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Abstract. Optimizing parameter settings is an important task in algorithm 
design. Several automated parameter tuning procedures/configurators have been 
proposed in the literature, most of which work effectively when given a good 
initial range for the parameter values. In the Design of Experiments (DOE), a 
good initial range is known to lead to an optimum parameter setting. In this 
paper, we present a framework based on DOE to find a good initial range of 
parameter values for automated tuning. We use a factorial experiment design to 
first screen and rank all the parameters thereby allowing us to then focus on the 
parameter search space of the important parameters. A model based on the 
Response Surface methodology is then proposed to define the promising initial 
range for the important parameter values. We show how our approach can be 
embedded with existing automated parameter tuning configurators, namely 
ParamILS and RCS (Randomized Convex Search), to tune target algorithms 
and demonstrate that our proposed methodology leads to improvements in 
terms of the quality of the solutions.  

Keywords: parameter tuning algorithm, design of experiments, response surface 
methodology. 

1   Introduction 

It is well-known that good parameter settings have a significant effect on the 
performance of an algorithm (Eiben et al., 1999; Hutter et al., 2010). For example, a 
simulated annealing algorithm is sensitive to the cooling factor, while a tabu search 
algorithm relies on a good choice of the tabu tenure. Many of the works we witness to 
date propose algorithms where the underlying parameters are set either arbitrarily 
without explanation, or conveniently choose parameter values that have been reported 
in previous studies.  

In response to the need for a principled approach to find good parameter settings, 
several automated approaches have been proposed in recent years. For model-based 
approaches, Díaz and Laguna (2006) developed CALIBRA which employs a Taguchi 
fractional experimental design followed by a local search procedure. The former 
focuses on providing the starting point of the experiment, while the latter continues to 
search for the best parameter configuration. This procedure can only handle up to five 
parameters and focuses on the main effects of parameters without exploiting the 
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interaction effects between parameters. SPO+ (Hutter et al., 2010) is an improved 
model-based technique extended from the Sequential Parameter Optimization 
framework that constructs predictive performance models to focus attention on 
promising regions of a design space, aimed at tuning target algorithms with 
continuous parameters and a single problem instance at a time. F-Race (Birattari et 
al., 2002) is the specialization of the generic class of racing algorithms for 
configuration of metaheuristics.  

For model-free approaches, Hutter et al. (2009) presented a local search approach, 
ParamILS, for algorithm configuration which is suited for discrete parameters. Again, 
ParamILS only considers changing one single parameter value at a time. Much 
potential in the use of statistical testing methods as well as RSM in algorithm 
configuration problems were also discussed. Randomized Convex Search (RCS) was 
recently proposed to handle both discrete and continuous parameter values (Lau and 
Xiao, 2009). The underlying assumption of RCS is that the points lie inside the 
convex hull of a certain number of the best points (parameter configurations).  

The Design of Experiments (DOE) is a well-established statistical approach that 
involves experiment designs for the empirical modeling of processes (see for example 
Montgomery, 2005). Some typical applications of DOE include 1) evaluation and 
comparison of basic design configurations, 2) evaluation of different materials, and 3) 
selection of design parameters. The proposal for exploiting DOE for algorithm 
parameter tuning is in fact not new. Barr et al. (1995) discussed the design of 
computational experiments to test heuristic methods and provided guidelines for such 
experimentation. The performance of algorithm in computation experiments was 
affected by algorithm factors which include initial solution construction procedures 
and any parameters employed by the heuristic. The authors suggested the use of DOE 
in the process of planning an experiment.  

Parsons and Johnson (1997) used statistical techniques, a central composite design 
embedded a fractional factorial design, to build a response surface for four 
parameters. This approach was applied to a genetic algorithm with applications to 
DNA sequence assembly. More recently, Ridge and Kudenko (2007) used the DOE 
approach to build a predictive model of the performance of a combinatorial 
optimization heuristic over a range of heuristic tuning parameter settings. However, 
the approach was only applicable to tuning Ant Colony System for the Travelling 
Salesman problem. There was no further comparison with other automated tuning 
approaches.  

