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Abstract

The timetabling problem arising from a university in Indonesia is addressed in this paper.

It involves the assignment of teachers to the courses and course sections. We formulate the

problem as a mathematical programming model. Two different algorithms, mainly based

on simulated annealing (SA) and tabu search (TS) algorithms, are proposed for solving the

problem. The proposed algorithms consist of two phases. The first phase involves allocating

the teachers to the courses and determining the number of courses to be assigned to each

teacher. The second phase involves assigning the teachers to the course sections in order to

balance the teachers’ load. The performance of the proposed algorithms is evaluated using

two sets of real data and some randomly generated problem instances. The computational

results show that in general, tabu search performs better than simulated annealing and other

previous work. For the real data sets, the computational results show that both proposed

algorithms yield better solutions when compared to manual allocation done by the university.

Keywords: Timetabling problem, teacher assignment, simulated annealing, Tabu search.

1. Introduction

Timetabling is the allocation, subject to constraints, of given resources to objects

being placed in space time, in such a way as to satisfy as nearly as possible a set of desir-

able objectives [41]. The timetabling problem has attracted substantial research interests

due to its importance in a wide variety of application domains, including education [4],

transport [27], employee/staff [33], healthcare institutions [2, 5, 22] and sport [36].

Various methods have been proposed for solving this class of problems in the litera-

ture, such as those mentioned in the reviews by Carter and Laporte [9], Burke et al. [6],

de Werra [15] and Schaerf [34]. In particular, metaheuristics have been widely applied in

the timetabling problem, and some examples include simulated annealing [23, 32], tabu

search [7, 14, 38] and genetic algorithm [8, 24, 29, 42].

The course timetabling problem in educational timetabling can be classified into five

different sub-problems: course scheduling, class-teacher timetabling, student scheduling,
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teacher assignment, and classroom assignment [9]. This paper focuses primarily on the

teacher assignment problem.

Andrew and Collins [1] developed a procedure for assigning teachers to courses based

on a simple linear programming technique. Tillett [37] noted that the model does not take

into consideration some factors, such as the number of courses taught by each teacher, and

proposed a zero-one integer programming algorithm for the teacher assignment problem

in the secondary school level. Breslaw [3] highlighted a major shortcoming of the model

proposed by Tillett [37], namely that the computation time of the algorithm can be

prohibitively large as the problem size increases, and he also proposed a model that could

be applicable at the university level. Goal programming has been used by Harwood and

Lawless [25] in order to solve the teacher assignment problem, with improvements to the

model being made by Schniederjans and Kim [35]. Metaheuristics such as the genetic

algorithm were also used to solve the teacher assignment problem, as illustrated in Wang

[40]. Votre [39] developed a tool for scheduling teachers to courses given their interest in

lecturing.

The major contributions/highlights of this paper are as follows:

(1) The problem addressed in this paper allows each course section to be taught by

more than one teacher. Also, the definition of the teachers’ load in this paper is

different from other models in the literature, where it is referred to as the number

of courses taught. Instead, our model assumes that load is related to the number of

lecture hours of the course needed per week. Moreover, the teachers could be full

time or part time teachers, with different respective requirements on their teaching

assignments. All these differences cause the teacher assignment problem to be more

complicated and difficult to solve.

(2) We create a mathematical model that is capable of representing the problem. We

also develop methods/algorithms for finding the optimal/near-optimal solutions of

the problem as well as to help users make better decisions.

In Section 2, a detailed description of the problem is presented. The proposed algo-

rithms for solving the problem, with a detailed description of how the two metaheuristics,

simulated annealing (SA) and tabu search (TS), were being used are explained in Section

3. The results of computational experiments involving the proposed algorithms are also

provided in Section 4, and some conclusions are given in the last section.

2. Description of the Teacher Assignment Problem

The details of the problem can be found in Gunawan et al. [24]. In this section, we

only give a short description of the timetabling problem addressed in this paper. This

timetabling problem arises in the Industrial Engineering Department of a university in

Indonesia.

In this problem, a course refers to a subject taught one or more times within a week,

and each course has a certain number of credits, where a credit refers to the number
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of lecture hours needed per week. Due to the capacity of the class and the number of

students registered, most of the courses have to be taught repeatedly by the same or

different teachers at the same or different time periods. Each of these repeated courses

is called a section of the course.

The teachers are divided into full time and part time teachers. Some courses could be

taught jointly by part time and full time teachers. Part time teachers’ requirements, such

as the course can only be taught during certain time periods, have to be satisfied. Full

time teachers are further divided into Group 1 and Group 2 teachers. Group 2 teachers

refer to those who are holding some key administrative positions such as the Vice Dean,

Dean, or Chairperson, and hence have to be assigned a lighter teaching load, while Group

1 teachers are other full time teachers who do not hold any key administrative position.

