
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2006

On in-network synopsis join processing for sensor networks On in-network synopsis join processing for sensor networks

Hai YU

Ee Peng LIM
Singapore Management University, eplim@smu.edu.sg

Jun ZHANG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Numerical Analysis and Scientific

Computing Commons

Citation Citation
YU, Hai; LIM, Ee Peng; and ZHANG, Jun. On in-network synopsis join processing for sensor networks.
(2006). 7th International Conference on Mobile Data Management (MDM'06). 32.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/922

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F922&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F922&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F922&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F922&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

In-Network Join Processing for Sensor Networks

Hai Yu, Ee-Peng Lim, and Jun Zhang

Center for Advanced Information Systems,
Nanyang Technological University, Singapore

yuhai@pmail.ntu.edu.sg
{aseplim, jzhang}@ntu.edu.sg

Abstract. Recent advances in hardware and wireless technologies have
led to sensor networks consisting of large number of sensors capable of
gathering and processing data collectively. Query processing on these sen-
sor networks has to consider various inherent constraints. While simple
queries such as select and aggregate queries in wireless sensor networks
have been addressed in the literature, the processing of join queries in
sensor networks remains to be investigated. In this paper, we present a
synopsis join strategy for evaluating join queries in sensor networks with
communication efficiency. In this strategy, instead of directly joining two
relations distributed in a sensor network, synopses of the relations are
firstly joined to prune those data tuples that do not contribute to join
results. We discuss various issues related to the optimization of synopsis
join. Through experiments, we show the effectiveness of the synopsis join
techniques in terms of communication cost for different join selectivities
and other parameters.

1 Introduction

The emergence of wireless technologies has enabled the development of tiny, low-
power, wireless sensors capable of sensing physical phenomena such as tempera-
ture, humidity, etc.. Sensor networks have been adopted in various scientific and
commercial applications [1, 2, 3]. Data collection in a sensor network is achieved
by modeling it as a distributed database where sensor readings are collected and
processed using queries [4, 5, 6].

In this paper, we address in-network join query processing in sensor networks.
Join is an important operation in sensor networks for correlating sensor readings
since a single sensor reading may not provide enough information representing a
meaningful event or entity. Consider a sensor network covering a road network.
Each sensor node can detect the ID’s of vehicles in close vicinity, record the
timestamps at which the vehicles are detected, and keep the timestamped records
for a fixed duration, say 1 hour. Suppose NR and NS represent two sets of
sensor nodes located at two regions of a road segment, Region1 and Region2,
respectively. To gather the necessary data for determining the speeds of vehicles
traveling between the two regions, the following join query can be expressed.

SELECT s1.vehId, s1.time, s2.time FROM s1, s2
WHERE s1.loc IN Region1 AND s2.loc IN Region2 AND s1.vehId = s2.vehId

X. Zhou et al. (Eds.): APWeb 2006, LNCS 3841, pp. 263–274, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

264 H. Yu, E.-P. Lim, and J. Zhang

R
S

FSink

(a) Naive Join

R
S

Sink

(b) Sequential Join

R
S

F

Sink

(c) Centroid Join

Fig. 1. General Strategies

To evaluate the above query, sensor readings from Region1 and Region2 need
to be collected and joined on the vehId attribute. We focus on addressing join
scenarios whereby the join selectivity is so low that is it not cost-effective to ship
source tuples to the sink for join. Therefore, efficient in-network join algorithms
are required.

2 Preliminaries

Suppose a sensor network consisting of N sensor nodes. We assume there are
two virtual tables in the sensor network, R and S, containing sensor readings
distributed in sensors. Each sensor reading is a tuple with two mandatory at-
tributes, timestamp and sensorID, indicating the time and the sensor at which
the tuple is generated. A sensor reading may contain other attributes that are
measurements generated by a sensor or multiple sensors, e.g., temperature. We
are interested in the evaluation of static one-shot binary equi-join (BEJ) queries
in sensor networks. A BEJ query for sensor networks is defined as follows.