The Response Surface methodology (RSM) is a model-based approach within 
DOE that can be used to quantify the importance of each parameter, support 
interpolation of performance between parameter settings as well as extrapolation to 
previously-unseen regions of the parameter space (Hutter et al., 2010). Recently, 
Caserta and Voss (2009) adapted the RSM to fine-tune their Corridor Method for 
solving a block relocation problem in container terminal logistics. The values of 
parameters were restricted to discrete intervals due to the problem characteristics. 
Caserta and Voss (2010) presented a simple mechanism aimed at automatically fine 
tuning only a single parameter, the corridor width, of the corridor method for solving 
the DNA sequencing problem.  

This paper describes a sequential experimental approach for screening and tuning 
algorithm parameters. Our approach is grounded on the DOE methodology as follows. 
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Consider an algorithm (called the target algorithm) to solve a particular problem that 
requires a number of parameters to be set prior to the execution of the algorithm. A 
factorial experiment design is applied to first screen and rank the parameters. 
Parameters which are determined to be unimportant (in that the solution quality is 
insensitive to the values of these parameters) are set to some constant values so that 
the resulting parameter space that needs to be explored is reduced. A first-order 
polynomial model based on RSM is then built to define the promising initial range for 
the important parameter values. We apply our proposed approach to two different 
automated tuning configurators, ParamILS (Hutter et al., 2009) and RCS (Lau and 
Xiao, 2009). Each configurator is applied to a target algorithm for solving the 
Traveling Salesman Problem (TSP) and Quadratic Assignment Problem (QAP), 
respectively. 

In summary, the major contributions/highlights of this paper are as follows: 

1. We propose the use of a factorial experiment design that enables to screen and 
rank the algorithm parameters. The screening process helps us to identify those 
unimportant parameters so they can be set into constant values. By focusing on 
important parameters, we reduce the parameter search space and target our search 
on the promising regions of the important parameter search space.  

2. We propose the use of RSM to define the promising initial range for important 
parameter values that can be embedded to automated tuning procedures for 
improving the quality of solutions. 

The remainder of this paper is organized as follows. Section 2 describes our 
proposed automated tuning framework. Section 3 provides a computational analysis 
of our proposed approach applied to two problems. Finally, we provide some 
concluding perspectives and future research plans in Section 4. 

2   Automated Tuning Framework 

The Automated Tuning problem is defined as follows: 
 
Definition: Given a target algorithm TA parameterized by a set of parameters X with 
their respective intervals, a set of training instances Itr, and a meta-function H(x) that 
measures the algorithm performance on a fixed parameter setting x over a set of 
problem instances, the goal is to determine a configuration x* such that H(x*) is 
minimized over Itr.  

 
In this paper, we assume all parameters to lie within numeric intervals. An example of 
the function value H(x) is the average percentage deviation of the solution values 
obtained by TA using x as the parameter setting from the optimal values over the 
given set of instances. In our paper, the goal is to optimize x over the given set of 
training instances Itr and subsequently verify the quality of this parameter setting on a 
set of testing instances.  

A high-level view of our proposed automated tuning framework is given in Figure 
1. The framework consists of three phases, (1) screening, (2) exploration, and (3) 
exploitation phases. In the following, we discuss the details of each phase. 
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Fig. 1. Automated tuning framework 

2.1   Screening Phase  

Let k denote the number of parameters of the target algorithm to be tuned, and each 
parameter pi (discrete or continuous) lies within a numeric interval [li, ui]. In this 
phase, we perform screening to determine which parameters are significantly 
important thereby reducing the number of parameters under consideration. For this 
purpose, we apply a 2k factorial design which consists of k parameters, where each 
parameter pi only has two levels (li and ui). A complete design requires (2 × 2 ×…× 2) 
× n = n × 2k observations where n represents the number of replicates. 

 

Fig. 2. The 22 factorial design 

As an example, consider there are two parameters, A and B. Figure 2 shows the 22 
design with treatment combinations are represented as the corners of the squares.  
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The signs + and – denote the values of li and ui of each parameter pi, respectively. In 
general, a treatment combination is represented by a series of lowercase letters 
(Montgomery, 2005). For example, treatment combination a indicates that parameters 
A and B are set to uA and lB, respectively. To estimate this treatment combination, we 
average n replications obtained. By using equations (1)–(3) and some other statistical 
testing (Montgomery, 2005), we can further examine the main effects of parameters 
A, B and the two-factor interaction AB as well.  
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The importance of a particular parameter is defined by conducting the test of 
significance on the main effect of the parameter. We choose a significance level (α = 
5%) for our purpose. To further determine the ranking of the important parameters, 
we look at the absolute values of the main effects of those important parameters. By 
doing so, we can determine which parameters should be carefully controlled including 
the direction of adjustment for these parameters (see Figure 3 for illustration). The 
result in Figure 3 is obtained with the MINITAB statistical software. 

