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Deep Air Learning: Interpolation, Prediction, and
Feature Analysis of Fine-grained Air Quality

Zhongang Qi, Tianchun Wang, Guojie Song, Weisong Hu, Xi Li∗, Zhongfei (Mark) Zhang

Abstract—The interpolation, prediction, and feature analysis of fine-gained air quality are three important topics in the area of urban
air computing. The solutions to these topics can provide extremely useful information to support air pollution control, and consequently
generate great societal and technical impacts. Most of the existing work solves the three problems separately by different models. In
this paper, we propose a general and effective approach to solve the three problems in one model called the Deep Air Learning (DAL).
The main idea of DAL lies in embedding feature selection and semi-supervised learning in different layers of the deep learning network.
The proposed approach utilizes the information pertaining to the unlabeled spatio-temporal data to improve the performance of the
interpolation and the prediction, and performs feature selection and association analysis to reveal the main relevant features to the
variation of the air quality. We evaluate our approach with extensive experiments based on real data sources obtained in Beijing, China.
Experiments show that DAL is superior to the peer models from the recent literature when solving the topics of interpolation, prediction,
and feature analysis of fine-gained air quality.

Index Terms—Feature Selection, Feature Analysis, Spatio-temporal Semi-supervised Learning, Deep Learning.

F

1 INTRODUCTION

THE interpolation, prediction, and feature analysis of
fine-gained air quality are three important topics in the

area of urban air computing. A good interpolation solves the
problem that there are limited air-quality-monitor-stations
whose distribution is uneven in a city; a precise prediction
provides valuable information to protect humans from be-
ing damaged by air pollution; a reasonable feature analysis
reveals the main relevant factors to the variation of air
quality. In general, the solutions to these topics can extract
extremely useful information to support air pollution con-
trol, and consequently generate great societal and technical
impacts.

However, there exist several challenges for urban air
computing as the related data have some special character-
istics. First, since there are insufficient air-quality-monitor-
stations in a city due to the high cost of building and
maintaining such a station, it is expensive to obtain labeled
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training samples when dealing with fine-gained air quality.
Second, the labeled data of the air-quality-monitor-stations
are incomplete, and there exist lots of missing labels of the
historical data in some time periods for some stations. The
reason for the incomplete labels is related to the air quality
monitor devices. In general, each station only has one mon-
itor device which needs to be maintained at intervals, thus
there will be no outputs for the station when the device
is being maintained, recalibrated, or has other problems.
Third, the kinds of urban air related data are various for
the development of data acquisition technologies. However,
there is not an universally accepted judgment to reveal
the main causes of the occurrence and dissipation of air
pollution, especially the pollution of PM2.5. Hence, it is
hard to know that what kinds of data are the main relevant
features for interpolation and prediction, and the key factors
for environment departments to prevent and control air
pollution.

This paper is motivated to address all these challenges
by utilizing the information contained in the unlabeled data
and the spatio-temporal data, and performing feature selec-
tion and association analysis for the urban air related data.
Though labeled data are difficult or expensive to obtain,
large amounts of unlabeled examples can often be gathered
cheaply. In general, unlabeled data can help in providing
information to better exploit the geometric structure of the
data. Moreover, most of the urban air related data contain
both space and time information. In Figure 1, (a) and (b)
show totally different observations in each place with a
long time interval1; Each row in (c) shows continuous air
quality changing observed in one place2; (d), (e), and (f)
show observations at different spatial locations of Beijing

1. from: http://www.guardian.co.uk/
2. from: http://www.cma.gov.cn/
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(a) (b) (c)

(d) (e) (f)

Fig. 1: (a) and (b) show totally different observations with a long time interval in National Olympic Stadium (Bird
Nest) and CCTV Headquarters, respectively; Each row in (c) shows continuous air quality changing of 16 days in 2015
at the same location of Beijing; (d), (e), and (f) are air quality comparisons among Temple of Heaven, Tian’anmen
Square, and Beijing Yanqing at the same time in Beijing.

at the same time3, where Tian’anmen Square is close to
Temple of Heaven, and far away from Beijing yanqing.
Figure 1 shows an important statistical characteristic of
spatio-temporal data, that is nearby (in space and time)
observations tend to be more alike than those far apart,
which can be utilized to complete the missing labels of the
historical labeled data. Figure 2(a) shows the decision planes
learned only from labeled data and learned from labeled
and unlabeled data for the binary classification problem.
Figure 2(b) shows the characteristic of the spatio-temporal
data. Obviously, the information of the unlabeled data and
the spatio-temporal data are valuable to guide the learning
process and enhance the final performance.

Feature selection is the process of selecting a subset
of relevant features for use in model construction, which
reduces the dimension of the urban air related feature vector
by ignoring the redundant or irrelevant data. Combining
with feature selection, association analysis reveals the main
relevant features to the variation of air quality. There exist
several embedded methods incorporating feature selection
into the regression based methods, such as Lasso [1] and
Group Lasso [2]. However, utilizing the L1-type penalty or
the grouped L1-type penalty to embed feature selection in
the input layer of neural network is still challenging for
the loss function of neural network is complex, nonlinear,
and non-convex. In this paper, we propose a novel method
which introduces an extra sparse layer to perform feature
selection in neural network. The optimization of the pro-

3. photos are taken on December 25, 2015 in Beijing, from
weather.com.cn and Chinanews.com

posed method is easy to solve and the performance of this
method is well in finding the most relevant features in input
layer to the final predictions.

Despite widespread adoption, neural networks based
models remain black boxes for human. Understanding the
reasons behind predictions is important for most applica-
tions, because it decides whether one can take actions based
on the model’s predictions, especially for air pollution’s
prevention and control. The proposed feature selection and
analysis method reveals the importance of different input
features to the predictions of the neural networks, thus
has the ability to reveal some inner mechanism of the
black-box deep models, which does not limit to air pol-
lution prevention and control, but can also be applied to
many other applications, such as medical diagnosis and
terrorism detection. For example, one cannot take actions
based on a model’s predictions without knowing whether
the black-box model is trustworthy or not, otherwise the
consequences may be catastrophic.

