same as IMM. Then, a sequence of
influence graphs {G1, . . . , Gm} are fed to UBI in a chrono-
logical order to track the influential users. We keep the
same interchange threshold as used in [11], i.e., γ = 0.01.
• Greedy [28]: We also implement the classic greedy algo-

rithm in [28] since it achieves the best theoretical appro-
ximation (i.e., 1−1/e) of SIM queries. A detailed descrip-
tion of this algorithm is presented in Section 4. Since the
Greedy algorithm does not store any intermediate result,
it always recomputes the solution when being queried.
• IC: The IC framework proposed in Section 4. We use

SieveStreaming [4] as the checkpoint oracle.
• SIC: The SIC framework proposed in Section 5. We use

the same checkpoint oracle as IC.
Quality Metric: We note that IMM and UBI work under
the WC model whereas Greedy, IC and SIC are proposed
to answer SIM queries in Section 3. To verify the effective-
ness of our proposed solutions, we retrieve the seed users
returned by all approaches for each window shift. When a
set of seed users is returned by each approach at time t,
we evaluate the influence spread of the users under the WC
model with 10,000 rounds of Monte-Carlo simulation on the
corresponding influence graph Gt. Finally, we use the aver-
age influence spread of all windows for each approach as the
quality metric.
Performance Metric: We use throughput as our perfor-
mance metric. Specifically, whenever the window shifts for L
actions, we measure the elapsed CPU time of each approach
and the throughput is L divided by the elapsed time. We
do not measure the query processing time because all ap-
proaches maintain the seed users explicitly and the time to
retrieve them is negligible.
Parameters: The parameters examined in our experiments:
(1) β is the parameter in IC and SIC to achieve a trade-off
between quality and efficiency. (2) k is the size of the seed
set. (3) N is the window size. (4) L is the number of ac-
tions for each window shift. (5) |U | is the total number of
users for synthetic datasets. We vary N , L and |U | to test

Table 4: Parameters in experiments
Parameter Values

k 5, 25, 50, 75, 100
β 0.1, 0.2, 0.3, 0.4, 0.5
N 100K, 250K, 500K, 750K, 1,000K
L 1K, 2.5K, 5K, 7.5K, 10K
|U | 1M, 2M, 3M, 4M, 5M

the scalability of the compared approaches. The summary
of parameters is listed in Table 4. The default values of all
parameters are in bold.
Experiment Settings: All experiments are conducted on
a desktop machine running Ubuntu 14.04 with a quad core
3.4 GHz Intel i7-2600 processor and 16 GB memory. All the
approaches except IMM are implemented in Java 8. The
IMM implementation available8 is written in C++.

6.2 Testing β for IC and SIC
We first vary β to test its effect on IC and SIC in terms of

the average influence value of SIM queries using the cardi-
nality function, the number of maintained checkpoints and
the throughput. Note that we compare the seed qualities of
IC and SIC with the baselines in Section 6.3 and only focus
on their effectiveness of answering SIM queries here.
Influence Value: The influence values of IC and SIC with
varying β are presented in Figure 5a–5d. The influence val-
ues of IC are slightly better than SIC in most experiments.
This is because SIC trades quality for efficiency by main-
taining fewer checkpoints. In spite of that, SIC is able to
obtain competitive values with at most 5% off from IC. In
addition, we can see that both SIC and IC achieve better
influence values for a smaller β and the influence values of
SIC degrade faster than IC for a larger β due to the dele-
tion of checkpoints. We note that in the SYN-N dataset, the
influence values of SIC degrade more severely than other
datasets for a larger β. This is because the average reply
distance is very short, which leads to the frequent changes
of the influential users. Nevertheless, SIC still returns solu-
tions within the theoretical bound stated in Section 5.2.
Number of checkpoints: We examine the average number
of checkpoints maintained by IC and SIC for all sliding
windows. The results are presented in Figure 6a–6d. IC
maintains a constant number of checkpoints wrt. β. This
is because the number of checkpoints maintained by IC in
each sliding window exactly equals to dN

L
e. On the contrary,

the number of checkpoints in SIC is O( logN
β

) according to
Theorem 4 in Section 5.2, and is thus negatively correlated
with β. The trend for the number of checkpoints emphasizes
the superiority of SIC in both space and time efficiencies.
Throughput: The throughputs of IC and SIC are pre-
sented in Figure 7a–7d. Both IC and SIC achieve better
performance for a larger β. There are two reasons behind
such an observation. First, both approaches employ Sie-
veStreaming as the checkpoint oracle where fewer candi-
date instances are kept within each checkpoint for a larger
β, which makes the update time shorter for each check-
point. Second, SIC maintains fewer checkpoints as β be-
comes larger, which naturally leads to shorter processing
time. Thus, for a larger β, SIC shows even more superior-

8https://sourceforge.net/projects/im-imm/
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Figure 5: Influence Values of IC and SIC with varying β.
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Figure 6: The number of checkpoints maintained by IC and SIC with varying β.
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Figure 7: Throughputs of IC and SIC with varying β.
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Figure 8: Solution qualities of compared methods with varying k.
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Figure 9: Throughputs of compared methods with varying k.
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Figure 10: Throughputs of compared approaches with varying W .
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Figure 11: Throughputs of compared approaches with varying L.

ity over IC in all experiments because fewer checkpoints are
maintained by SIC.