 

Fig. 3. Statistical results of the screening phase 

From Figure 3, we observe that the main effects of A and B are significant since the 
p-values of both effects are less than 5%. In terms of ranking, B is the most dominant 
parameter, followed by A. Assuming that our objective function is a minimizing 
function, we modify the range of each significant parameter by the main effect value 
of the parameter. For instance, parameter A should be set to a low value since its 
coefficient is positive; hence the range of parameter A is modified to [l′A,u′A] = [lA, 
lA+2∆], where ∆ is a constant. (This notation will become clear in the next section.)   
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For each unimportant parameter, we simply set to a constant value by the main 
effect value of the parameter; if the value is positive, we set the parameter to a low 
value (in our case, it is set to its lower bound lc). The analysis of variance confirms 
our interpretation of the effect estimates. Both parameters A and B exhibit significant 
main effects.  

2.2   Exploration Phase 

Let m be the total number of important parameters (m ≤ k) determined in the 
screening phase where each parameter pi has a modified interval [l′i, u′i] (as defined in 
Section 2.1) as well as its centre point value (l′i + u′i)/2. The Exploration phase is 
summarized in the following figure. 

 
Procedure ExplorationPhase 
Input: TA: Target Algorithm with m parameters,  
           Θ: Parameter Configuration Space, defined by each parameter pi having initial range     
                [l′i, u′i]; 
            I: Set of Training Instances; 
Output: Modified configuration space, each parameter with modified interval. 
 
Procedure: 
1: Run TA with respect to configuration space Θ on I; 
2: Implement 2m+1 factorial design on m parameters ; 
3: Conduct the interaction and curvature tests. If at least one of the tests is statistically 

significant, stop. Otherwise, go to Step 4; 
4: Build a planar model of significant parameters; 
5: Apply steepest descent to define a new centre point for each important parameter pi; 
6: Update the range of each important parameter pi and generate a new [l′i, u′i]; 
7: If at least one parameter pi with either l′i < li or u′i > ui, stop. Otherwise, go to Step 1; 

Fig. 4. Exploration phase 

In essence, we begin with a small region and aim to find a “promising” range for 
important parameters using steepest descent on the response surface. The target 
algorithm is run with respect to the parameter configuration space Θ which contains 
2m+1 possible parameter settings (each parameter has two possible values, with an 
additional parameter setting defined by the centre point value of each parameter).  

We apply a factorial experiment design in order to build a first-order (planar) 
model. The underlying assumption is that the region can be approximated by a planar 
model, which is a reasonable assumption when the region is sufficiently small and far 
from the optimum. The planar model is given by the following approximating 
function: 

εβββ ++++= mm xxY ...110  (4)

In order to test the significance of this model, we conduct two additional statistical 
tests: 
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─ Interaction test. This test is mainly on testing whether any interaction between 
parameters. This can be done by looking at the significance of the estimated 
coefficient between two parameters (for instance, βij).  

─ Curvature test. This test is mainly on testing whether the planar model is 
adequate to represent the local response function.  

As long as each test is not significant, we can always assume that the planar model 
is adequate to represent the true surface of parameters. We then continue the process 
by applying steepest descent that allows us to move rapidly to the vicinity of the 
optimum. More precisely, we move sequentially along the path of steepest descent in 
the direction of the maximum decrease in the response Y (Box and Wilson, 1951). 
The path is proportional to the signs and magnitudes of the equation (4). For example, 
if βA (coefficient of parameter A) is the largest absolute coefficient value compared 
against other coefficient values, the step size of another parameter i is calculated by 
βi/βA. Several points along this path of steepest descent would be generated. A point 
with the minimum objective function value is then selected as the new centre point. A 
new set of li and ui values for each parameter pi as well as a new parameter 
configuration space Θ are then determined.  