In this study, we focus on courses which can be taught by either full time teachers

only, or taught jointly by full time and part time teachers. The allocation of part time

teachers to courses and course sections will be performed before the allocation of full

time teachers, and this is known as pre-assignment.

The teacher assignment problem involves assigning and scheduling the teachers to

the courses by taking some factors, such as the abilities of the teachers and number

of courses offered, into consideration. The aim is to balance the full time teachers’

load, where the load refers to the total number of credits assigned to each teacher. For

example, if a 3-credit course is assigned to two teachers, the total load of each teacher

will be incremented by 1.5 credits.

The requirements imposed on the problem are listed as follows:

• Each course section has a minimum and maximum number of teachers to teach

(Requirement 1).

• Part time teachers are required to teach courses that cannot be taught by full time

teachers (Requirement 2). Due to internal regulations, certain part time teachers,

especially those from government universities, have to be involved in the teaching

process.

• There are both a maximum and minimum number of teachers that can be assigned to

a particular course (Requirement 3). This depends on the number of course sections

offered.

• The total number of different courses taught by each full time teacher should not

exceed a certain number (Requirement 4). The aim of this constraint is to reduce

the amount of preparation time for each teacher.

• The teaching load for full time teachers should be balanced (Requirement 5). The

part time teachers’ load will not be considered by the department offering the courses.

The first four requirements are regarded as hard constraints that need to be satisfied,

while the last one is treated as a soft constraint or preference that is considered to be

equivalent to minimizing the total weighted variance of the teachers’ load. Currently, the
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teacher assignment has always been done manually. This manual assignment procedure

has gradually become more difficult and unmanageable due to an increase in the number

of courses offered and the number of students.

3. The proposed algorithm for teacher assignment

The teacher assignment problem is formulated as a mathematical programming

model. The details of the mathematical model and its description can be found in

Gunawan et al. [24]. As described in that paper, the mathematical programming model

has non-linear objective function and constraints. Solving this model to optimality may

not be straightforward, especially when large-scale data sets are involved. In this section

we present a two-phase algorithm devised for tackling this teacher assignment problem.

The details of the algorithm are presented in Figure 1.

Phase 1 aims to find a feasible solution of good quality solution quickly. It is moti-

vated by the following reasons. The total variance of teaching load can be minimized if

the number of courses taught by each teacher, denoted by R, is restricted to a certain

value. It means that the difference in terms of the number of courses taught among

teachers is small. It would then be easier to allocate teachers to course sections in the

next phase in order to get a small value of the total variance. In other words, Phase 1

focuses on the allocation of full time teachers to the courses based on their abilities. In

this phase, we try to find the maximum number of courses that could be allocated to

each full time teacher in such a way that no teacher would teach more than R, a max-

imum number of courses that could be taught by each full time teacher. After we have

determined the value of R, we continue to allocate the full time teachers to the course

sections in Phase 2. Our main objective in Phase 2 is to minimize the total weighted

variance of the teachers’ load as mentioned in Equation (1).

In the entire procedure, we could use either SA or TS for the metaheuristic applied

in each phase. Thus, we name the procedure as the SA algorithm or the TS algorithm,

respectively, depending on whether SA or TS is being applied. The details involving

their implementation are described next:

3.1. Simulated annealing

SA, originally developed by Kirkpatrick et al. [26], is a type of local-search heuristic

algorithm that avoids getting trapped at a local minimum by accepting neighborhood

moves that increase the objective function value, using a probabilistic acceptance crite-

rion. SA has been successfully applied to a variety of combinatorial optimization prob-

lems, such as the Traveling Salesman Problem [10], machine scheduling problem [30],

DNA sequence alignment [12] and timetabling problem [23].

Several cooling schedules used in SA have been proposed in the literature [32]. In

this paper, we use the geometric cooling schedule similar to that used in Gunawan et

al. [23], Liu and Ong [28], and Saleh et al. [32]. We also reset the number of iterations to

zero if the percentage of accepted moves in the last neighborhood move is greater than

some predetermined level min percent.
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Figure 1: The flow chart of the proposed algorithm.

Figure 2: Example of a single move in Phase 1 of the proposed algorithm.

In Phase 1, the neighborhood structures used in SA are based on two types of

movement: a single move and a double move. The idea of the single move is to pick

any teacher who has been assigned to teach more than R courses and remove him/her
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Figure 3: Example of a double move in Phase 1 of the proposed algorithm.