Most of the existing work solve the problems of interpo-
lation, prediction, and feature analysis of fine-grained air
quality separately by different models. In this paper, we
propose a general and effective approach to solve the three
problems in one model called the Deep Air Learning (DAL),
which addresses all the challenges that exist in the area of air
computing simultaneously by a deep learning network. We
claim that firstly, combining prediction with feature analysis
is needed, because feature analysis helps to find out what
are the main relevant features to the black-box model’s
predictions, and whether the prediction model is reasonable
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Fig. 2: (a) The decision plane learned only from labeled data (the dashed line), and the decision plane learned from
labeled and unlabeled data (the solid line); (b) The spatio-temporal data.

and trustworthy or not. Except for the chemical analysis, the
data mining method can also provide useful information
which helps the environment departments to understand
the formation of air pollution, and thus to prevent and con-
trol the air pollution. Secondly, combining prediction with
interpolation is convenient, because interpolation can also
be considered as a prediction problem. Adding 1-dim to the
output layer of the deep network can integrate interpolation
with prediction, which almost does not increase the compu-
tation complexity of the prediction model. We first propose
two novel methods to embed feature selection and spatio-
temporal semi-supervised learning in the neural network,
respectively. Then the framework of DAL is introduced and
the details of association analysis are described. We evaluate
our approach with extensive experiments based on real data
sources obtained in Beijing, China. Experiments show that
DAL is superior to the peer models from the recent literature
when solving the topics of interpolation, prediction and
feature analysis of fine-gained air quality.

Overall, our main contributions are as follows:
1) We develop a general and effective approach called DAL

to unify the interpolation, prediction, feature selection
and analysis of fine-grained air quality into one model.

2) We propose a novel method to perform feature selection
in the input layer of neural network, whose optimization
is easy to solve and performance is well in finding the
most relevant features. The proposed feature selection
and analysis method has the ability to reveal some inner
mechanism of the black-box deep network models.

3) We utilize the characteristics of the spatio-temporal data,
and the information contained in the unlabeled data, to
achieve spatio-temporal semi-supervised learning in the
neural network.

4) We demonstrate through extensive evaluations on real
datasets that the DAL model performs well in compari-
son with the peer methods in the literature.

2 RELATED WORK

In this section, we discuss three main research categories
related to our work, including air pollution control, semi-
supervised learning and feature selection.

Air pollution control: Various approaches have been
proposed to apply data mining to the topics of interpo-
lation, prediction, and feature analysis for air pollution
control in the recent literature. For interpolation, Li et. al
[3] investigates spatio-temporal interpolation methods for
the application of air pollution assessment; Zheng et al. [4]
infer the real-time and fine-grained air quality information
throughout a city by a co-training-based approach; Hsieh
et al. [5] propose an affinity graph framework to solve
the problems of inferring real-time air quality of a given
location and recommending the best locations where new
monitor stations can be established. For prediction, Dong et
al. [6] propose a novel framework based on hidden semi-
Markov models (HSMMs) to predict high PM2.5 concentra-
tion value; Thomas and Jacko [7] apply the regression and
neural network models to forecasting expressway PM2.5

concentration; Zheng et. al [8] build a real-time air quality
forecasting system that uses data-driven models to predict
fine-grained air quality over the following 48 hours. For
feature analysis, Zhou et. al [9] propose a probabilistic
dynamic causal model to uncover the dynamic temporal
dependencies of PM2.5; Singh et. al [10] utilize principal
components analysis (PCA) to identify air pollution sources,
and tree based ensemble learning models to predict the
urban air quality in India. Different from most of the existing
work which focus on one or two specific topics in the area of
air pollution controlling, our work unify the interpolation,
prediction, feature selection and analysis of fine-grained air
quality into one model.

Semi-supervised learning: Semi-supervised learning is
a class of supervised learning tasks and techniques that
also make use of unlabeled data for training - typically
a small amount of labeled data with a large amount of
unlabeled data. Self-training [11] and co-training [12], [13]
extract the most confidently classified examples from the
unlabeled data, and add them into the labeled training set
iteratively. Li et al. [14] explore the geometric structure of
the marginal distribution of the whole data including the
labeled and the unlabeled data through a specific family of
parametric functions. Socher et al. [15] propose a recursive
autoencoder trained on both labeled and unlabeled texts to
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predict sentiment distribution. Weston et al. [16] show how
one can improve supervised learning for deep architectures
if one jointly learns an embedding task using unlabeled
data. For spatio-temporal data, the nearby (in space and
time) observations tend to be more alike than those far
apart [17]. In our work, this characteristic is utilized in semi-
supervised learning to better exploit the geometric structure
of the spatio-temporal data, and to achieve the purpose of
interpolation.

Feature selection: In many real-world applications, fea-
ture selection techniques have become an apparent need.
Saeys et al. [18] give a review of feature selection techniques
in bioinformatics. Setiono and Liu [19] propose a three-layer
feedforward neural network trained on the whole set of
attributes and removing the irrelevant features one by one.
Also, there exist several embedded methods incorporating
feature selection. The L1-type penalty of the lasso [1], which
was originally proposed for linear regression models, has
also been applied to other models as for example Cox re-
gression [20], logistic regression [21], [22], and multinomial
logistic regression [23]. Ng [24] compares the L1 regular-
ization and the L2 regularization on logistic regression for
preventing overfitting. Group lasso [2], [25], [26] introduces
a penalty which can be viewed as an intermediate between
the L1- and L2-type penalty to select grouped features
instead of individual variables. The main drawback of the
L1-type penalty is its non-smooth characteristic thus leading
to complex optimization effort. In particular, the LARS algo-
rithm [27] allows to find the entire regularization path at the
cost of a single matrix inversion. Proximal-gradient meth-
ods [28] use an approximate proximity operator for taking
advantage of the structure of the non-smooth optimization
problem. However, these optimization methods are difficult
to be performed in neural network framework, for the loss
function of neural network is complex, nonlinear, and non-
convex. Different from the work of removing the irrelevant
features one by one in neural network [19], and the work
of adding the L1-type penalty, our work introduces an
extra sparse layer to remove all the redundant or irrelevant
features during one training process, whose optimization is
easy to solve.