We illustrate the steepest descent step as follows. Assuming two parameters, A and 
B, where A has the larger absolute coefficient value (ties broken randomly). We first 
generate n possible values of xA and xB as follows: the values of xA are set to arbitrary 
values (e.g., 0.1, 0.2, …, 0.9), whereas the corresponding values of xB are calculated 
by (βB/βA)×xA. Finally, the n possible parameter values for A and B are calculated as 
follows: 
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We then run the target algorithm with these n parameter values of A and B. The 
parameter setting with the minimum objective function value, denoted 

by best
AV and best

BV , is selected as a new centre point. The range of is parameter then 

modified as [ best
iV -∆, best

iV +∆] where ∆ is a constant.   

From statistical point of view, the region of planar local optimality is indicated by 
the existence of either interaction or curvature.  Hence, we conduct the experiments 
until either interaction test or curvature test is statistically significant and proceed to 
the exploitation phase.  

2.3   Exploitation Phase 

In this phase, we drop the planarity assumption and devote our attention to finding the 
optimal point in the region output from the exploration phase. This is achieved by 
applying an automated tuning procedure, such as ParamILS (Hutter et al., 2009) or 
RCS (Lau and Xiao, 2009).  
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In this study, ParamILS is applied to tune the Iterated Local Search algorithm 
(Lourenco et al., 2003) for the Traveling Salesman Problem, while RCS is applied to 
the hybrid algorithm combining Simulated Annealing and Tabu Search (Ng et al., 
2008) for the Quadratic Assignment Problem (QAP). 

3   Experimental Results 

In this section, we report a suite of computational results and analysis obtained from 
our proposed approach. All the experiments are run on a Intel (R) Core (TM)2 Duo 
CPU 2.33 GHz with 1.96GB RAM that runs Microsoft Windows XP.  

To evaluate the performance of our proposed automated tuning framework, we 
conduct two different experiments: 1) test ParamILS on Traveling Salesman Problem 
(TSP), and 2) test RCS on Quadratic Assignment Problem (QAP). For each 
experiment, two different scenarios, configurator+DOE (1st scenario) and configurator 
(2nd scenario), would be analyzed and compared. In this case, the amount of resources 
allocated (i.e. the number of iterations) are fixed. For instance, suppose the number of 
iterations of ParamILS and DOE are x and y respectively, the number of iterations of 
the 1st scenario is x+y, while the number of iterations of the 2nd scenario is set to z, 
with z = x+y.  

The main purpose is to show that our approach can lead to improvements in terms 
of the gap (i.e. percentage deviation) between the average objective values of the 
solutions obtained by our approach against the best known solutions. We show that 
our proposed approach could provide better solutions for both discrete and continuous 
parameter values.  

3.1   Traveling Salesman Problem (TSP)  

The target algorithm to solve TSP is the Iterated Local Search (ILS). In this paper, we 
used the implementation from Halim et al. (2007). Four parameters that need to be 
tuned are as follows (Table 1): 

─ Maximum_number_of_iterations that limits the number of iterations for running 
the algorithm. 

─ Perturbation_strength that limits the number of times required for running the 
perturbation. 

─ Non_improving_moves_tolerance that limits the number of non-improving 
moves to be accepted. 

─ Perturbation_choice that selects the perturbation strategy. 

Table 1. Parameter space for ILS on TSP 

Parameters (pi) Range  
Maximum_number_of_iterations (max_iter) [100, 900] 
Perturbation_strength (perturb) [1, 10] 
Non_improving_moves_tolerance (non_imprv) [1, 10] 
Perturbation_choice (opt_cho) [3, 4] 
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In this screening process, the parameter space for max_iter, perturb, non_improv 
are reduced to [100, 500], [1, 5] and [1, 5] respectively. We started by selecting 47 
instances from the 70 instances (TSPLIB) as training instances while the rest (23 
instances) are treated as testing instances. For a particular parameter setting, we take 
the average of 10 runs on the training instances. The details of the experiment would 
be explained below.  

3.1.1   Screening Phase  
As described in Section 2.1, we focus on determining which parameters are 
significantly important. Figures 5 and 6 present the results of a 24 factorial design 
with n = 10 replicates using the factors mentioned in Table 1. The numerical estimates 
of the effects indicate that the effect of max_iter, perturb, and non_imprv are 
significant (with p-value < 5%), while the effect of opt_cho appears small. Based on 
the coefficient value of parameter opt_cho obtained, we decide to set the value of this 
parameter to its lower bound value (lopt_cho). As we can see from Figure 6, only three 
parameters (max_iter, perturb, and non_imprv) have significant effects. The dotted 
line represents the cut-off limit associated with that significance level.  

