
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2011

Real-world parameter tuning using factorial design with Real-world parameter tuning using factorial design with

parameter decomposition parameter decomposition

Aldy GUNAWAN
Singapore Management University, aldygunawan@smu.edu.sg

Hoong Chuin LAU
Singapore Management University, hclau@smu.edu.sg

Elaine WONG
EADS Singapore

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons, and the Operations Research, Systems

Engineering and Industrial Engineering Commons

Citation Citation
GUNAWAN, Aldy; LAU, Hoong Chuin; and WONG, Elaine. Real-world parameter tuning using factorial
design with parameter decomposition. (2011). Advances in metaheuristics: Proceedings of the Ninth
Meta-heuristics International Conference, Udine, Italy, 25-28 July 2011. 53, 37-59.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/1612

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1612&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1612&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1612&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1612&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Real-World Parameter Tuning Using Factorial
Design with Parameter Decomposition

Aldy Gunawan, Hoong Chuin Lau, and Elaine Wong

Abstract In this paper, we explore the idea of improving the efficiency of factorial
design for parameter tuning of metaheuristics. In a standard full factorial design,
the number of runs increases exponentially as the number of parameters. To reduce
the parameter search space, one option is to first partition parameters into disjoint
categories. While this may be done manually based on user guidance, an automated
approach proposed in this paper is to apply a fractional factorial design to partition
parameters based on their main effects where each partition is then tuned indepen-
dently. With a careful choice of fractional design, our approach yields a linear rather
than exponential run time performance with respect to the number of parameters.
We empirically evaluate our approach for tuning a simulated annealing algorithm
that solves an industry spares inventory optimization problem. We show that our
proposed methodology leads to improvements in terms of the quality of solutions
when compared to a pure application of an automated parameter tuning configurator
ParamILS.

1 Introduction

The performance of a metaheuristic algorithm largely depends on the expertise in
tuning the algorithm’s control parameters. For example, a simulated annealing al-
gorithm yields good solutions only if several parameters such as initial temperature,
cooling factor, number of iterations and so on are properly tuned. However, finding
the best combination of parameter settings is a tedious and time-consuming task.

Aldy Gunawan · Hoong Chuin Lau
School of Information Systems, Singapore Management University, Singapore
e-mail: aldygunawan@smu.edu.sg, hclau@smu.edu.sg

Elaine Wong
Innovation Works, EADS Singapore, Singapore
e-mail: elaine.wong.kl@eads.net

L. Di Gaspero et al. (eds.), Advances in Metaheuristics, Operations Research/
Computer Science Interfaces Series 53, DOI 10.1007/978-1-4614-6322-1 3,
© Springer Science+Business Media New York 2013

37

Published in Advances in metaheuristics. Berlin: Springer. 2013 July, pp. 37-59.
http://doi.org/10.1007/978-1-4614-6322-1_3

mailto:aldygunawan
mailto:hclau@smu.edu.sg
mailto:elaine.wong.kl@eads.net

38 Aldy Gunawan, Hoong Chuin Lau, and Elaine Wong

In recent years, several automated approaches for finding good parameter settings
have been proposed. These approaches can be classified into model-free algo-
rithm configuration methods and model-based approaches. Model-free algorithms
are simpler to implement than model-based approaches because the former can be
applied out-of-the-box, while the latter requires iterations between fitting models
and using them to make choices about which configurations to investigate [13].
Examples of model-free algorithm configuration methods are F-Race [4] and It-
erated F-Race [5], ParamILS [10] and genetic algorithm GGA [2]; examples of
model-based approaches are SPO+ [12] and SMAC [13]. SPO+ is an extension of
the Sequential Parameter Optimization (SPO) framework, which focuses on tuning
algorithms with continuous parameters for a single problem instance. SMAC, unlike
SPO+, can be used to handle categorical parameters. Both, model-free and model
based approaches have been used to optimize various algorithms for some clas-
sical combinatorial optimization problems, such as the propositional satisfiability
problem (SAT), the travelling salesman problem (TSP) and MIP problems.

Many real-world problems make use of optimization algorithms that contain a
set of parameters. For example, the CPLEX solver has 76 parameters that affect
the search process [11]. In such problems, parameter search space reduction can
be important in order for automated tuning to become computationally feasible.
By decomposing the parameters into disjoint partitions and tuning them separately,
the parameter search space will be significantly reduced. Lau and Xiao [14], for
example, decompose the parameters set into disjoint graphs based on the correlation
among the parameters, and the approach was used for tuning a genetic algorithm
(GA) for the bandwidth minimization problem (BMP).

Another approach for decomposing parameters is found in Design of
Experiments (DOE). DOE has been used to systematically find the best parameters
values for a heuristic. Coy et al. [7] proposed a procedure, based on DOE and gradi-
ent descent, to find parameter settings for vehicle routing heuristics. The drawbacks
of the approach are that: the linear approximation of the response surface and the av-
erage setting might not be appropriate if the class of problems is too broad. Adenso-
Dı́az and Laguna [1] developed CALIBRA, which employs a Taguchi fractional
experimental design and a local search procedure to tune up to five parameters.
CALIBRA only focuses on the linear assumption without examining interactions
between parameters. Hutter et al. [13] proposed the use of response surface models
to characterize the importance of parameters for future research direction. All the
above-mentioned approaches show that factorial experimental design is particularly
useful in the early stages of experimental work, when many parameters are likely to
be investigated. Unfortunately, the caveat of a full factorial design is that the number
of runs required increases exponentially with the number of parameters [8, 16].