3 MODEL FORMULATION

The main idea of this work is based on embedding feature
selection and spatio-temporal semi-supervised learning si-
multaneously in different layers of the deep learning net-
work. Considering the topics of interpolation and prediction
both as the classification problem with different outputs, we
use a general multiple-output classifier to solve the two
topics. In this paper we propose a novel deep learning
network as the multiple-output classifier which utilizes the
information pertaining to the unlabeled spatio-temporal
data not only to achieve the purpose of interpolation, but
also to improve the performance of the prediction. Further,
the main relevant features to the variation of the air quality
can also be revealed by embedding feature selection and
performing association analysis in the proposed framework.
We begin with describing the data representations and
symbols used in this work, then introduce the method to
embed feature selection in the neural network. The method

of how to utilize the information of the unlabeled spatio-
temporal data is described in Section 3.3. We introduce
the general framework of DAL and give the details of
association analysis in Section 3.4. Finally we describe the
learning algorithm for DAL in Section 3.5.

3.1 Data Representations and Symbols
We denote a training dataset as I which contains m la-
beled instances {(x(i),y(i))}mi=1 and u unlabeled instances
{x(i)}ui=1. x(i) ∈ RK is the feature descriptor for instance
i ∈ I , and y(i) ∈ RO is the corresponding label for the
labeled training data. x(i)p and y

(i)
p are the p-th element

in vector x(i) and vector y(i), respectively. Given a neural
network, let nl denote the number of the layers. Hence,
layer 1 is the input layer and layer nl is the output layer.
The neural network has parameters (W

(l)
ji , b

(l)
j ), where W (l)

ji

is the weight associated with the connection between unit i
in layer l and unit j in layer l + 1, b(l)j is the bias associated
with unit j in layer l + 1. Note that the bias units do not
have inputs or connections going into them for they always
output the value +1. We also let sl denote the number
of nodes in layer l (not counting the bias unit). W (l) is
considered as a sl+1×sl matrix the element of which isW (l)

ji .
W

(l)
j. is the jth row in W (l). a(l)j is denoted as the activation

of node j in the layer l, z(l)j is denoted as the total weighted
sum of inputs to node j in layer l, and f is denoted as the
activation function. Thus, a(l)j = f(z

(l)
j ). hW,b(x

(i)) is the
output of our hypothesis on input x(i) using parameters W ,
b, which is a vector of the same dimension as the target value
y(i). hW,b(x

(i))q is the q-th element in vector hW,b(x
(i)).

3.2 Feature Selection in Neural Network
Most of the existing neural network based methods focus on
imposing sparsity constraints on the hidden units instead
of on the input units to discover the interesting structure
in the data. In this paper, we claim that feature selection
for the input units is also important in the area of neural
network even if some deep learning network based methods
have the ability of feature learning, especially when there
are many irrelevant input features and we intend to learn
the correlation between the target and the input features.
Embedding feature selection in neural network encourages
the parameter vector for the input layer to be sparse. Hence,
many irrelevant features are ignored and the main relevant
features to the target are revealed explicitly for association
analysis.

Because of the nonlinearity and the complexity, neural
networks based models remain black boxes for human. In
most cases, we observe that deep networks models achieve
good performance in many applications, without knowing
how these models work and whether their predictions are
reasonable and trustworthy or not. The proposed feature
selection and analysis method has the ability to reveal
some inner mechanism of the black box by discovering
the importance of each input feature to the model’s final
predictions, which provides useful information not only to
air pollution’s prevention and control, but also to many
other applications where knowing how the model works
is important.
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Fig. 3: The graph of the neural network with grouped L1

in the input layer.

L1 regularization uses a penalty term which encourages
the sum of the absolute values of the parameters to be small.
In many models L1 regularization causes many parameters
to equal zero, which makes it a natural candidate in feature
selection. Grouped L1 regularization selects the whole fac-
tors of a group instead of the individual dummy variables.
It has the attractive property when embedding in neural
network that it truly does the feature selection instead of
parameter selection by treating all the parameters of each
feature as a natural group. Figure 3 shows the graph of the
neural network with grouped L1 in the input layer. The cost
function of the network is presented as follows:

J(W, b) =
1

m

m∑

i=1

L(W, b;x(i),y(i)) + λ1||W (1)||2,1

+
λ2
2

nl−1∑

l=2

||W (l)||22 (1)

The first term in the definition of J(W, b) is the loss
function over the training set of m examples. The second
term is the grouped L1 regularization for the input layer to
perform feature selection. The third term is the square of the
L2 regularization for the other layers to avoid over-fitting.
However, the second term in optimization (1) is nonsmooth,
and the first term is a complex nonlinear and non-convex
function for neural network. Hence, it is difficult to utilize
the existing methods, i.e. LARS [27], the proximal method
[28], the coordinate descent method [29], to solve the opti-
mization.

In this paper, we propose another novel method which
introduces an extra sparse layer between the input layer and
the second layer in neural network to perform feature selec-
tion. The number of the nodes in the extra sparse layer is
the same as that in the input the layer, and there only exists
a single connection between the node in the input layer and
the node in the extra sparse layer, as Figure 4 shows. Here
the input layer becomes layer 0, and the extra sparse layer
becomes layer 1. We denote the weight matrix between the
input layer and the extra sparse layer as W (0), which is a
diagonal matrix. W (0) = diag(W

(0)
11 ,W

(0)
22 , ...,W

(0)
s1s1). For

initialization, W (0)
11 = W

(0)
22 = ... = W

(0)
s1s1 . Different from

the method introduced by sparse autoencoder [30], we add
the sparse constraints on the extra sparse layer to perform
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Fig. 4: The graph of the neural network with feature
selection.

feature selection on the input layer. The cost function of the
network showed in Figure 4 is presented as follows:

J(W, b) =
1

m

m∑

i=1

L(W, b;x(i),y(i)) + λ1

s1∑

j=1

KL(ρ||ρ̂j)

+
λ2
2

nl−1∑

l=0

||W (l)||22 (2)

where KL(ρ||ρ̂j) is the Kullback-Leibler Divergence be-
tween ρ and ρ̂j , ρ̂j is an average result of the activation a(1)j

for node j in the extra sparse layer over the whole training
set, and ρ is the sparsity parameter.