Definition 1. Given two sensor tables R(A1, A2, . . . , An) and S(B1, B2,
. . . , Bm), a binary equi-join (BEJ) is

R ��Ai=Bj S (i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , m}) ,

where Ai and Bj are two attributes of R and S respectively, which have the same
domain.

We assume that R and S are stored in two sets of sensor nodes NR and NS

located in two distinct regions known as R and S, respectively. A BEJ query
can be issued from any sensor node called query sink, which is responsible for
collecting the join result. Due to limited memory, the query sink cannot perform
the join by itself. A set of nodes is required to process the join collaboratively,
referred to as join nodes. The join processing can be divided into three stages,
query dissemination, join evaluation, and result collection.

In the query dissemination stage, the sink sends a BEJ query to one of the
NR (and NS) nodes using a location-based routing protocol such as GPSR [7].

In-Network Join Processing for Sensor Networks 265

Once the first NR (and NS) node receives the query, the node broadcasts the
query among the NR (NS) nodes. The query dissemination cost is therefore
O(

√
N + |NR| + |NS |). When sensors receive the query, they send their local

data to the join nodes which are either determined in the query dissemination
phase, or adaptively selected according to the network conditions in the join
evaluation phase. Once the join results are ready, the query sink collects the join
results from the join nodes 1.

Our objective is to minimize the total communication cost for processing a
given BEJ query in order to prolong the sensor network lifetime. In addition, the
join scheme has to ensure that the memory space needed by the join operation on
each join node does not exceed the available memory space. In the next section,
we present several general strategies for performing in-network join. In Section 4
we describe a synopsis join strategy in which unnecessary data transmission is
reduced by an additional synopsis join process.

3 General Strategies

In general strategies, join nodes NF are selected to join tuples of R and S,
without attempting to firstly filter out tuples that are not involved in the join
results (referred to as non-candidate tuples).

When a join query is issued, a join node selection process is initiated to
find a set of join nodes NF to perform the join. R tuples are routed to a join
region F where the join nodes NF reside in. Each join node nf ∈ NF stores a
horizontal partition of the table R, denoted as Rf . S tuples are transmitted to
and broadcast in F . Each join node nf receives a copy of S and processes local
join Rf �� S. The query sink obtains the join results by collecting the partial
join results at each nf . Note that though S could be large, the local join Rf �� S
at nf can be performed in a pipelined manner to avoid memory overflow [8].

The selection of NF is critical to the join performance. Join node selection
involves selecting the number of nodes in NF , denoted by |NF |, and the lo-
cation of the join region F . To avoid memory overflow, assuming R is evenly
distributed in NF , |NF | should be at least |R|/m, where |R| denotes the number
of tuples in R and m denotes the maximum number of R tuples a join node nf

can store.
Depending on the location of the join region, we have at least three join

strategies, namely, naive join, sequential join, and centroid join (see Figure 1).

Naive Join. In naive join, sensor nodes around the sink are selected as the join
nodes NF , so that the cost of routing join results to the sink can be minimized
(Figure 1(a)). The communication cost involves routing tables R and S to the
join region F , broadcasting S to the join nodes, and sending the join results
from NF to the sink (shown in Equation 1)2. Naive join establishes a basis

1 Note that although the query sink may not be able to evaluate the join, it is able to
consume the join results since it can retrieve and process the join results tuple by
tuple with little memory usage.

266 H. Yu, E.-P. Lim, and J. Zhang

for performances of all join strategies, since any join strategy should at least
perform better than naive join in terms of total communication cost in order to
be a reasonable join strategy.

Cnaive−join = |S| dist(S, F) + |S| |NF | +
∑

nf∈NF

(|Rf | dist(R, nf)+

|Rf �� S|dist(nf , sink)) .