In this paper, we propose a decomposition approach to reduce the parameter
space of parameters. Consider an algorithm, called the target algorithm, that re-
quires a number of parameters to be tuned. We divide the parameters into a number
of disjoint categories. This is done either manually based on user guidance; or auto-
matically using a fractional factorial design, which measures the main effect ranks
among the parameters. Since our focus is to separate main effects and interactions,
the so-called Resolution IV Design [15] is used.

Real-World Parameter Tuning Using Factorial Design with Parameter Decomposition 39

We then apply the proposed tuning framework by Gunawan, Lau, and Lindawati
[8] for each category of parameters. The proposed tuning framework is divided into
three phases, namely screening, exploration and exploitation. Given a set of param-
eters to be tuned, the screening phase seeks to rank these parameters so as to deter-
mine unimportant parameters, whose values have insignificant impact on the solu-
tion quality. Values for unimportant parameters can be set to some constant num-
bers and thereby further reduce the resulting parameter space to be explored. In the
exploration phase, a first-order polynomial model based on a response surface is
then built to define the promising initial ranges for the important parameters. These
promising initial ranges are then sent to an automated tuning configurator such as
ParamILS [10] in the exploitation phase to find the desired parameter setting.

This work arises from a real optimization problem in the aerospace company
EADS. We are concerned with tuning an existing algorithm that involves a set of
parameters and intensive computations. The major contributions of this paper are
summarized as follows:

• We propose the idea of parameter decomposition and describe two approaches.
• We apply our approach to tune a simulated annealing algorithm that is used to

solve a computationally-intensive spares inventory optimization problem.

The remainder of this paper is organized as follows. The automated tuning
framework of [8] is outlined in Sect. 2. Section 3 presents the spares inventory
optimization problem and the target algorithm. Section 4 presents our decompo-
sition approaches. Section 5 provides computational results of our proposed ap-
proach applied to the spares inventory optimization problem. Finally, we provide
some concluding perspectives and future research directions in Sect. 6.

2 Automated Tuning Framework

The automated tuning problem is defined as follows: θ is the finite set of candidate
parameter configurations; X is a set of parameters to be tuned (each parameter can
be either discrete or continuous, over a numeric range); TA is a target algorithm; Itr
is a set of training instances; H(x) is a function that measures algorithm TA′s perfor-
mance under a fixed parameter setting x on a set of problem instances. The solution
of the automated tuning problem is the configuration x∗ such that:

x∗ = argminxH(x) (1)

In this paper, we define the performance metric as the average percentage
deviation of the set of obtained solutions from the optimal (or best known) solutions.
The goal of automated tuning is to find x that optimizes the performance metric
w.r.t. an (unknown) instance distribution. While the true performance metric cannot
be computed exactly, it can be estimated using the given set of training instances
Itr. Subsequently, to verify the quality of this parameter setting, we measure the
performance against a set of test instances.

40 Aldy Gunawan, Hoong Chuin Lau, and Elaine Wong

The framework proposed in [8] consists of three phases, namely screening,
exploration and exploitation. In the screening phase, we determine which param-
eters exhibit significant main effects thereby reducing the number of parameters to
consider. Parameters with statistically significant p-value (less than 10 %) are re-
ferred to important parameters, while parameters with p-value greater than 10 % are
considered unimportant parameters. For this purpose, [8] proposes a 2k factorial de-
sign which consists of k parameters, where each parameter pi only has two levels (li
and ui). A complete design requires (2×2×·· ·×2)×a= a×2k observations where
a represents the number of replicates for a particular parameter setting (see [15]).

Let m be the total number of important parameters (m ≤ k) determined in the
screening phase. The exploration phase runs the target algorithm with respect to
2m + 1 possible parameter settings with an additional parameter setting defined by
the centre point value of each parameter. A first-order (planar) model is then built to
represent the relationship among parameters and the objective function value.

In order to test the significance of the planar model, interaction and curvature
tests have to be conducted. The interaction test is used to test the significance of any
interaction between parameters by looking at the significance of the estimated co-
efficient between two parameters. The curvature test tests whether the planar model
is adequate to represent the local response function. The surface of parameters can
still be approximated by a planar model as long as the existence of either interaction
or curvature is not significant.

If the planar model assumption still holds, the process is then continued by
applying steepest descent that moves rapidly to the vicinity of the optimum. From
a statistical point of view, the region close to the optimum has been reached if the
planar model assumption does not hold anymore. The final range for each important
parameter is used as the input in the exploitation phase in which a configurator is
used to find the optimal point in the region. In this study (as in [8]), ParamILS is
applied to tune the target algorithm.

3 Case Description

In this section, we provide a description of the target algorithm used in this paper.
Our problem is an aircraft spares inventory optimization problem arising from main-
tenance, repair and overhaul (MRO) operations faced by the aircraft total service
support provider. The service provider is required to provide necessary spares to
meet target service levels of customers of performance-based contracts operating
out of a network of airports. The goal is to determine the optimal inventory allo-
cation strategy that can fulfill target services levels. Optimality is defined in terms
of total life cycle costs for spares comprising inventory holding cost, part purchas-
ing and repair cost, logistics delivery cost, while service levels in terms of spares
fill-rates.

Real-World Parameter Tuning Using Factorial Design with Parameter Decomposition 41

The inclusion of logistic policies and strategies into the inventory optimization
model allow better representation of real world operations. This problem incorpo-
rates (a) the use of lateral transshipment between warehouses, (b) service-time com-
mitments for spares delivery, (c) inventory rationing for selected customers, and (d)
option to scrap non-serviceable parts. Lateral transshipments are used when a ser-
viceable spare part is not available at a local warehouse where the demand is trig-
gered. In such cases, the serviceable spare part is shipped from an alternative ware-
house to fulfill the urgent demand. As a result, the one (serviceable)-for-one (unser-
viceable) exchange would incur logistics transport costs. The optimized inventory
allocation is required to make strategic trade-offs between dispatching from a cen-
tral warehouse (lower warehousing costs) versus distributing inventory across the
entire network (lower logistics transport costs) (For further reference, refer to [3]).