KL(ρ||ρ̂j) = ρlog
ρ

ρ̂j
+ (1− ρ)log

1− ρ
1− ρ̂j

ρ̂j =
1

m

m∑

i=1

a
(1)
j (x(i))

a
(1)
j (x(i)) = f(〈W (0)

j. ,x
(i)〉+ b

(0)
j ) = f(W

(0)
jj x

(i)
j + b

(0)
j )

(3)

The sparsity parameter ρ is typically a small value close
to zero. The KL Divergence constraint KL(ρ||ρ̂j) would
make the average activation of each node j in the extra
sparse layer to be close to ρ. The activation of node j in
the extra sparse layer only has a single connection with
node j in the input layer. To satisfy this constraint, some
of the activations of the nodes in the sparse layer must be
near zero. Hence, the effect of the corresponding features in
the input layer is removed from the network respectively
to achieve the purpose of feature selection. The irrelevant
features can be ignored and the main relevant features
to the target can be revealed during the training of the
network. Compared with optimization (1), the optimization
(2) is simple to be solved with a small change to the Back
Propagation algorithm [31].

3.3 Spatio-temporal Semi-supervised Learning in Neu-
ral Network
A limitation of supervised learning is that it requires a set
of labeled examples which are often difficult or expensive
to obtain. However, large amounts of unlabeled examples
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Fig. 5: The graph of the spatio-temporal semi-supervised
neural network.

can often be gathered cheaply. The information contained
in plentiful unlabeled examples can be utilized to better
exploit the geometric structure of the data, especially for the
spatio-temporal data. An important statistical characteristic
of spatio-temporal data is that nearby (in space and time)
observations tend to be more alike than those far apart.
Based on this characteristic, we propose a novel method
which embeds spatio-temporal semi-supervised learning in
the output layer of the neural network by minimizing the
following loss function between the nearby observations
over the labeled and unlabeled training set.

1

m+ u

m+u∑

i=1

∑

j∈Ni

e−(ds(x(i),x(j))+α·dt(x(i),x(j)))L̄(W, b;x(i),x(j))

(4)

where Ni is the spatio-temporal neighborhood of instance
i, ds is the spacial distance measure, dt is the temporal dis-
tance measure, and α is a parameter. Selecting the quadratic
loss as the loss function, we obtain: L̄(W, b;x(i),x(j)) =
1
2 ||hW,b(x

(i))− hW,b(x
(j))||2.

To simplify (4), we only consider the spatial loss between
the observations at the same time and the temporal loss
between the observations at the same location, and obtain
the following loss function:

1

m+ u

m+u∑

i=1

∑

j∈N (spa)
i

C
(s)
ij L̄(W, b;x(i),x(j))

+
α

m+ u

m+u∑

i=1

∑

j∈N (tem)
i

Ct
ijL̄(W, b;x(i),x(j)) (5)

whereN (spa)
i is the spatial neighborhood of instance i at the

same time,N (tem)
i is the temporal neighborhood of instance

i at the same location, C(s)
ij = e−ds(x

(i),x(j)), and C
(t)
ij =

e−dt(x
(i),x(j)).

Figure 5 shows the graph of the spatio-temporal semi-
supervised neural network. In Figure 5 we choose N
nearest neighbors i1, i2, . . . , iN as the spatial neighborhood
for instance i at time t, and select the previous T times
t − 1, t − 1, . . . , t − T of instance i as the temporal neigh-
borhood for instance i. Neural network is a general clas-
sifier which can have multiple outputs. For the purpose
of representation clarity, we only draw one output node
in Figure 5. The spatio-temporal semi-supervised learning

Algorithm 1: DAL algorithm

1 Normalize each feature of the input
2 Pretrain the weights of DAL
3 Input Layer: Model AEFS, Formula (6)
4 Middle Layers: Model AE, Formula (7)
5 Output Layer: Model STSR, Formula (8)

6 Fine Tune the weights of DAL
7 All the Layers simultaneously: Model DAL, Formula

(9)
8 Association Analysis
9 Compute the effect of each feature for the target

using Algorithm 2.

is utilized in our work not only to achieve the purpose
of interpolation, but also to improve the performance of
prediction. When t is the current time, ŷ(i,t) is the predicted
label for interpolation; when t is a future time, ŷ(i,t) is the
predicted label for prediction.

3.4 Deep Air Learning

By embedding feature selection and spatio-temporal semi-
supervised learning in the input layer and the output layer
of the deep learning network respectively, we propose a
general and effective approach called Deep Air Learning
(DAL). The graph of DAL is shown in Figure 6. There exist
a large amount of unlabeled data both in spatial dimension
and temporal dimension, which can be utilized to pretrain
the weights of the deep model.

In the input layer of DAL, we embed feature selection in
an Autoencoder [32] over the whole training set with labeled
and unlabeled data to pretrain the weights. The proposed
model is called Autoencoder with Feature Selection (AEFS),
and its cost function is presented as follows:

J(W, b) =
1

m+ u

m+u∑

i=1

L(W, b;x(i),x(i)) + λ1

s1∑

j=1

KL(ρ||ρ̂j)

+
λ2
2

2∑

l=0

||W (l)||22 (6)

In the middle layers of DAL, we use an Autoencoder
(AE) directly over the whole training set with labeled and
unlabeled data to pretrain the weights of these layers. The
cost function of AE is presented as follows:

J(W, b) =
1

m+ u

m+u∑

i=1

L(W, b;x(i),x(i)) +
λ

2

2∑

l=1

||W (l)||22
(7)

In the output layer of DAL, we embed spatio-temporal
semi-supervised learning in regression to pretrain the
weights. The proposed model is called Spatio-temporal
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Fig. 6: The graph of Deep Air Learning (DAL).