(1)

Sequential Join. Sequential join minimizes the cost of routing and distributing
R tuples to the join region by selecting the nodes NR as NF (see Figure 1(b)).
In this case, R tuples remain in their respective nodes. S tuples are routed to
the region R, and broadcast to all nodes NR. Each node ni ∈ NR performs
the local join Ri �� S where Ri is the local table stored at ni. Join results are
delivered to the sink as shown in Figure 1(b). The communication cost of this
strategy is:

Cseq−join =|S| · dist(R, S) + |S| · |NR| +
∑

ni∈NR

|Ri �� S| · dist(R, sink) . (2)

Centroid Join. Centroid join selects an optimal join region within the triangle
formed by R, S, such that the total communication cost are minimized (see
Figure 1(c)). The communication cost is shown in Equation 3. Path-Join [9]
is an example of this strategy, which tries to find an optimal join region by
minimizing a target cost function. Note that naive join and sequential join are
special cases of centroid join.

Ccen−join =
∑

nj∈NS

|Sj | · dist(nj , F) + |S| · |NF | +
∑

ni∈NR

|Ri| · dist(ni, F) . (3)

The above three strategies can be further optimized for BEJ queries. A hash-
based join can be applied in which both R and S are partitioned into a number
of disjoint sub-tables, each with a join attribute value range. Each node nf in
NF

3 is dedicated to join two subsets of Rv and Sv with the same join value
range v. In this way, tuples with the same join attribute value are always joined
at the same join node, and the broadcasting of S in NF can be avoided.

The major problem associated with general strategies is the communication
overhead for transmitting non-candidate tuples in R and S, especially for queries
with low join selectivity.

2 dist(A,B) refers to the hop distance between A and B. If A, B are two nodes,
dist(A,B) is the average hop distance of the routes selected by the routing protocol.
If A, B are two regions, dist(A,B) is the average hop distance between any pair of
nodes from A and B. If A is a region and B is a node, dist(A,B) refers to the average
hop distance between B and all nodes in A.

3 A subset of NF is needed if one node does not have enough memory space for
handling the join.

In-Network Join Processing for Sensor Networks 267

R
SLPR

PS

F

Sink

Fig. 2. Synopsis Join Strategy

Timestamp Vehicle-Type Speed (km/h)
10:23:12 car 82
10:25:29 bus 69
10:30:48 car 85
10:31:31 lorry 70
10:36:07 lorry 62
10:36:40 car 78

(a) Original Table R
Tuple-ID Vehicle-Type Count

t1 car 3
t2 bus 1
t4 lorry 2
(b) Synopsis S(R)

Fig. 3. An example of synopsis

4 Synopsis Join Strategy

The synopsis join strategy prunes non-candidate tuples and only joins candidate
tuples. The key to the pruning process is to keep the cost overhead as low
as possible. The synopsis join strategy comprises three phases, synopsis join,
notification transmission and final join.

4.1 Synopsis Join

The synopsis join phase performs an inexpensive synopsis join, aiming at reduc-
ing the number of R and S tuples to be transmitted for final join. The synopsis
join phase comprises two steps: synopsis generation, synopsis join.

Synopsis Generation. A synopsis is a digest of a relation that is able to
represent the relation to perform operations such as aggregation or join. We
denote S(R) as the synopsis of a table R. A synopsis can be in any form such
as histograms, wavelets, etc., which is generally smaller than the size of the cor-
responding table. In this paper, we adopt simple histograms as synopses where
a synopsis is represented by the join attribute values of a table and their fre-
quencies. For example, assume a sensor table R shown in Figure 3(a). Let the
join attribute be Vehicle-type. The corresponding synopsis S(R) consists of
two attributes, the join attribute value, whose domain is all possible values of
Vehicle-Type, and the number of tuples for each Vehicle-Type, as shown in
Figure 3(b).