Service-time commitments are applicable in cases where spares demand is met
from an alternative warehouse via lateral transshipments. The logistics transport has
to deliver the serviceable part in the requested time in order to fulfill the demand.
Failing to do so results in a penalty imposed on the service provider. Higher penalty
rates encourage tighter conformance to the target service level, and possibly to the
extent of even surpassing the targets required by the customers. Inventory rationing
is a strategy adopted to prioritize different classes of customers. Unlike a simple
pooling strategy, this strategy involves reserving inventory for customers requiring
higher target service levels, as part of a higher priced contract and higher penalty
rates [6]. Scrapping of parts is a resupply strategy to handle unserviceable parts.
When deciding on scrap rates, the service provider takes into account repair shop
turn-around times and costs, as well as a new part unit price and purchase lead time.
The above problem is solved by a Simulated Annealing algorithm (see Fig. 1).

The parameters that need to be tuned are summarized in Table 1. The SA
solution-acceptance criteria, which we term as oracle function, accepts a solution
(xk) that is worse than the incumbent solution (x) with the probability Pr(x,xk,Tk) =
e(F(x)−F(xk))/Tk , where Tk is the temperature at iteration k. In the oracle function,
the exponential function is close to one if the new objective value F(xk) is close to
F(x), and approaches zero as the difference increases. An additional parameter ora-
cle strictness (Oracle) is introduced into the SA algorithm. Oracle strictness adjusts
the probability of acceptance as follows:

P̂r(x,xk,Tk) =

{
Pr(x,xk,Tk)−Oracle/100

1−Oracle/100

}+

(2)

The probability of accepting solution xk is zero if Pr(x,xk,Tk) is less than Oracle,
hence it is possible to tune the algorithm to a simple local search algorithm by setting
Oracle to 100. Unlike the cooling function, which dynamically adjusts Tk and hence
the likelihood of acceptance according to the iteration count, the oracle strictness is
fixed throughout the algorithm.

42 Aldy Gunawan, Hoong Chuin Lau, and Elaine Wong

Simulated Annealing

Compute And AcceptGenerate

No

Yes

Yes

No

No

Yes
(Convergence=MaxRejections)

Yes
(Convergence =

Stop Temperature)

Yes

No

No

Yes

Yes

No

No

Reset rejections
counter

Reduce temperature
based on

[cooling factor]

Increment
rejections counter

Is solution
feasible?

Set initial solution
and temperature

Reset generate
tries counter

Generate new
solution based on

[max change]

Reset success
counter

Increment tries
counter

Exceed
[max tries]?

Is solution
better?

stop

start

Increment success
counter

Below [stop
temperature]?

Increment
generate tries

counter

Accept solution
based on

[oracle
strictness]?

Exceed
[max

rejections]?

Reset tries
counter

Exceed
[max

successes]?

Increment
computations

counter

No

Yes
(Convergence=InfeasibleSolution)

Compute new
objective value

Exceed
[max generate

tries]?

Exceed [max
computations]?

No

Yes
(Convergence=MaxComputations)

Fig. 1: Flow chart of simulated annealing algorithm

Real-World Parameter Tuning Using Factorial Design with Parameter Decomposition 43

Table 1: Parameter definition

Parameters (pi) Abbreviation Definition

Max successes Success Maximum number of successes within one temperature
Max tries Tries Maximum number of tries within one temperature
Max computations Comp Maximum number of solutions generated
Max rejections Reject Maximum number of consecutive rejections
Max change Change Maximum change in a variable value when generating a

new solution
Max generate tries Generate Number of tries to generate a feasible solution
Cooling factor Cooling Factor to reduce the temperature by during each Tempera-

ture change
Oracle strictness Oracle A value to depict the strictness of the oracle function in ac-

cepting a new solution that has an objective value worse
than the current one. A higher value would result in a
higher rejection rate (e.g. a value of 100 would accept only
better solutions)

4 s-step Decomposition Approach

The main idea of the s-step decomposition approach is to decompose n parameters
into s disjoint categories, namely CAT1, CAT2, CATs. Each category consists of
n1, n2, . . . ns parameters respectively where

n = n1 + n2 + . . .+ ns (3)

We assume that each category comprises at most 5 parameters [1]. Figure 2 gives a
pictorial view of our decomposition approach, which is based on a s-step
decomposition of factorial design. As described in Sect. 1, the n parameters to be
tuned are initially divided into s different categories. By performing tuning sepa-
rately on each category, we effectively reduce the parameter space from 2n1+n2+...+ns

to 2n1 + 2n2 + . . .+ 2ns possible parameter value settings.
Our approach proceeds as follows. In the First Step, we focus on tuning the n1

parameters, while setting the other n− n1 parameters to their default values. To do
that, we apply the three phases described in Sect. 2 on the training instances. At the
end of this step, we obtain the best parameter setting for these n1 parameters. Then,
for the subsequent step i (from 2 to s), we tune ni parameters by setting the best
values for the parameters obtained from steps 1 to i− 1. Once we obtain the best
parameter configuration for all n parameters, we run the target algorithm with that
particular configuration on the test instances.