Semi-supervised Regression (STSR), and its cost function is
presented as follows:

J(W, b) =
1

m

m∑

i=1

L(W, b;x(i),y(i)) +
λ

2
||W ||22

+
α

m+ u

m+u∑

i=1

∑

j∈N (spa)
i

C
(s)
ij L̄(W, b;x(i),x(j))

+
β

m+ u

m+u∑

i=1

∑

j∈N (tem)
i

C
(t)
ij L̄(W, b;x(i),x(j)) (8)

Finally, we obtain the overall cost function of DAL:

J(W, b) =
1

m

m∑

i=1

L(W, b;x(i),y(i))

+ λ1

s1∑

j=1

KL(ρ||ρ̂j) +
λ2
2

nl−1∑

l=0

||W(l)||22

+
α

m+ u

m+u∑

i=1

∑

j∈N (spa)
i

C
(s)
ij L̄(W, b;x(i),x(j))

+
β

m+ u

m+u∑

i=1

∑

j∈N (tem)
i

C
(t)
ij L̄(W, b;x(i),x(j)) (9)

We use (9) to perform fine tuning. The pretrained weights
obtained from all the labeled and unlabeled data are utilized
as the prior weights for the fine-tuning process, which is
helpful to improve the prediction accuracy. Fine tuning
treats all the layers of DAL as a single model, and conse-
quently, the weights of all the layers in DAL can be im-
proved in one iteration. The algorithm of the DAL approach
is described in Algorithm 1.

We perform association analysis by normalizing each
feature of the input before the training and evaluating
the effect of each feature for the target after the training.
The evaluation method is described in Algorithm 2. When
effk > 0, feature k is a relevant factor to the target; when
effk = 0, feature k is an irrelevant factor; when effk < 0,

Algorithm 2: Association Analysis in DAL

1 Compute the mean loss ls over m labeled training
instances and n testing instances using the trained
weights of DAL: ls = 1

m+n

∑m+n
i=1 L(W, b;x(i),y(i))

2 foreach feature k, 1 ≤ k ≤ K do
3 foreach i, 1 ≤ i ≤ m+ n do
4 Let x̂(i) = x(i), and Set x̂(i)k = 0

5 Compute the mean loss lks :
lks = 1

m+n

∑m+n
i=1 L(W, b; x̂(i),y(i))

6 Compute the effect of feature k for the target:
effk = lks − ls

feature k is a disturbance. After feature selection performed
by DAL, some of the activations of the nodes in the sparse
layer is near zero, thus the corresponding features which
are irrelevant factors and disturbances in the input layer is
removed from the network respectively. It is obvious that
the larger the effect eff is, the more relevant the feature is
to the target when eff > 0.

Combining with feature selection, association analysis
reveals the main relevant features to the variation of the
target, which is helpful for us to understand how the black-
box prediction model works and whether its predictions
are reasonable and trustworthy or not in general. The re-
sults of feature selection and analysis from a reasonable
and trustworthy prediction model provide some insights
for the formation of air pollution, which demonstrates the
effectiveness of the data mining method in the application
of air pollution prevention and control. Further, by embed-
ding spatio-temporal semi-supervised learning in DAL, the
purpose of interpolation is achieved. The output ŷ(i,t) is the
predicted label for interpolation when t is the current time,
and is the predicted label for prediction when t is a future
time.

3.5 Learning Algorithm
Our goal is to minimize the cost function J(W, b) as a
function of W and b. In this section, we describe the back-
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propagation learning algorithm for DAL, which gives an
efficient way to solve the optimization of neural network
with the extra sparse layer and the spatio-temporal semi-
supervised constraints. Selecting the quadratic loss as the
loss function, we obtain the overall cost function of DAL in
(9) as follows:

J(W, b) =
1

m

m∑

i=1

1

2
||hW,b(x

(i))− y(i)||2

+ λ1

s1∑

j=1

KL(ρ||ρ̂j) +
λ2
2

nl−1∑

l=0

||W(l)||22

+
α

m+ u

m+u∑

i=1

∑

j∈N (spa)
i

C
(s)
ij

2
||hW,b(x

(i))− hW,b(x
(j))||2

+
β

m+ u

m+u∑

i=1

∑

j∈N (tem)
i

C
(t)
ij

2
||hW,b(x

(i))− hW,b(x
(j))||2

(10)

In detail, here is the learning algorithm for DAL:
1. Perform a feedforward pass, computing the activa-

tions for layer 1 (the extra sparse layer), layer 2, layer 3, and
so on up to the output layer nl.

2. For each output node q in layer nl, set

δ(nl)(i)
qp =

∂hW,b(x
(i))q

∂z
(nl)(i)
p

=

{
f ′(z(nl)(i)

p ), if q = p

0, if q 6= p
(11)

3. For layer l = nl − 1, nl − 2, nl − 3, ..., 2, 1
For each node p in layer l, set

δ(l)(i)qp =
∂hW,b(x

(i))q

∂z
(l)(i)
p

=

(sl+1∑

k=1

δ
(l+1)(i)
qk W

(l)
kp

)
f ′(z(l)(i)p )

(12)

4. Compute the desired partial derivatives for layer l =
nl, nl − 1, nl − 2, ..., 3, 2, which are given as:

∂J(W, b)

∂W
(l−1)
rp

=

1

m

m∑

i=1

snl∑

q=1

(
hW,b(x

(i))q − y(i)q

)
δ(l)(i)qp a(l−1)(i)p + λ2W

(l−1)
rp

+
α

m+ u

m+u∑

i=1

∑

j∈N (spa)
i

C
(s)
ij

snl∑

q=1

(
hW,b(x

(i))q − hW,b(x
(j))q

)

·
(
δ(l)(i)qp a(l−1)(i)p − δ(l)(j)qp a(l−1)(j)p

)

+
β

m+ u

m+u∑

i=1

∑

j∈N (tem)
i

C
(t)
ij

snl∑

q=1

(
hW,b(x

(i))q − hW,b(x
(j))q

)

·
(
δ(l)(i)qp a(l−1)(i)p − δ(l)(j)qp a(l−1)(j)p

)
(13)

The derivation process of formula ∂J(W,b)
∂b(l−1) is similar as that

of formula ∂J(W,b)

∂W
(l−1)
rp

.