Figure 4: Example of a double move in Phase 2 of the proposed algorithm.

from teaching a particular course without reallocating the course to another teacher

(see Figure 2 for illustration). The double move is to pick any teacher who has been

assigned more than R courses and remove him/her from teaching a particular course by

reallocating the course to another teacher who is able to teach the course (see Figure

3 for illustration). Both moves can be applied as long as there is no violation of hard

constraints.

The same concept of moves could be applied in Phase 2 of the proposed algorithm.

We try to improve the load of some teachers by applying the double move to a particular

course. Initially, we generate a set of teachers who have higher loads, which is called

the Excess List. It is assumed that the length of the Excess List is equal to a certain

percentage of the total number of full time teachers. A teacher is chosen randomly from

the Excess List, followed by choosing one course section that has been allocated to this

teacher. This teacher is then relieved from teaching the selected course section which

will be assigned to another teacher; and this is called a double move (see Figure 4 for

illustration).

In this move, we keep the number of teachers who teach a particular course un-

changed. The changes are only on the distribution of teachers’ load in that course.

Suppose instead there is no teacher available for replacement. We can simply relieve

the teacher from the selected course section as long as there is no violation of any hard

constraint, and this is called a single move (see Figure 5 for illustration). Instead of

applying only one type of move as was commonly done in simulated annealing, we apply

two different moves in order to further explore other possible solutions.



SOLVING THE TEACHER ASSIGNMENT PROBLEM 79

Figure 5: Example of a single move in Phase 2 of the proposed algorithm.

3.2. Tabu search

TS is a heuristic for solving discrete optimization problems. The basic idea of TS

is described in detail by Glover [20, 21]. It is designed to guide other local search

approaches to continue solution space exploration without falling back into local optima

from which it previously emerged [17]. TS is based on gradual local improvement of a

current solution of the optimization problem. The fundamental idea of TS is the use

of flexible memory of search history which guides the search process to surmount local

optimal solutions.

Many different papers have presented applications of Tabu Search to various combi-

natorial problems, such as the Quadratic Assignment Problem [16], machine scheduling

problem [19] and timetabling problem [13].

Similar to SA, TS searches for a new solution in the neighborhood of the current

solution. The difference between TS and SA is the method of choosing a new solution

from the neighborhood. SA chooses the new solutions randomly, while TS searches the

new solution from a subset or the whole neighborhood space for a good solution with

certain restrictions. When we get a better solution, we treat the new one as the current

solution. However, when there is no better solution, the ‘best’ solution (although it is

actually worse than the current one) in the neighborhood is picked. This situation differs

from that of SA which may accept a worse solution with a certain probability.

The basic elements of TS are the moves, tabu list, and aspiration level. The tabu list

consists of certain solutions or moves that are forbidden and are called tabu moves. The

size of the tabu list has a great effect on the solution quality. The aspiration criterion

is introduced in TS in order to determine when a tabu move could be overridden. The

main purpose is to enable tabu moves that could possibly lead to an optimal solution.

In this study, we define the teacher and his/her course or course section that has been

removed within a certain number of previous iterations as an element of the tabu list.

The aspiration level is defined to be the case when a move could lead to a new best

solution.

In Phase 1, the neighborhood structures used in TS are similar to those of SA. In

Phase 2, another type of neighborhood structure is used. In TS, it is commonly found

that all possible neighborhoods are examined in order to find the best one. However,
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this approach can be prohibitively large as the problem size increases. Here, we propose

a different type of neighborhood structure. The neighborhood structure used in TS is

obtained by randomly choosing only a teacher who has an excess load. The next step is

to examine all the possible teachers and choose one that gives the best allowed neighbor.

In TS, we also apply the intensification strategy. Thus if the best solution has not

improved within a certain number of iterations, we focus the search once again starting

from the best solution obtained.

4. Computational Results

In order to evaluate the performance of the proposed algorithms numerically, we

have used two real data sets and four random data sets. These data sets have also been

solved by another approach, genetic algorithm (GA), in Gunawan et al. [24]. The real

data sets were collected from an institution in Indonesia. The characteristics of each

set of data are summarized in Table 1 with the real data sets being referred to as Real

Data 1 and Real Data 2, while the random data sets are referred to as Random Data 1,

Random Data 2, Random Data 3 and Random Data 4.

For the random data sets, we varied the following parameters: the number of full

time teachers for Groups 1 and 2, the number of part time teachers, the number of courses

offered, the maximum number of sections for each course and the maximum number of

teachers allowed for each course section. Table 2 gives the minimum and maximum

number of teachers that can be assigned to teach a course, which depend on the number

of sections offered for the particular course.