In synopsis generation, each sensor generates a synopsis of its local table.
Consider a relation R distributed among NR sensor nodes. Each node ni ∈ NR

stores a local table Ri that is part of R. ni generates a local synopsis S(Ri) by
extracting the join column AJ of Ri, and computing the frequencies of the dis-
tinct values in AJ . Assuming uniform data distribution, we can derive |S(Ri)| as:

|S(Ri)| = |AJ |
(

1 −
(

1 − 1
|NR|

)|R|/|AJ |
)

. (4)

268 H. Yu, E.-P. Lim, and J. Zhang

Synopsis Join. In this stage, a set of synopsis join nodes NL in the synopsis
join region L is selected to join the synopses of R and S to determine the
candidate tuples in R and S (see Figure 2). Once NL nodes are determined,
the local synopses are routed to NL for synopsis join. For BEJ queries, each
synopsis join node nl ∈ NL is assigned a range v of join attribute values using a
geographic hash function [10], so that only synopses with join attribute value in
v are transmitted to nl for synopsis join. For a node ni ∈ NR, the local synopsis
S(Ri) is divided into |NL| partitions. A partition Sv

l (Ri) containing a synopsis
of tuples with join attribute values in v is sent to nl maintaining the range v.

Consider the example shown in Figure 3. Suppose there are two synopsis join
nodes nl1 and nl2. nl1 is dedicated to handle join attribute values car, while
nl2 handles bus and lorry. When a sensor ni1 generates a local synopses as
the one in Figure 3(b), it divides the synopses into two partitions, one partition
S1(Rni1) contains tuples t1 and t3, whose join attribute values are car, and the
other partition S2(Rni1) contains tuples t2 and t4 whose join attribute values
are bus and lorry. Therefore S1(Rni1) and S2(Rni1) are sent to nl1 and nl2 for
synopsis join, respectively.

The synopsis join nodes perform synopsis join as synopses from NR and NS

nodes arrive. We denote a synopsis from a node ni ∈ NR received by a synopsis
join node nl as Sl(Ri). A synopsis join operation performed at nl is defined as
follows. ⊎

ni∈NR

Sl(Ri) ��
⊎

nj∈NS

Sl(Sj) . (5)

The
⊎

operator is a merge function which takes multiple synopses as inputs and
produces a new synopsis. In particular, for our histogram synopsis,

⊎
is defined

as a function that accumulates the frequency values if two input tuples are of
the same join attribute value. The output of

⊎
is therefore the accumulation of

the input histograms.

Synopsis Join Node Selection. The number of synopsis join nodes is determined
by the sizes of local synopses NL nodes receive. Specifically, suppose a node’s
memory space is ms (number of synopsis tuples that can fit into a node), the
number of synopsis join nodes is determined as follows.

|NL| =
1

ms

∑

ni∈NR

|S(Ri)| . (6)

The locations of NL nodes are selected so that the communication cost for
routing local synopses is minimized. The communication cost of sending local
synopses from NR and NS nodes to NL nodes can be expressed as:

∑

nl∈NL

∑

ni∈NR

|Sl(Ri)| · dist(nl, ni) +
∑

nl∈NL

∑

nj∈NS

|Sl(Sj)| · dist(nl, nj) . (7)

Assuming the synopsis join region L is small, we can simplify the above equation:

Csynopsis−routing = |PR|
∑

ni∈NR

|S(Ri)| + |PS |
∑

nj∈NS

|S(Sj)| , (8)

In-Network Join Processing for Sensor Networks 269

where |PR| (or |PS |) is dist(R, L) (or dist(S, L)) 4. Given the above equation,
the optimal set of synopsis join nodes that minimize Csyno−join are located on
the line connecting R and S. Therefore |PR| + |PS | = dist(R, S). Assuming∑

ni∈NR
|S(Ri)| >

∑
nj∈NS

|S(Sj)|, it is obvious that Csynopsis−routing is mini-
mized when |PR| is zero, and |PS | is dist(R, S). Hence,

min(Csynopsis−routing) = dist(R, S)
∑

nj∈NS

|S(Sj)| . (9)

Therefore, the optimal set of synopsis join nodes NL are chosen from nodes in
NR that are nearest to NS , assuming the size of the region R is small compared
to the distance between R and S. Optimal selection of NL for arbitrary R and
S regions are part of the future work.