To evaluate the performance of our proposed decomposition approach, we
compare the results obtained by our approach against those obtained using the re-
spective default parameter settings. We will show that our approach can lead to
improvements in terms of the average objective values of the solutions. In the fol-
lowing sub-sections, we present two different decomposition approaches - one based
on user guidance, and the other based on automated decomposition.

44 Aldy Gunawan, Hoong Chuin Lau, and Elaine Wong

Fig. 2: s-step decomposition of factorial design

4.1 User-Guided Decomposition

In user-guided decomposition, we rely on information provided by the user for
decomposing the parameters. This assumes that the user has conducted preliminary
experiments a-priori and obtained observations and insights about the parameter
importance levels and sensitivity to solution qualities. We then proceed to apply the
s-step decomposition approach described above for each parameter category.

4.2 Automated Decomposition

A 2k full factorial design would require a large number of runs when the number of
parameters increases. An algorithm with 8 parameters would require 256 parameter
settings where only 8 degrees of freedom correspond to main effects of parameters,
while the rest correspond to interactions. At this point, since we have little interest
in the interaction effects, we focus on decomposing the parameters based on their
main effects.

For this purpose, we use a fractional factorial design to derive the parameter
importance. There are several kinds of fractional factorial design classes based on
existing alias relationships in the design, also known as the resolution. The con-
cept of design resolution is to catalog fractional factorial designs according to the
alias patterns they produce [15]. Resolution describes the degree to which estimated
main effects are aliased (or confounded) with estimated 2-level interactions, 3-level
interactions, etc. Here, we consider a Resolution IV (2k−p

IV design) where no main
effect is aliased with any other main effect or two-parameter interactions. Note that
the value of p depends on the highest possible design resolution (see Table 2) [15].

Real-World Parameter Tuning Using Factorial Design with Parameter Decomposition 45

Table 2: Resolution IV design

Number of parameters (k) p Minimum number of runs

4 1 24−1 = 8
5 1 25−1 = 16
6 2 26−2 = 16
7 3 27−3 = 16
8 4 28−4 = 16
9–16 Varying with k 32
17–32 Varying with k 64
33–64 Varying with k 128
.

A Resolution IV design can be used first since we assume that the parameters
have monotonic effects on the response variable [15]. We take k = 6 parameters as
an example. In a 26−2

IV design, only 16 parameter settings are required. To generate
this design, a 24 design with the parameters A,B,C,D are set as the basic design, and
only two additional columns are required for parameters E and F . To get the new
columns, two design generators E = A×B×C and F = B×C×D are selected. Details
of this process can be found in [15].

Note that the advantage of the above scheme is that even as the number of
parameters k grows large, the minimum number of runs grows only linearly with
k (rather than exponentially with the size of the original parameter space Θ(2k)).
This demonstrates the scalability of our approach.

5 Experimental Results

In this section, we present the experimental results of tuning the simulated anneal-
ing algorithm (SA) applied to the spares inventory optimization problem described
above. All the experiments were conducted on a PC running Windows XP with 2.33
GHz CPU and 1.96GB RAM.

50 instances were generated to represent different spares support scenarios.
All instances have identical problem size, comprising three part numbers, two ware-
houses and three customers. A small problem size was intentionally adopted so as
to allow us to have a more rigorous study of a computationally intensive spares
optimization problem. Each iteration in SA involves simulating transshipment poli-
cies and inventory rationing strategies. However, the instances differ in terms of part
specifications (such as unit price, failure rate, and repair turn-around-time), logistics
(namely warehousing cost, transport time and cost), and contract terms (target fill
rate and penalty). To decide on default parameter values, a basic inventory optimiza-
tion problem, without sophisticated logistics policies or inventory rationing strate-
gies, was used. The parameters for SA were manually tuned such that the algorithm

46 Aldy Gunawan, Hoong Chuin Lau, and Elaine Wong

Table 3: Input scenarios on spares optimization problem

Specifications used to distinguish input scenarios Range

Part specifications
Unit price ($) [1,000, 10,000]
Average repair cost (% of unit price) [10, 20]
Expected repair shop turnaround time (years) [0.01, 0.5]
Average number of spares demand at airport per year [1. 50]

Logistics
Average holding cost (% of unit price) [10, 20]
Expected replenishment lead time at warehouse (years) [0.01, 0.5]
Expected interval for transport between warehouses (h) [1, 3]
Expected transport time between warehouses (h) [1, 3]
Expected transport cost (% of unit price) [10, 20]

Contract terms
Target fill rate for operator (% of total annual demand) [85, 100]
Delivery deadline at airport (h) [1, 10]
Penalty rate ($) [500, 5,000]

resulted in the best final objective value for the basic problem. The respective ranges
of values are listed in Table 3.

Half of the instances were used as training instances and the rest as test instances.
To account for the stochasticity involved in the SA algorithm, each instance was run
5 times and the performance of each instance was reported in terms of the average
best objective value obtained and best objective value of 5 runs.

For the automated decomposition, a resolution IV fractional factorial design
(28−3

IV design) was adopted. The basic parameters are Success, Tries, Reject, Comp
and Oracle. By applying principles described in [15], we define the complete alias
relationships for the other three parameters: Cooling, Generate and Change where
Cooling = Success×Tries×Reject, Generate = Success×Tries×Comp and Change
= Tries×Reject×Comp×Oracle.

The result of the 28−3
IV design is summarized in Fig. 3. We observe that all pa-

rameters have p-value less than 10 %. We then proceed to classify the parameters
according to the absolute main effect values. A parameter whose absolute effect
value is among the top 4 would be classified as important, and less-important other-
wise. Table 4 compares categories obtained by the automated-decomposition versus
the user-guided one. Note that both approaches have categorized Comp and Change
as CAT1. Differences are that the user-guided decomposition categorized Success
and Tries as CAT1; and only the automated decomposition categorized Cooling and
Oracle as CAT1.