 

Fig. 5. Statistical results of the screening phase 

 

Fig. 6. Screening phase of ILS Algorithm 
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3.1.2   Exploration Phase  
In this phase, we focus on three important parameters obtained from screening phase. 
We apply a factorial experiment design in order to build the first-order model. In 
order to test the significance of the first-order model, we conduct two additional 
statistical testing: interaction and curvature tests. As described earlier, as long as 
theses two additional tests are not significant, we can always assume that the first – 
order model is adequate to represent the true surface of parameters. Table 2 
summarizes the parameter space of parameters along the path of the steepest descent.  

Table 2. Parameter space for ILS Algorithm 

Parameters 
Range 

Exploration_1 
max_iter [400, 600] 
Perturb [1 ,3] 
non_imprv [4, 6] 
opt_cho 3 
Objective function value (%) 3.811 

3.1.3   Exploitation Phase 
In this phase, we use ParamILS to further explore neighbor parameters, given the 
information about the parameter values from exploration phase. Here, we would like 
to show that by using the DOE approach, we can provide a very good initial range for 
the parameter values.  

Table 3. Parameter space for ILS on TSP 

Parameters Type 
Range  

ParamILS ParamILS + DOE 
Maximum_number_of_iteration Discrete [100, 900] [400, 600] 
Perturbation_strength Discrete [1, 10] [1, 3] 
Non_improving_moves_tolerance Discrete [1, 10] [4, 6] 
Perturbation_choice Discrete [3, 4] 3 

Table 4. Parameter tuning for ILS on TSP 

Algorithms Mean 
ParamILS (training instances) 2.653 
ParamILS + DOE (training instances) 2.513 
ParamILS (testing instances) 4.103 
ParamILS + DOE (testing instances) 4.066 

For comparison purpose, we also run ParamILS with the initial range for the 
parameter values (Table 3). The default parameter setting is based on the lower bound 
value of each parameter. The details tuning results for both ParamILS and ParamILS + 
DOE are given in Table 4. We observe that the results obtained by ParamILS + DOE 
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are better than those of ParamILS. We can conclude that DOE approach could lead to 
improvements in terms of the solution quality. The percentage deviations between the 
average objective function value of the solutions obtained and the best known/optimal 
solutions are only 1.117 % and 1.710% for training and testing instances, respectively. 

3.2   Quadratic Assignment Problem (QAP) 

In this experiment, the target algorithm to solve QAP is the hybrid algorithm (Ng et 
al. 2008). The hybrid algorithm involves using the Greedy Randomized Adaptive 
Search Procedure (GRASP) to obtain an initial solution, and then using a combined 
Simulated Annealing (SA) and Tabu Search (TS) algorithm to improve the solution. 
There are four parameters to be tuned, which are listed as follows:  

─ Initial temperature of SA algorithm (temp) 
─ Cooling factor (alpha) 
─ Length of tabu list (length) 
─ Percentage of number of non-improvement iterations prior to intensification 

strategy (pct). 

In order to evaluate the performance of our proposed approach, we decided to 
solve some benchmark problems from a library for research on the QAP (QAPLIB) 
which have been studied and solved by other researchers (Burkard et al., 1997). 
According to Taillard (1995), the instances of QAPLIB can be classified into four 
classes: unstructured (randomly generated) instances, grid-based distance matrix and 
real-life instances and real-life-like instances. Due to the limitation of the target 
algorithm that can only solve symmetric instances with zero diagonal values, we only 
focus on some instances from three classes: unstructured (randomly generated) 
instances, grid-based distance matrix and real-life instances. 

3.2.1   Screening Phase 
We selected a certain number of instances for training and testing instances for each 
class (Table 5). Table 6 summarizes the initial range for each parameter value. Only 
parameter length is a discrete parameter while the rest are continuous ones. 