6.3 Comparing Approaches with Varying k

We compare different approaches by using the quality and
the performance metric defined in Section 6.1 for varying k.
Quality: The results of solution qualities for different ap-
proaches are presented in Figure 8a–8d. Compared with
IMM, Greedy, IC and SIC achieve less than 10% quality
losses. The results have verified the effectiveness of SIM as
the seeds for SIM queries achieve nearly equivalent influence
spreads as the seeds retrieved by IMM under the WC model.
Moreover, SIC shows competitive qualities though it main-
tains fewer checkpoints than IC. In contrast, the qualities of
UBI are close to IMM when k is small (i.e., k ≤ 25). But
its qualities degrade dramatically when k increases. This is
because UBI relies on interchanging users to maintain the
influential users against the updates of the influence graph.
It interchanges a user into the maintained influential user set
only when a substantial gain is achieved for the estimated
influence spread (i.e., 1% of the total influence spread prior
to the interchange). Thus, for a larger k, it becomes harder
for a user to be interchanged since the total influence spread
of the maintained user set is larger. This results in the delays
of interchanges and causes larger errors.
Throughput: The performances with varying k are pre-
sented in Figure 9a–9d. The throughputs of all approaches
are inversely proportional to k. IC and SIC both employ
SieveStreaming as the checkpoint oracle, each checkpoint
maintains a number of candidate instances and each instance
contains up to k candidate users. When k gets larger, it is
more expensive to evaluate the influence function for each
checkpoint. This explains why the performances of IC and
SIC drop while k becomes larger. Compared with IC and
all baseline methods, SIC shows significant advantages in
efficiency for all experiments. Moreover, SIC dominates
Greedy and IMM by achieving a speedup of up to 2 orders
of magnitude across all datasets. The throughput of UBI is
also far behind SIC and IC on all datasets except Twitter,
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Figure 12: Throughputs with varying |U |.

where it achieves an equivalent throughput compared to IC.
Nonetheless, UBI is still more than 3 times slower than SIC.

6.4 Scalability
In this section, we evaluate the scalability of compared

methods through measuring the throughputs when varying
the window size N , the length of each window shift L and
the total number of users |U |.
Varying N : The performances for varying N are presented
in Figure 10a–10d. Although the throughputs of all ap-
proaches decrease with increasing N , SIC shows better scal-
ability as it only maintains O(logN) checkpoints when β is
fixed. We observe a smaller performance gap between IC
and SIC in all datasets when N is small (i.e., N = 100, 000).
This is because the number of checkpoints maintained by
IC are very close to SIC (fewer than 8) and the benefits
of sparse checkpoints become less significant. Nonetheless,
when N increases, SIC regains its superiority. Moreover,
SIC achieves speedups of up to 40x, 100x and 70x compared
to Greedy, IMM and UBI respectively.
Varying L: We show the performances for varying L in
Figure 11a–11d. As L increases, the throughputs of IC and
SIC increase. This is because larger L results in a smaller
number of checkpoints for both methods. IC exhibits a lin-
ear performance improvement wrt. larger L since it main-
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tains dN
L
e checkpoints. As SIC deletes some checkpoints

created by IC, it continues to be superior to IC in terms
of performance, which demonstrates its scalability in han-
dling multiple window shifts. Like the results for varying
N , SIC dominates Greedy, IMM and UBI in terms of the
throughput.
Varying |U |: Finally, we show the performances for vary-
ing |U | on two synthetic datasets in Figure 12a–12b. We
observe that the throughputs of SIC, IC and UBI increase
as |U | becomes larger. Fixing the window size N , the in-
fluence graphs become more sparse for a larger |U |. All
these three approaches show better performance on more
sparse graphs. However, Greedy and IMM need more pro-
cessing time to run as |U | increases since these complexities
are directly related to |U |. Finally, SIC still shows superior
performances in all experiments with various |U | settings.

7. CONCLUSION
In this paper, we proposed a novel Stream Influence Maxi-

mization (SIM) query to retrieve k influential users who col-
lectively maximized the influence value over a social action
stream. Then, we presented a novel framework Influential
Checkpoints (IC) and its improved version Sparse Influen-
tial Checkpoints (SIC) to efficiently support the continuous
SIM queries over high-speed social streams. Theoretically,

SIC maintained O( logN
β

) checkpoints to obtain an ε(1−β)
2

-
approximate solution for SIM queries. Empirically, our ex-
periments showed that SIC achieved up to 2 orders of magni-
tude speedups over the state-of-the-art static and dynamic
IM approaches with less than 10% losses in seed quality.
In particular, SIC demonstrated a peak processing rate of
more than 150K actions per second, which was adequate for
real-world social streams. In the future, we plan to extend
our proposed frameworks to support a broader class of IM
problems, e.g., competitive IM [6,23,27].
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