Real-World Parameter Tuning Using Factorial Design with Parameter Decomposition 47

Fig. 3: Statistical results of a 28−3
IV design

Table 4: Parameter space for SA on spares optimization problem

Parameters (pi) Default value Range User-guided Automated ParamILS
step-size

Success 100 [100 , 1,000] CAT1 CAT2 100
Tries 100 [100 , 1,000] CAT1 CAT2 100
Comp 5,000 [1,000 , 5,000] CAT1 CAT1 100
Reject 100 [100 , 1,000] CAT2 CAT2 100
Change 2 [1 , 5] CAT1 CAT1 1
Generate 300 [100 , 1,000] CAT2 CAT2 100
Cooling 0.95 [0.5 , 1] CAT2 CAT1 0.05
Oracle 30 [0 , 99] CAT2 CAT1 10

5.1 First Step

The best values for CAT1 parameters will be derived in this step, while setting CAT2

parameters to their default values. Intermediate and overall results across all phases
for the user-guided and automated decomposition are described below.

5.1.1 Screening Phase

Figures 4 and 5 provide results for the user-guided decomposition. Note that the
dotted line in Fig. 5 represents the cut-off limit associated with the 10 % significance
level. The bars at the left side of the dotted line represent insignificant parameters as
well as insignificant interactions. We observe that the effect of Comp and Change are
statistically significant, while both Success and Tries are insignificant. For further
analysis, values for insignificant parameters can be set to a constant value. Since
the spares optimization problem is a minimization problem, we set parameters with

48 Aldy Gunawan, Hoong Chuin Lau, and Elaine Wong

Fig. 4: Statistical results (First Step)—user-guided decomposition

Fig. 5: Screening phase (First Step)—user-guided decomposition

negative effects to the upper-bound of the range, and those with positive effects to
the lower-bound. In this case, Success is set to 1,000, while Tries is set to 100.

Figures 6 and 7 provide results for the automated decomposition. We observe that
all p-values are approximately zero, implying that all important parameters (Comp,
Change, Cooling and Oracle) are statistically significant. Therefore, it is not possi-
ble to define constant values for the parameters; instead, we reduce the parameter
range based on the main effect value. For parameters with negative effects, the new
range will span the upper half of the original range (e.g. Comp is adjusted from

Real-World Parameter Tuning Using Factorial Design with Parameter Decomposition 49

Fig. 6: Statistical results (First Step)—automated decomposition

Fig. 7: Screening phase (First Step)—automated decomposition

[1,000, 5,000] to [2,500, 5,000]), and for parameters with positive effects, the new
range will be limited to the lower half of the original range.

5.1.2 Exploration Phase

In this phase, we adopt the factorial experiment design to build the first-order
Response Surface Model: Y = β0 + β1x1 + · · ·+ βmxm + ε . Recall that from the
screening phase, the user-decomposition approach has been simplified to consist of
two parameters (Comp and Change), and four parameters (Comp, Change, Cooling,
Oracle) with reduced ranges for parameter values for the automated decomposition.

50 Aldy Gunawan, Hoong Chuin Lau, and Elaine Wong

Table 5: Final parameter space for SA algorithm from exploration phase (First Step)

Final parameter space
Parameters (pi) User-guided Automated

Success 1,000 100
Tries 100 100
Comp [1,000 , 3,000] 5,000
Reject 100 100
Change [3 , 5] [3 , 5]
Generate 300 300
Cooling 0.95 [0.5 , 0.75]
Oracle 30 [50 , 99]

To test the significance of the first-order model, two statistical tests, interaction and
curvature tests, as described in Sect. 2, were run. It is assumed that the error compo-
nent has a normal distribution with mean zero and unknown variance σ2.

Figure 8 presents a sample of the statistical results from the statistical testing
of the automated decomposition approach. At the end of the exploration phase, pa-
rameter Comp is no longer significant since p-value is greater than 10 %; therefore,
we set its value to a high constant value. From the Analysis Variance output, each
row represents the significance of each group of terms (main effects, 2-parameter
interactions and so on). We observe that there are strong main effects of parameters.
The row entitled “main effects” refers to the main effects of parameters, which are
mainly affected by three significant parameters: Oracle, Cooling and Change.

The row labeled “2-Way Interactions” refers to the overall 2-way interaction be-
tween two different parameters. There may be some interaction between two pa-
rameters, such as Oracle and Cooling, Oracle and Change. There is no significant
interaction between three and four parameters as well. We also conclude that the
curvature test is significant. There is an evidence of curvature in the response over
the region of exploration. It means that the region of the optimum has been found
and then proceed to the exploitation phase to locate the best parameter setting.

In order to test the normality assumption, we generate the normal probability plot
of the errors/residuals (Fig. 9). Since the errors lie approximately along a straight
line, we do not suspect any problem with normality assumption. For the rest of the
experiments, we conduct the same approach to test the normality of the errors.

Table 5 summarizes the final parameter space of parameters along the path of
the steepest descent for user-guided decomposition and automated decomposition,
respectively. This range is used as input for the exploitation phase.