4.2 Notification Transmission

Each sensor node in NR and NS needs to be notified of which are the candidate
tuples. To achieve this, a synopsis join node nl stores the ID of the sensor a local
synopsis originates from. For each join attribute value a, it identifies two set of
sensors Na

R and Na
S storing tuples with join attribute value a, and selects a final

join node nf to join these tuples, such that the communication cost of sending
data tuples with join attribute value a from Na

R and Na
S to nf , and sending the

results from nf to the sink is minimized. Therefore nf is the node that minimizes
the cost function in Formula 10.

∑

ni∈Na
R

|Ra
i | · dist(ni, nf) +

∑

nj∈Na
S

|Sa
j | · dist(nj , nf)

+
∑

ni∈lar

|Ra
i | ·

∑

nj∈lvs

|Sa
j | · dist(nf , sink) ,

(10)

where |Ra
i | and |Sa

j | denote the number of R tuples in ni and S tuples in nj

with the join attribute value a, respectively.
In order to simplify the problem, the weighted centers of sensors in Na

R and
Na

S are derived, respectively. The weighted center c of a set of sensors N storing
a table T are defined in Equation 11, where Ti refers to the table stored in node
ni, and loc(n) refers to the location of a node n.

loc(c) =
1∑

ni∈N |Ti|
·

∑

ni∈N

|Ti| · loc(ni) . (11)

With Formula 11, the weighted centers cr and cs for sensors in Na
R and Na

S can
be computed respectively. Since

∑
ni∈Na

R
|Ra

i | = |Ra| and
∑

nj∈Na
S

|Sa
j | = |Sa|,

we can rewrite Formula 10 as:

|Ra| · dist(cr, nf) + |Sa| · dist(cs, nf) + |Ra| · |Sa| · dist(nf , sink) . (12)

4 PR (or PS) is the path connecting the centers of R (or S) and L.

270 H. Yu, E.-P. Lim, and J. Zhang

Formula 12 is minimum when nf is the generalized Fermat’s point [11] of the
triangle formed by cr, cs, and the sink. Note that there may not exist a sensor
located at the derived generalized Fermat’s point g. GPSR is used to select a
node that is nearest to g as the final join node nf .

The same operation is performed for all join attribute values handled by nl.
When synopsis join is completed, nl obtains for each sensor node ni a set of
〈a, nf 〉 pairs, which means tuples stored in ni with the join attribute value a are
to be sent to nf for final join. The set of pairs are sent to ni in a notification
message. A notification message can be broken up into multiple ones if it cannot
fit into one network packet. The communication cost for notification transmission
is similar to Equation 9.

Cnotification = dist(R, S)
∑

ni∈NR∪NS

|di| , (13)

where |di| denotes the total size of the notification messages sensor ni receives.

4.3 Final Join

Upon receiving a notification message from a synopsis join node, each node in
NR or NS sends the candidate tuples whose join attribute values are specified in
the notification message to a final join node nf . In the final join stage, a group
of final join nodes NF are selected to join the candidate tuples sent from R and
S, as shown in Figure 2. The final join node nf performs the join Rv �� Sv, and
sends the join results to the query sink. If nf does not have enough memory
space, it requests its neighbors to help in the join operation.

5 Experiments

In this section, we evaluate the performance of synopsis join strategy and com-
pare it with other general join strategies, i.e., naive join, sequential join, and
centroid join. Throughout the experiments, performance is measured by the to-
tal number of messages incurred for each join strategy. The control messages
for synchronization and coordination among the sensors are negligible compared
to the heavy data traffic caused by large tables. More realistic simulation and
experiments will be included in our future work.