5. Compute the desired partial derivatives for layer 1
(the extra sparse layer), which are given as:

∂J(W, b)

∂W
(0)
pp

=
1

m

m∑

i=1

snl∑

q=1

(
hW,b(x

(i))q − y(i)q

)
δ(1)(i)qp x(i)p

+
λ1
m

(
− ρ

ρ̂p
+

1− ρ
1− ρ̂p

) m∑

i=1

f ′(z(1)(i)p )x(i)p + λ2W
(0)
pp

+
α

m+ u

m+u∑

i=1

∑

j∈N (spa)
i

C
(s)
ij

snl∑

q=1

(
hW,b(x

(i))q − hW,b(x
(j))q

)(
δ(1)(i)qp x(i)p − δ(1)(j)qp x(j)p

)

+
β

m+ u

m+u∑

i=1

∑

j∈N (tem)
i

C
(t)
ij

snl∑

q=1

(
hW,b(x

(i))q − hW,b(x
(j))q

)(
δ(1)(i)qp x(i)p − δ(1)(j)qp x(j)p

)

(14)

The derivation process of formula ∂J(W,b)
∂b(0)

is similar as that
of formula ∂J(W,b)

∂W
(0)
pp

. Since W (0) is a diagonal matrix, we hold

W
(0)
rp = 0, r 6= p in the learning algorithm.

4 EXPERIMENTS

4.1 Data and Parameter Setting

In the evaluation we apply our model to the topics of
interpolation, prediction, and feature analysis of fine-gained
air quality based on real data sources obtained in Beijing,
China. The real data sources used in the experiments con-
tains the following datasets:

1) Meteorological data: We collect fine-gained
(3km×3km) meteorological data, consisting of temperature,
humidity, barometric pressure, precipitation, wind
direction, and wind strength every hour, generated
from a classic numerical weather prediction model we build
in our labs.

2) Air quality data: We collect real valued concentration
of six kinds of air pollutants, consisting of PM2.5, PM10, SO2,
NO2, CO, and O3 every hour, reported by 35 ground-based
air quality monitor stations in Beijing.

We divide the Beijing city (within the Fifth Ring Road)
into disjointed grids (e.g., 1km×1km in the experiments)
assuming that each grid is an instance and the air quality
in a grid is uniform. The instance is labeled if there is an
air quality monitor station located in the grid; otherwise,
the instance is unlabeled. In the experiments, 35 grids are
labeled, and 3420 grids are unlabeled. Assuming that the
current time is t, the targets are to interpolate the current
PM2.5’s concentration for unlabeled data, and to predict the
PM2.5’s concentration of the following Tf hours for both
the labeled and unlabeled data. Hence, the number of the
output nodes for DAL is Tf + 1. For a given instance i, the
input vector x(i) contains the following features:

1) The meteorological data for the grid of instance i, from
time t− Tp1

to time t+ Tf ;
2) The air quality data of the nearest N air quality

monitor stations for the grid of instance i, from time t− Tp2

to time t.
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Fig. 7: The number of features selected by DAL and the
corresponding RMSE on the testing set.

In the experiments, we use real data sources of 60 days
collected from Beijing in November and December, 2015.
The PM2.5’s concentration is our prediction target. We set
Tp1

= 11, Tp2
= 23, N = 3, and Tf = 48, thus the

dimensionality of the input vector is 6 · (Tf + Tp1
+ 1) +

6 ·N · (Tp2
+ 1) = 792, and the dimensionality of the output

vector is 49 (Hour 0–48). Since the number of the unlabeled
grids is very large, every 7 grids we select a grid as the
unlabeled instance. Hence, the number of the unlabeled
grids is reduced to 489. We repeat 10 times experiments and
report the averages of the results. For each experiment, we
select 400 hours of data as the training set, and 300 hours of
data as the testing set. The number of labeled and unlabeled
training instances amount to (35 + 489) × 400 = 209600,
thus constructing a large-scale data set. Different training
sets and testing sets are selected from the real data sources
of 60 days for each of the 10 times experiments.

We compare our model DAL with several closely related
methods, including Logistic Regression4, L1-regularized

4. http://research.microsoft.com/en-us/um/people/minka
/papers/logreg/
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Fig. 8: The RMSE on the testing set as a function of α, and
a function of β, respectively.

Logistic Regression5 [33], L1-regularized Logistic Regres-
sion with the same spatio-temporal constraints (ST), Neu-
ral Network, Autoencoder, Laplacian Regression (LapReg)
[34], Autoregressive Integrated Moving Average (ARIMA)
[35], and Recurrent Neural Network (RNN) [36] in the
experiments. The root-mean-square error (RMSE) is used to
evaluate the performances of the methods. For simplicity,
we set the numbers of the layers for Neural Network and
Autoencoder both to 4, and the number of the layers for
DAL to 5, since there is an extra sparse layer in DAL. The
activation function for the neural network based methods
is the sigmoid function, and the learning rate is 0.5. The
size of the neighborhood for each instance i is defined as
the count of the nearest neighbors of instance i. In the
experiments, we set the size of the spatial neighborhood
N (spa)

i , and the size of the temporal neighborhood N (tem)
i

for each instance i both to 2. λ1, α, and β are the feature
selection parameter, the spatial neighborhood parameter,
and the temporal neighborhood parameter, respectively.