5.1.3 Exploitation Phase

In this phase we apply ParamILS to tune the SA parameters based on the parameter
space derived in the exploration phase. Table 6 summarizes the best parameter val-
ues obtained as a result of combining ParamILS and DOE. Since ParamILS requires

Real-World Parameter Tuning Using Factorial Design with Parameter Decomposition 51

Fig. 8: Statistical results (First Step) for exploration phase—automated decomposi-
tion

Normal Probability Plot of the Residuals
(response is Obj)

Standardized Residual

2

1

0

-1

-2

-2 -1 0 1 2

N
or

m
al

 S
co

re

Fig. 9: Normal probability plot of errors—user-guided decomposition

all parameter domains to have discrete values, the parameters have to be discretized
with a fixed step size (see last column of Table 4). Using the best parameter values,
the average objective values from solving the spares optimization problem for the

52 Aldy Gunawan, Hoong Chuin Lau, and Elaine Wong

Table 6: Parameter setting for SA on spares optimization problem (First Step)

Parameters (pi) Default value ParamILS + DOE ParamILS + DOE
(user-guided decomposition) (automated decomposition)

Success 100 1,000 100*
Tries 100 100 100*
Comp 5,000 1,000 5,000
Reject 100 100* 100*
Change 2 3 3
Generate 300 300* 300*
Cooling 0.95 0.95* 0.6
Oracle 30 30* 90

*represents default values

25 training instances are provided in Table 7. The number of iterations of ParamILS
is set to a constant number (e.g. 100). In this case, the number of iterations refers to
how many times the target algorithm is being called.

We have also tried to run ParamILS on a smaller number of parameters. More
precisely, we selected four parameters in CAT1 of the user guided decomposition
(Table 3), and apply ParamILS directly without exploration phase. The best total life
cycle cost obtained is $1,492,117, which is larger compared with ParamILS+DOE
under the user guided decomposition ($1,262,087—as shown in Table 6).

We observe that user-guided decomposition results in higher values for param-
eters Success and Cooling, while the automated decomposition results in higher
values for parameters Comp and Oracle. Note that the effect of Comp varies in dif-
ferent phases of the SA algorithm. In the early phase of the search, the focus is on
diversification (random walk accepting worse moves), while in the later phase, the
emphasis tends towards intensification. Hence, if the parameters are tuned such that
cooling is slow (i.e. high Cooling and high Success) or oracle strictness low (i.e.
worse solution is more likely accepted), the range of values for Comp may cause the
search to already terminate in the diversification phase, where there is no guarantee
that a larger Comp value produces better solutions. On the contrary, if the SA were
tuned differently such that the range of values for Comp extends into the intensifi-
cation phase, then larger Comp values may probably lead to better solutions.

In our context, we observe the former case for the user-guided decomposition
results from the First Step (Table 6). The solution obtained by the user-guided de-
composition is 50 % more than the automated decomposition, revealing that the
combination of slow cooling (0.95), lengthy exploration at each temperature (1,000
success criteria), and low oracle strictness (30), prematurely terminates the search
(with maximum Comp value of 3,000) in the diversification phase. Coupled with the
relatively large neighbourhood (change set to 3 units) for each solution, the search
oscillates unpredictably and as such a Comp value of 3,000 for user-guided decom-
position did not generate better solutions than setting Comp to 1,000.

Real-World Parameter Tuning Using Factorial Design with Parameter Decomposition 53

Table 7: Best total life cycle cost obtained from running SA with tuned parameters
(First Step) on training instances

Algorithms Average total life-
cycle cost ($)

Default value $995,185
ParamILS + DOE - user guided decomposition $1,262,087
ParamILS + DOE - automated decomposition $840,921
Screening + ParamILS - user guided decomposition $1,492,117

Fig. 10: Statistical results (Second Step)—user-guided decomposition

5.2 Second Step

In this step, values for CAT2 parameters as listed in Table 4 will be determined. The
values of CAT1 parameters are set to the best values obtained by ParamILS + DOE
in Step 1 (Table 6).

5.2.1 Screening Phase

Figure 10 presents the results of CAT2 parameters for the user-guided decomposition
approach. All parameters except parameter Generate are found to be significant.
Since Generate has a positive main effect, it will be set to the lower bound of the
original range. The intervals for the statistically significant parameters are reduced
such that parameters with negative effects are assigned a new range covering the
upper half of the original range (e.g. Oracle is adjusted to [50, 99]), and parameters
with positive effects will be limited to the lower half of the original range.

Similar observations can be obtained from the results of the automated decom-
position (Fig. 11). Only parameters Success and Tries are statistically significant.
The other two parameters, Reject and Generate, are set to their lower bound. In

54 Aldy Gunawan, Hoong Chuin Lau, and Elaine Wong

Fig. 11: Statistical results (Second Step)—automated decomposition

Table 8: Final parameter space for SA algorithm from exploration phase (Second
Step)

Final parameter space
Parameters (pi) User-guided Automated

Success 1,000 [100 , 500]
Tries 100 [100 , 500]
Comp 1,000 5,000
Reject 800 100
Change 3 3
Generate 100 100
Cooling [0.5 , 0.6] 0.6
Oracle [80 , 99] 90

the next phase, we only focus on parameters Success and Tries for the automatic
decomposition.

5.2.2 Exploration Phase

In this phase, we apply the same approach as we have used in the First Step until
we reach the region of the optimum. The final parameter space of parameters for
both decomposition approaches are summarized in Table 8. For the user-guided
decomposition, parameter Reject was found to be insignificant at the end of the
exploration phase; hence it is set to a constant value equal to the lower bound from
the screening phase.