Table 5. Training and testing instances for each class 

Class Training instances Testing instances 
Unstructured (randomly generated) instances 11 instances 5 instances 
Grid-based distance matrix 24 instances 11 instances 
Real-life instances 14 instances 7 instances 

Table 6. Parameter space for hybrid algorithm on QAP 

Parameters Type Range  
Temp Continuous [100, 7000] 
Alpha Continuous [0.5, 0.95] 
Length Discrete [5, 10] 
Pct Continuous [0.01. 0.10] 
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Fig. 7. Screening phase of the hybrid algorithm (unstructured instances) 

 

Fig. 8. Screening phase of the hybrid algorithm (grid-based distance matrix) 

 

Fig. 9. Screening phase of the hybrid algorithm (real-life instances) 

3.2.2   Exploration Phase  
In this phase, we again focus on important parameters obtained from screening phase. 
By applying the same approach discussed in Section 3.1, we conduct the experiment 
until the first-order model is not appropriate for each class. 

The parameter spaces of parameters along the path of the steepest descent are 
summarized in Tables 7, 8 and 9. We observe that the objective function value would 
decrease subsequently when we reach the promising region of the parameter values. 
The last column for each table represents the final range for each parameter that 
would be used as an input in exploitation phase.  



290 A. Gunawan, H.C. Lau, and Lindawati 

Table 7. Parameter space for hybrid algorithm on QAP (unstructured instances) 

Parameters 
Range 

Exploration_1 Exploration_2 
Temp [4000, 6000] [4378, 6348] 
Alpha [0.85, 0.95] [0.935, 0.945] 
Length 5 5 
Pct 0.01 0.01 
Objective function value (%) 2.517 2.108 

Table 8. Parameter space for hybrid algorithm on QAP (grid-based distance matrix) 

Parameters 
Range  

Exploration_1 Exploration_2 
Temp [4000, 6000] [4238, 6238] 
Alpha [0.85, 0.95] [0.935, 0.945] 
Length [4, 6] 6 
Pct 0.1 0.1 
Objective function value (%) 0.591 0.425 

Table 9. Parameter space for hybrid algorithm on QAP (real-life instances) 

Parameters 
Range 

Exploration_1 
Temp [4000, 6000] 
Alpha [0.85, 0.95] 
Length [4, 6] 
Pct 0. 1 
Objective function value (%) 9.255 

3.2.3   Exploitation Phase 
In this phase, the final range for parameter values obtained from exploration phase 
would be compared with the default configuration of RCS (Table 10). The results 
obtained by testing two different scenarios, RCS and RCS + DOE, are given in Table 
11. We can conclude that RCS + DOE outperforms RCS in all groups of instances. 
We obtained improvements of results over RCS for both training and testing 
instances. 

Table 10. Parameter space for hybrid algorithm on QAP  

Parameters 

Range  

RCS 
RCS + DOE 
(unstructured 

instances) 

RCS + DOE 
(grid-based distance 

matrix) 

RCS + DOE 
(real-life 

instances) 
Temp [100, 7000] [4378, 6348] [4238, 6238] [4000, 6000] 
Alpha [0.5, 0.95] [0.935, 0.945] [0.935, 0.945] [0.85, 0.95] 
Length [5, 10] 5 6 [4, 6] 

Pct [0.01. 0.10] 0.01 0.10 0.1 
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Table 11. Parameter Tuning for Hybrid Algorithm on QAP  

Algorithms 
Mean 

(unstructured 
instances) 

(grid-based 
distance matrix) 

(real-life 
instances) 

RCS (training instances) 1.100 0.630 3.264 
RCS + DOE (training instances) 0.938 0.190 2.822 
RCS (testing instances) 1.595 1.158 6.770 
RCS + DOE (testing instances) 1.518 0.754 5.985 

4   Conclusion 

This paper proposes an automated tuning framework based on the Design of 
Experiments (DOE) approach. We demonstrate that our approach can be adapted to 
address the parameter tuning problem for target algorithms that find approximate 
solutions to two combinatorial optimization problems, TSP and QAP. We show that 
the proposed approach performs very well for both discrete and continuous parameter 
value settings. 

One limitation of a factorial experiment design is that the number of experiments 
increases exponentially with the number of parameters. Fractional factorial designs 
offer a manageable alternative, which uses only some subset of a full factorial 
design’s run.  

In ParamILS and RCS, the neighborhoods of the current parameter setting are 
usually randomly selected. For future extensions to this work, we can consider using a 
second-order response surface model which is usually required when the 
experimenter is relatively close to the optimum.  
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