5. http://www.csie.ntu.edu.tw/˜cjlin/liblinear/
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TABLE 1: The RMSE on the testing set using Logistic Regression, L1-regularized Logistic Regression, L1-regularized
Logistic Regression (ST), Neural Network, Autoencoder, ARIMA, RNN, and DAL, respectively.

Root-Mean-Square Error (RMSE)
Interpolation Prediction

Hour 0 Hour 1–12 Hour 13–24 Hour 25–36 Hour 37–48

Logistic Regression 0.0671 0.0753 0.0907 0.0992 0.1103
L1-regularized Logistic Regression 0.0680 0.0795 0.0935 0.1013 0.1141

L1-regularized Logistic Regression (ST) 0.0675 0.0741 0.0884 0.0987 0.1089
Neural Network 0.0752 0.0823 0.0898 0.0943 0.1068

Autoencoder 0.0693 0.0714 0.0801 0.0894 0.0955
Laplacian Regression 0.0799 0.0800 0.0868 0.0932 0.0949

ARIMA 0.0714 0.0832 0.0913 0.1017 0.1150
RNN 0.0653 0.0679 0.0781 0.0837 0.0922
DAL 0.0667 0.0667 0.0724 0.0797 0.0877

TABLE 2: Association analysis for different categories of features.

The Relevant Feature PM2.5, CO, PM10, Wind Strength (North), Temperature,
Wind Strength (East), NO2, Precipitation, SO2

The Irrelevant Feature Barometric Pressure, Humidity, O3

4.2 Results and Discussions

For feature selection, we describe the number of features
selected by DAL as a function of λ1 in Figure 7(a), and
the RMSE on the testing set using DAL as a function of
λ1 in Figure 7(b) when α = β = 0. From Figure 7(a)
we observe that the number of features selected by DAL
decreases as the parameter λ1 increases, which indicates the
effectiveness of feature selection by the extra sparse layer.
The mean activation of node j in the extra sparse layer over
the whole training set is defined as MAj = 1

m

∑m
i=1 a

(1)(i)
j .

In the experiments, the range of MAj (j = 1, ..., s1) is
in [8.5906e−140, 1] after the training when λ1 = 3. The
jth feature is removed from the network when MAj is
very small. Here the feature selection can remove the least
important features from the deep networks without de-
creasing the prediction accuracy a lot. The input features
in our experiments are different air pollution data and
meteorological data, which are all related to the prediction
of the PM2.5’s concentration. The feature selection keeps
the major features, while removes the minor features, with
the smallest decline of the predictor’s performance, which
reveals the importance of different input features of the
black-box model. From Figure 7(b) we observe that, when
λ1 = 2, there are 133 features removed from the feature
space, while the RMSE only increases 0.0013. To make a
comparison, we remove 133 features randomly from the
feature space 5 times, and train the model using the left
features. The RMSE increases 0.0041 on average, which
is much larger than that of the feature selection method,
indicating that the extra sparse layer truly selects the most
relevant features to the target during the training in the
proposed model.

Note that the aim of the feature selection and analysis
is not to increase the prediction accuracy, but to discover
the importance of different input features to the predictions
of the neural networks, reveal the main relevant factors to
the variation of air quality, and provide a proof from data
science to support the air pollution’s prevention and control.

Most of the previous feature selection methods also decrease
the prediction accuracy in many applications. However,
our proposed model is flexible: when the online system
needs high accuracy, the feature selection constraints can be
removed; when one wants to know how the model makes
predictions, adding the feature selection and analysis to the
original prediction model reveals some inner mechanism of
the black box.

In Table 1, we summarize the RMSE on the testing
set using Logistic Regression, L1-regularized Logistic Re-
gression, L1-regularized Logistic Regression (ST), Neural
Network, Autoencoder, LapReg, ARIMA, RNN and DAL,
respectively. For DAL in Table 1, λ1 = 2.5, α = 10, and
β = 15. It is easy to understand that the RMSE on the
testing set increases as the prediction hour increases for all
the methods. From Table 1 we observe that DAL performs
better than Logistic Regression, L1-regularized Logistic Re-
gression, L1-regularized Logistic Regression (ST), Neural
Network, Autoencoder, LapReg, and ARIMA both in the
topics of interpolation (Hour 0) and prediction (Hour 1–
48). RNN performs slightly better than DAL in the topic of
interpolation, but much worse than DAL as the prediction
hour increases in the topic of prediction. Because RNN only
utilizes the temporal information of the data, and ignores
the spacial information and the large amount of the unla-
beled data. ARIMA also only utilizes the temporal informa-
tion of the data, and it only uses the PM2.5’s concentration
as the input features, while ignores other related features.
The performance of Logistic Regression is better than that
of L1-regularized Logistic Regression, for feature selection
is embedded during the training process in L1-regularized
Logistic Regression, which may result in slight increase of
the prediction error. Compared with Autoencoder, the extra
sparse layer is added to DAL to achieve the purpose of
feature selection. However, the performance of Autoencoder
is inferior to the performance of DAL, for the usage of
the spatio-temporal unlabeled data in DAL. Obviously, the
characteristic of the spatio-temporal data, and the informa-
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Fig. 9: The interpolation results of PM2.5’s concentration using DAL to demonstrate a formation process of a haze
happened in December in Beijing (within the Fifth Ring Road).

tion of the unlabeled data are valuable to better exploit
the geometric structure of the data. Embedding the spatio-
temporal semi-supervised learning in the output layer of
DAL is effective to decrease the learning error and improve
the final performance. The performance of L1-regularized
Logistic Regression (ST) is better than that of L1-regularized
Logistic Regression, also indicating the effectiveness of the
spatio-temporal constraints. In general, the deep model
beats the regression model with the same spatio-temporal
constraints for this application, because there exist a large
amount of unlabeled data both in spatial dimension and
temporal dimension, which can be utilized to pretrain the
weights of the deep model. Laplacian Regression works
in an inductive setting using both labeled and unlabeled
training data and then test on new out-of-sample data.
LapReg can tackle large-scale semi-supervised regression
task. Compared with LapReg, our proposed model DAL can
achieve the purpose of feature selection, with a much better
performance of interpolation and prediction.