Real-World Parameter Tuning Using Factorial Design with Parameter Decomposition 55

Table 9: Parameter setting for SA on spares optimization problem (Second Step)

Parameters (pi) Default value ParamILS + DOE ParamILS + DOE
(user-guided decomposition) (automated decomposition)

Success 100 1,000 500
Tries 100 100 300
Comp 5,000 1,000 5,000
Reject 100 800 100
Change 2 3 3
Generate 300 100 100
Cooling 0.95 0.55 0.6
Oracle 30 80 90

5.2.3 Exploitation Phase

Table 9 summarizes the best parameter values obtained as a result of combining
ParamILS and DOE for the Second Step. As in the First Step, the three sets of pa-
rameter values were used for solving the training instances with SA. We conducted
5 runs on each instance and the average as well as the best found objective value for
each instance is determined (Table 10). For each instance, the percentage improve-
ment of each proposed decomposition approach from the default case (denoted as
% improvement over average and best results, respectively) are calculated. We ob-
serve that the best objective values obtained in the Second Step outperform those of
the First Step. In addition, by applying ParamILS+DOE, further improvements can
be obtained for both training and test instances. The grand mean of average total
life cycle costs of our proposed approaches are statistically different from those of
default value setting (with the 10 % significance level).

In general, it is found that automated decomposition consistently yields better
solutions than user-guided decomposition in terms of the grand mean of the average
and best total life cycle cost. All training and test instances solved by the auto-
mated decomposition outperform the default case, while the user-guided decompo-
sition provided better solutions for 18 training and 20 test instances only. Further-
more, the percentage improvement by using the automated decomposition is higher,
achieving improvements of the best values of 16.28 % and 14.30 % for training and
test instances, respectively, while the user-guided cases only achieved 1.33 % and
3.27 % respectively. Similar results are obtained for improvements in average objec-
tive values—the automated decomposition achieved 12.88 % and 12.01 % improve-
ments in training and test instances, respectively, compared with the user-guided
decomposition achieving 1.81 % and 4.53 % respectively. Operationally, improve-
ments achieved by the automated-decomposition amounts to an average total life
cycle cost savings of more than 10 %, which in our test cases is worth $100,000 as
compared to the default case.

The standard deviation (stdev) and average of coefficient of variance (CV) reaf-
firms the superior performance of the automated decomposition. As seen from Ta-

56 Aldy Gunawan, Hoong Chuin Lau, and Elaine Wong

Table 10: Parameter tuning and results for SA on spares optimization problem
(Second Step)

ParamILS + DOE
Results Default value (user-guided

decomp.)
(automated de-
comp.)

Training instances
Grand mean of average total life cycle cost ($) 995,608.80 969,816.90 837,820.40

p-value – 0.079 0
N instances with better results – 18 25
N instances with worse results – 7 0
% improvement over average results – 1.33 % 16.28 %

Average of best total life cycle cost ($) 956,164.70 929,390.30 837,109.00
p-value – 0.025 0
N instances with better results – 17 25
N instances with worse results – 8 0
% improvement over best results – 1.81 % 12.88 %

Average of std dev total life cycle cost 38,869.3 33,089.2 570.6
Average of CV total life cycle cost 3.86 % 3.63 % 0.00 %

Test instances
Grand mean of average total life cycle cost ($) 1,169,127.00 1,125,680.00 1,004,810.00

p-value – 0 0.001
N instances with better results – 20 25
N instances with worse results – 5 0
% improvement over average results – 3.27 % 14.30 %

Average of best total life cycle cost ($) 1,137,053.00 1,082,371.00 1,002,520.00
p-value – 0 0
N instances with better results – 20 25
N instances with worse results – 5 0
% improvement over best results – 4.53 % 12.01 %

Average of std dev total life cycle cost 33,072.7 39,142 2,369.3
Average of CV total life cycle cost 2.90 % 3.62 % 0.19 %

Execution time 14 h 10 h 15 h

ble 10, stdev for the automated decomposition are relatively low for both training
and test instances (at 570.6 and 2,369.3, respectively). A low standard deviation in-
dicates that the results of several runs tend to be consistent and close to the average
total life cycle cost. We also calculated the average of CV in order to measure the
dispersion of results against the average total life cycle cost. All three approaches
achieved low values of CV (less than 5 %). The automated decomposition is the
lowest (best) compared with the default case and the user-guided decomposition ap-
proaches. In terms of average execution time for solving an instance, the automated
decomposition requires 1 h and 5 h more than the default case and user-guided de-
composition, respectively.

Real-World Parameter Tuning Using Factorial Design with Parameter Decomposition 57

Table 11: ParamILS versus ParamILS + DOE (automated decomposition)

ParamILS ParamILS+DOE %
Results ($) (automated) Improvement

Training instances
Grand mean of average total life cycle
cost($)

1,007,763 837,820 16.86

Average of best total life cycle cost($) 961,296 837,109 12.92
Test instances
Grand mean of average total life cycle
cost($)

1,236,578 1,004,810 18.74

Average of best total life cycle cost($) 1,198,951 1,002,520 16.38

Finally, we compare the results obtained by the automated decomposition with
the pure application of ParamILS (i.e. without the decomposition of parameters).
In this case, the computational budget allocated (i.e. the number of iterations) is
fixed. For instance, suppose the numbers of iterations of ParamILS and DOE are
x and y respectively, the number of iterations of the first scenario is x+y, while the
number of iterations of the second scenario is set to z, with z = x+y. Here, the num-
ber of iterations of ParamILS and DOE are 100 (as mentioned in Sect. 5.1.3) and
(5× 2n−3+ 5× 2n1 + 5× 2n2), respectively; while the number of iterations of the
pure ParamILS is the total of both number of iterations.

Table 11 shows that for both training and test instances, the combination of
ParamILS and DOE outperforms that of a direct application of ParamILS. We ob-
serve an improvement on the average of best total life cycle cost of 12.92 % and
16.38 % for training and test instances respectively.