Table 1: Characteristics of data sets used in the computational experiments.

Real Real Random Random Random Random
Data 1 Data 2 Data 1 Data 2 Data 3 Data 4

Number of full time teachers:
- Group 1 25 22 20 20 7 90
- Group 2 3 3 5 5 3 10

Number of part time teachers 18 10 5 10 5 20
Number of courses offered 48 45 50 100 50 200
Maximum number of sections 5 6 5 5 5 5
Maximum number of teachers

2 2 2 2 2 2
allowed for each course section

All the proposed algorithms for solving the problems are coded in Visual C++ 6.0

and tested on a Pentium III 497 MHz PC with 128 MB RAM under the Microsoft

Windows XP Operating System. For each data set, both algorithms were executed five

times. The best solutions obtained by the proposed algorithms are also compared with

the manual allocation procedure performed by the university. The parameter values

of the proposed algorithms are chosen experimentally to ensure a compromise between

running time and solution quality. These values are summarized as follows:
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Table 2: The minimum and maximum number of teachers that could teach in a course.

Number of sections Minimum (teachers) Maximum (teachers)
1 1 2
2 1 3
3 1 3
4 3 4
5 3 5
6 3 6

Phase 1

In the SA algorithm, we set the number of neighbor moves at each given temperature

= number of full time teachers × number of courses, maximum number of iterations =

1000, initial temperature = 1000, cooling factor = 0.95, minimum percentage of accepted

moves (min percent) = 10%.

In the TS algorithm, we set the maximum number of iterations = 2500, number of

neighbor moves = 2× number of full time teachers, length of tabu list = 7, number of

iterations of intensification strategy = 100.

Phase 2

In the SA algorithm, we set the number of neighbor moves at each given temperature

= 4× number of full time teachers × number of courses, maximum number of iterations

= 1 × 105, initial temperature = 1000, cooling factor = 0.99, minimum percentage of

accepted moves (min percent) = 10%.

In the TS algorithm, we set the number of iterations = 107
× number of full time

teachers, number of neighborhood moves = 2 × number of full time teachers × number

of courses, length of tabu list = 7, number of iterations of intensification strategy = 100.

4.1. Results of teacher - course allocation (Phase 1)

The results of Phase 1 are summarized in Table 3. The penalty values represent the

excess of the total number of courses taught by full time teachers who have to teach more

than R courses. By the SA and TS algorithms, there would be nine teachers teaching

more than two courses when the maximum number of courses taught by each full time

teacher is set to two courses for Real Data 1, and most of teachers have to teach about

four or five courses. In other words, most of teachers have the penalty value of at least

two or three courses. So, the total excess number of courses or the penalty value is

eighteen courses for both the SA and TS algorithms, which is better than that of the

GA algorithm (twenty four courses).

Similarly for Real Data 2, if the minimum number of courses is set to three courses,

there will be eight and six teachers teaching more than three courses by applying the SA

and TS algorithms, respectively. In this case, the penalty values for both the SA and

TS algorithms are eleven courses. Similar observations can be found for other random

instances.
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Table 3: The best results of teacher-course allocation (Phase 1).

Data set
Maximum number of

courses taught by
each teacher (R)

Number of full time
teachers teaching more

than R courses
Penalty Value

SA TS GA SA TS GA

Real Data 1
2 9 9 9 18 18 24
3 0 0 2 0 0 6

4 or more 0 0 0 0 0 0

Real Data 2
3 8 6 5 11 11 19

4 or more 0 0 0 0 0 0

Random Data 1
6 3 4 3 4 4 21

7 or more 0 0 0 0 0 0

Random Data 2
12 11 7 3 18 18 21

13 or more 0 0 0 0 0 0

Random Data 3
14 2 2 1 2 2 12

15 or more 0 0 0 0 0 0

Random Data 4
5 49 43 40 96 96 89

6 or more 0 0 0 0 0 0

Feasibility is achieved in Phase 1 only if the number of full time teachers teaching

more than R courses is zero, meaning that the penalty value is also zero. For instance,

Phase 1 feasibility is achieved for Real Data 1 by applying SA and TS algorithms when

we set the maximum number of courses taught by each teacher to be three courses. It

means that the number of courses that should be allocated to each full time teacher is

three courses. GA algorithm can only achieve the feasibility when the number is four

courses.

By referring to the results for Random Data 2 and Random Data 3, the minimum

number of courses that should be allocated to each full time teacher is considered large

since the number of full time teachers is small compared to the number of courses offered.