Despite of the moderate improvement of interpolation
compared with the simple models, DAL is a unified model
which makes prediction and interpolation synchronously
without extra time consuming for interpolation. If we only
deal with the interpolation task, there may be no need to
use the deep learning based method to achieve the slight

improvement. However, when we deal with the interpola-
tion and prediction tasks simultaneously, adding 1-dim to
the output layer of the deep networks can integrate interpo-
lation with prediction, which almost does not increase the
computation complexity of the prediction model.

To further explore the performance of the spatio-
temporal semi-supervised learning, we describe the RMSE
on the testing set using DAL as a function of α when
λ1 = β = 0 in Figure 8(a), and the RMSE on the testing
set using DAL as a function of β when λ1 = α = 0 in
Figure 8(b). When α = 0, it means there are no spatial
neighborhood constraints; when β = 0, it means there are
no temporal neighborhood constraints. From Figure 8 we
observe that the RMSE decreases as α or β increases, which
shows that it is helpful to use the nearest neighbors from
spatial neighborhood and temporal neighborhood to further
improve the interpolation and prediction performance. The
curve in Figure 8(b) declines more than the curve in Figure
8(a) does, indicating that the performance of temporal semi-
supervised learning is better than that of spatial semi-
supervised learning. For air quality related data, temporal
correlation is more important than spatial correlation in the
experiments.

Table 2 shows the result of association analysis in DAL
for different categories of features when λ1 = 2.5, α = 10,
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and β = 15. For simplicity, we treat each category of
feature with different time stamps as a whole, and show the
average results in Table 2. The most relevant features for the
interpolation and prediction of PM2.5’s concentration are:
PM2.5, CO, PM10, Wind Strength (North), and Temperature.
Because of the temporal correlation, the previous PM2.5’s
concentration is most relevant with the PM2.5’s concentra-
tion in the following several hours. CO is a product of
incomplete combustion for coal, oil, natural gas, etc. Since
the data we used in the experiments are collected in winter
of Beijing when the heating supply needs a great deal of
coal, oil, and natural gas, it is reasonable that the CO’s
concentration is relevant with the PM2.5’s concentration at
this time of the year. PM10 is relevant with PM2.5 in most
cases of the year based on our observations. Further, when
there is a strong cold north wind, the haze disperses quickly.
In winter, the haze always happens in the warm weather,
and disperses in the cold weather consequently. Hence, the
PM2.5’s concentration is also relevant with Wind Strength
(North) and Temperature. The most irrelevant features for
PM2.5’s concentration are: Barometric Pressure and Humid-
ity, which is also reasonable for the Barometric Pressure and
Humidity always change little in winter of Beijing, while
PM2.5’s concentration changes a lot.

Since the haze becomes a common weather phenomenon
for Beijing, China during the whole winter these years, there
must exit some general features that affect it. The feature
analysis results show that our model is a reasonable and
trustworthy model for the prediction of PM2.5’s concentra-
tion, because they fit our intuitions on the formation of haze
in winter of Beijing. And it truly reveals the most relevant
factors based on the existing data we obtained, which is
a proof from data science to support the air pollution’s
prevention and control. In the experiments, we also apply
Algorithm 2 to the compared methods, Neural Network and
Autoencoder. However, the results of association analysis
in Neural Network and Autoencoder show no appreciable
differences between different categories of features because
there is no feature selection for these models. Combining
with feature selection in DAL, association analysis reveals
the main relevant and irrelevant features to the variation
of the target. The proposed feature selection and analysis
approach is a general method which does not limit to the
feature set and the event used in the experiments, but can
also be applied to various sets of features, different events,
and many other applications such as medical diagnosis and
terrorism detection.

Figure 9 shows the interpolation results of PM2.5’s con-
centration using DAL to demonstrate a formation process
of a haze happened in December in Beijing (within the
Fifth Ring Road). From Figure 9 we observe that the haze
starts from the south of the city, then diffuses to the north,
indicating that the pollution sources locate in the south of
Beijing. The results also fit our intuitions because there are
lots of heavy industrial factories in Hebei province, south of
Beijing.

In general, the experiments demonstrate that our pro-
posed model DAL is an effective and promising solution to
the topics of interpolation, prediction, and feature analysis
of fine-gained air quality. The performance of DAL is supe-
rior to the performances of the compared methods for inter-

polation and prediction. The main relevant and irrelevant
features to the variation of PM2.5’s concentration in Beijing
are revealed by feature selection and association analysis in
DAL. Further, the location of the pollution sources is also
revealed by analysis of the interpolation results of PM2.5’s
concentration using DAL.

5 CONCLUSION

This paper studies three important topics in the area of ur-
ban air computing: the interpolation, prediction, and feature
analysis of fine-gained air quality. The solutions to these
topics can provide crucial information to support air pollu-
tion control, and consequently generate great societal and
technical impacts. Most existing efforts focus on solving the
three problems separately by establishing different models.
In this paper, we develop a general and effective approach
called DAL to unify the interpolation, prediction, feature
selection and analysis of the fine-grained air quality into one
model. In order to improve the performance of interpolation
and prediction, we utilize the intrinsic characteristics of
the spatio-temporal data and the information contained in
the unlabeled data by embedding spatio-temporal semi-
supervised learning on the output layer of neural network.
We also propose a novel method to perform feature selection
in the input layer of neural network, whose optimization
is easy to solve and performance is well in removing the
redundant or irrelevant features. Combining with feature
selection, association analysis discovers the importance of
different input features to the predictions of the neural net-
works. The proposed feature selection and analysis method
has the ability to reveal some inner mechanism of the black-
box deep network models. Extensive experiments are con-
ducted on real data sources collected from Beijing, China,
showing that DAL is superior to the comparison rivals when
solving the topics of interpolation, prediction, and feature
analysis of fine-gained air quality.
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