6 Conclusion

In this paper, we explore the idea of improving the efficiency of factorial design for
parameter tuning of metaheuristics. Our experimental results show that cost savings
exceeding 10 % can be achieved. Due to the non-convexity of the search space,
the solution converges to a local optimum when SA was manually configured. The
tuned SA using our approach resulted in the significant annual cost savings because
arbitrage opportunities, otherwise missed in the default SA settings, were identified.

For future extensions to this work, one can consider using other approaches such
as Cluster Analysis to classify (decompose) parameters. Cluster analysis is a sta-
tistical approach used to divide the parameters into a set of objects based on their
similarity (see [9]). The basic assumption in the first order (planar) model is that
errors are assumed to be uncorrelated and distributed with mean 0 and constant (but
unknown) variance. A normal plot of the errors should be approximately a straight
line. Transformation of the response would be necessary if the normal plot is not a

58 Aldy Gunawan, Hoong Chuin Lau, and Elaine Wong

straight line [16]. We will also consider a more elaborate model such as the second
order model in order to find the optimum region since interaction and curvature do
exist [15].

In this paper, we make use of one automated parameter tuning configurator,
namely ParamILS, and apply a 2-step (2 categories) decomposition approach. One
can consider using other configurators, such as F-Race, for solving other real-world
parameter tuning problems with larger number of parameters. Such a case study
would also be interesting to explore a more general s-step decomposition.

Acknowledgements The authors wish to thank Lindawati and Nguyen Van Vinh for their valuable
assistance in the technical implementation of the algorithm.

References

1. Adenso-Dı́az, B., Laguna, M.: Fine-tuning of algorithms using fractional experimental design
and local search. Oper. Res. 54, 99–114 (2006)

2. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic
configuration of solvers. In: Proceedings of the 15th International Conference on Principles
and Practice of Constraint Programming, (CP 2009). Lecture Notes in Computer Science, vol.
5732, pp. 142–157. Springer, Heidelberg (2009)

3. Axsáter, S.: Modelling emergency lateral transshipments in inventory systems. Manag. Sci.
36, 1329–1338 (1990)

4. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring
metaheuristics. In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2002), pp. 11–18. Morgan Kaufmann, San Francisco (2002)

5. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated F-race: An overview.
In: Bartz-Beislstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.) Empirical Methods for
the Analysis of Optimization Algorithms, pp. 311–336. Springer, Berlin (2010)

6. Cattani, K.D., Souza, G.C.: Inventory rationing and shipment flexibility alternatives for direct
market firms. Prod. Oper. Manag. 11, 441–457 (2002)

7. Coy, S.P., Golden, B.L., Runger, G.C., Wasil, E.A.: Using experimental design to find effective
parameter settings for heuristics. J. Heuristics 7, 77–97 (2000)

8. Gunawan, A., Lau, H.C., Lindawati: Fine-tuning algorithm parameters using the design of
experiments approach. In: Coello, C.A.C. (ed.) Proceedings of Learning and Intelligent Op-
timization, 5th International Conference (LION 5). Lecture Notes in Computer Science, vol.
6683, pp. 278–292. Springer, Heidelberg (2011)

9. Han, J., Camber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufmann,
San Francisco (2006)

10. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm con-
figuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)

11. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Automated configuration of mixed integer program-
ming solvers. In: Lodi, A., Milano, M., Toth, P. (eds.) Proceedings of International Conference
on Integration of Artificial Intelligence and Operations Research techniques in Constraint Pro-
gramming (CPAIOR). Lecture Notes in Computer Science, vol. 6140, pp. 186–202. Springer,
Heidelberg (2010)

12. Hutter, F., Hoos, H.H., Leyton-Brown, K., Murphy, K.P.: Time-bounded sequential parameter
optimization. In: Blum, C., Battiti, R. (eds.) Proceedings of Learning and Intelligent Opti-
mization, 4th International Conference (LION 4). Lecture Notes in Computer Science, vol.
6073, pp. 281–298. Springer, Heidelberg (2010)

Real-World Parameter Tuning Using Factorial Design with Parameter Decomposition 59

13. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general
algorithm configuration. In: Proceedings of Learning and Intelligent Optimization, 5th Inter-
national Conference (LION 5). Lecture Notes in Computer Science, vol. 6683, pp. 507–523.
Springer, Heidelberg (2011)

14. Lau, H.C., Xiao, F.: Enhancing the speed and accuracy of automated parameter tuning
in heuristic design. In: Proceedings of the 8th Metaheuristics International Conference
(MIC 2009), Hamburg, Germany (2009)

15. Montgomery, D.C.: Design and Analysis of Experiments, 6th edn. Wiley, New York (2005)
16. Ridge, E., Kudenko, D.: Sequential experiment designs for screening and tuning parameters

of stochastic heuristics. In: Proceedings of Workshop on Empirical Methods for the Analysis
of Algorithms, pp. 27–34. Reykjavik, Iceland (2006)

	Real-world parameter tuning using factorial design with parameter decomposition
	Citation

	Real-World Parameter Tuning Using Factorial Design with Parameter Decomposition
	1 Introduction
	2 Automated Tuning Framework
	3 Case Description
	4 s-step Decomposition Approach
	4.1 User-Guided Decomposition
	4.2 Automated Decomposition

	5 Experimental Results
	5.1 First Step
	5.1.1 Screening Phase
	5.1.2 Exploration Phase
	5.1.3 Exploitation Phase

	5.2 Second Step
	5.2.1 Screening Phase
	5.2.2 Exploration Phase
	5.2.3 Exploitation Phase

	6 Conclusion
	References