We varied the following parameters: join selectivity, network density, node
memory capacity and synopsis size. Join selectivity δ is defined as |R �� S|/(|R|·
|S|). The join attribute values are uniformly distributed within the domain of
the attribute. Network density affects the number of neighboring nodes within
the communication range of a sensor node. We varied the communication radius
of the sensors to achieve different network densities. The size of the synopsis is
determined by the data width of join attribute. If the synopsis size is small, the
number of messages needed for routing the synopses to the synopsis join nodes
becomes small. If it is large, we expect a high communication overhead incurred
due to the transmission of synopses.

In-Network Join Processing for Sensor Networks 271

Experiment Setup. We created a simulation environment with 10, 000 sensor
nodes uniformly placed in a 100 × 100 grid. Each grid contains one sensor node
located at the center of the grid. The sink is located at the right-top corner of
the area, with coordinates (0.5, 0.5). The regions R and S are located at the
bottom-right and bottom-left corners of the network region, respectively, each
covering 870 sensor nodes. Table R consists of 2000 tuples, while S consists of
1000 tuples. R and S tuples are uniformly distributed in R and S, respectively.

We assume a dense network with GPSR as the routing protocol. The number
of hops required to route a message from a source node to a destination node
is approximated using the distance between the two sensors and the communi-
cation radius. The simplification enables analysis of network traffic under ideal
conditions where there is no message loss. In addition, the overhead of GPSR
perimeter mode is avoided with the assumption of dense network. Simulations
and experiments under real conditions using GPSR are part of our future work.
We set a message size of 40 bytes, which is equal to the size of a data tuple. A
tuple in the join result is 80 bytes since it is a concatenation of two data tuples.

Join Strategies. We evaluate and compare the performances of five different
join strategies, namely, naive join, centroid join, sequential join, optimal join,
and synopsis join.

The optimal join provides a lower bound on the total communication cost
involved in the join operation. It assumes that the query sink has a complete
knowledge about the distribution of R and S. Hence, unlike centroid join, only
candidate tuples are transmitted for the final join at NF . Similar to the final join
phase of the synopsis join strategy, for each join attribute value a, an optimal
node nf is selected such that the total cost of routing Ra and Sa to nf and
routing the result Ra �� Sa is minimized. The cost is expressed as in Equation 14.
Since for any join strategy, the transmissions of candidate tuples and the join
results cannot be avoided, the optimal join provides a lower bound on the total
number of messages. Note that the assumption is impractical in real environment.

Coptimal−join =
∑

nf∈NF

(|Ra| · dist(R, nf) + |Sa| · dist(S, nf)+

|Ra �� Sa| · dist(nf , sink)) .

(14)

5.1 Performance Evaluation

Performance vs. Join Selectivity. Figure 4(a) shows the total communi-
cation cost for different join selectivities while keeping the memory capacity,
communication radius and synopsis size fixed at 250 × 40 bytes, 2 units and 10
bytes respectively. As shown in the figure, sequential join performs worse than all
others due to the high cost of broadcasting S to all nodes in NR. Therefore we ex-
clude it from subsequent experiments. As expected, optimal join outperforms all
other strategies for all selectivities. When selectivity is lower than 0.001, synop-
sis join outperforms naive join and centroid join. This is because non-candidate
tuples can be determined in the synopsis join stage, and only a small portion of

272 H. Yu, E.-P. Lim, and J. Zhang

 0

 200000

 400000

 600000

 800000

 1e+06

 1e-05 1e-04 0.001 0.01 0.1

N
um

be
r

of
 M

es
sa

ge
s

Selectivity

naive-join
synopsis-join
centroid-join
optimal-join

sequential-join

(a) Impact of Selectivity

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 M

es
sa

ge
s

Communication Radius

naive-join
synopsis-join
centroid-join
optimal-join

(b) Impact of Network Density

 70000

 80000

 90000

 100000

 110000

 120000

 130000

 140000

 150000

 100 150 200 250 300 350 400 450 500

N
um

be
r

of
 M

es
sa

ge
s

Node Load (number of tuples/node)