4.2. Results of teacher - course section allocation (Phase 2)

In order to ensure feasibility of the solution in Phase 2, we set the maximum number

of courses that could be taught by each full time teacher for Real Data 1 and Real Data

2 to be three and four courses, respectively. A similar approach is also applied to the

random data sets and we set the corresponding maximum number of courses to be 7, 13,

15 and 6 courses, respectively.

Phase 2 is started by using a randomly generated initial solution based on the results

of Phase 1. In Phase 2, five different initial solutions are generated for each data set,

followed by applying the SA or TS algorithm. The average load and average variance

obtained after applying the SA and TS algorithms are presented in Tables 4 and 5. The

performance of the TS algorithm is better than that of the SA algorithm in terms of the

average variance obtained. In general, both SA and TS algorithms also outperform the

GA algorithm [24]. For instance, the average total variances of the load by SA and TS
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Table 4: Computational results of average load of Phase 2.

Data set SA TS
Real Data 1 4.90 4.83
Real Data 2 6.35 6.67

Random Data 1 9.16 9.44
Random Data 2 21.65 21.81
Random Data 3 26.8 26.97
Random Data 4 10.88 11.14

Table 5: Computational results of average total variance of the load in Phase 2.

Data set SA TS GA
Real Data 1 0.80 0.43 2.26
Real Data 2 2.15 1.89 3.19

Random Data 1 2.52 2.07 3.85
Random Data 2 1.06 1.03 1.34
Random Data 3 2.31 0.22 0.44
Random Data 4 3.92 2.34 2.54

algorithms are only 0.80 and 0.43, respectively. On the other hand, the average total

variance of the load by GA algorithm is 2.26, which is a considerably higher value.

For both real data sets, the best average results obtained by the TS algorithm are

0.43 and 1.89, respectively. The main reason for this is the exploration of the neigh-

borhood in TS in Phase 2. Instead of random selection for teacher replacement, this

algorithm focuses on examining all possible teachers and selecting one which gives a

better allocation or reduces the variance of the load.

4.3 Comparison of the algorithms and manual allocation procedure

In a similar form of comparison to Chahal and Werra [11], Ergül [18] and Rankin

[31], the results obtained by the proposed algorithms are also compared with that ob-

tained from actual manual allocation procedures performed by the Industrial Engineering

Department. The manual allocation procedure is started by a discussion between the

heads of department and laboratories in order to come up with a draft allocation. This

is followed by a general meeting that is attended by all full time teachers to discuss how

to modify and finalize the allocation of courses to teachers. Table 6 summarizes these

comparison results.

It can be seen that the results for the manual allocation procedure are worse than

that of the SA and TS algorithms. This is because in practice, the department does not

restrict the maximum number of courses to be taught by each full time teacher. Such

a procedure would create unbalanced load among full time teachers since some of them

would then be assigned to teach only a few courses, while others would be assigned to

teach a large number of courses. Our computational experiments show that through
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Table 6: Comparison of the results of the proposed algorithms and manual allocation procedure.

Data set
Best average total variance of the load

SA TS
Manual

Allocation
Real Data 1 0.80 0.43 3.35
Real Data 2 2.15 1.89 2.80

setting the maximum number of courses to be taught by each teacher in the proposed

algorithms, the total variance of the load can be reduced.

5. Conclusions

In this paper, we describe a teacher assignment problem which allows the possibility

of courses being taught by more than one teacher, and propose the use of SA and TS

algorithms for solving the problem. The proposed algorithms consist of two phases. The

first phase focuses on allocating the teachers to the courses and the number of courses

that should be assigned to each teacher. The second phase, which is based on the results

obtained from the first phase, focuses on allocating the teachers to the course sections in

order to balance the teachers’ load.

To evaluate the performance of the proposed algorithms, we have performed com-

putational experiments on two sets of real data obtained from a university in Indonesia

and some randomly generated data sets. For the real data sets, the computational re-

sults show that both the SA and TS algorithms yield better solutions when compared to

previous work as well as manual allocation procedures. In general, both algorithms are

able to generate good solutions to the problem instances.

Some possible directions for future research include applying other types of meta-

heuristics, such as ant colony optimization, to the teacher assignment problem, as well as

the development of other types of neighborhood structures for the SA and TS algorithms.

The requirements imposed in the teacher assignment problem can also be extended to

adapt to other characteristics and requirements which are unique to some institutions,

such as limiting the number of course sections that can be taught by each teacher and

differing the maximum number of courses that can be taught by each teacher. Another

possible extension is to incorporate course scheduling into the teacher assignment prob-

lem so that the teacher can not only choose the course that he/she prefers to teach, but

also can choose the preferred time periods for teaching the course.
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