naive-join
synopsis-join
centroid-join
optimal-join

(c) Impact of Memory Capacity

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 1e-05 1e-04 0.001 0.01 0.1

N
um

be
r

of
 M

es
sa

ge
s

Selectivity

synopsis-join 10 bytes
synopsis-join 20 bytes
synopsis-join 30 bytes
synopsis-join 40 bytes

naive-join
centroid-join
optimal-join

(d) Impact of Synopsis Size

Fig. 4. Experimental Results

data are transmitted during the final join. On the other hand, when selectivity
is high, almost all data tuples are involved in the result. With large join result
sizes, the final join nodes are centered around the sink. This explains why naive,
centroid and optimal joins have the same communication cost. Moreover, synop-
sis join incurs unnecessary communication sending the synopses, making it less
desirable for high selectivity joins.

Although there is an overhead of using synopsis join when selectivity is high,
it accounts for a small portion of the total communication cost. The overhead
when selectivity is 0.1 is only 7%. Only when the selectivity is 0.005 and 0.01, the
synopsis overhead accounts for a significant portion (20% ∼ 30%) of the total
cost. Many queries have small selectivities where synopsis join is more suitable.
Consider our BEJ query example in Section 1, the BEJ query joining on the
Vehicle-ID attribute has a maximum join selectivity of 0.0005, which favors
the synopsis join.

Impact of Network Density. Figure 4(b) shows the scalability of the join
strategies with varied network density. In this experiment, sensors have a mem-
ory capacity of 250×40 bytes. The join selectivity and synopsis size is 0.0001 and
10 bytes, respectively. As the network becomes denser, the total communication
costs for all strategies reduce too. This is expected because with a larger com-
munication range, fewer hops are needed to send a message across the network.

Impact of Memory Capacity. Figure 4(c) shows the total communication
cost with different memory capacities. In this experiment, the communication

In-Network Join Processing for Sensor Networks 273

radius is 2. The synopsis size is 10 bytes, and the selectivity is 0.0001. It is
shown that the communication costs of all strategies do not change much when
the memory capacity increases. The change in the memory capacity only affects
the number of join nodes (and the number of synopsis join nodes for synopsis
join). When the memory capacity is larger, there are fewer join nodes selected
(8 join nodes reduced to 1 in our experiment setup), and fewer messages are
required for sending the result tuples to the sink. There is no reduction in the
communication cost of sending data from R and S to the join nodes. Therefore
we cannot see much reduction in the total communication cost.

Impact of Synopsis Size. Figure 4(d) shows the total communication cost
with varied synopsis sizes and join selectivities. The memory capacity is 250×40
bytes. And the communication radius is 2 units. As shown in Figure 4(d), with
the experiment setup, the smaller the synopsis size, the better the performance
of the synopsis join. Small synopses results in lower communication overhead
during the synopsis join stage. Therefore, it is beneficial for synopses with small
join attribute width compared to the data tuple size. We also observe that the
synopsis join performs slightly worse than the centroid join when the synopsis
size is greater than 30 bytes, indicating that the overhead of sending the synopsis
is greater than the cost savings in data tuple transmission.

6 Related Work

The popular aggregation-tree-based techniques for solving in-network aggregate
queries [5, 6, 12] typically use an aggregation tree to progressively reduce data by
merging partial results from child nodes so as to generate new results. The same
data reduction technique cannot be directly applied to in-network join queries

Several solutions have been proposed to handle joins in sensor networks.
TinyDB [13] supports only simple joins in a local node, or between a node
and the global data stream. Join operations across arbitrary pairs of sensors are
not supported. Chowdhary et al. [9] proposed a path-join algorithm to select
an optimal set of join nodes to minimize transmission cost involved in the join.
Our technique differs from path-join by pre-filtering non-candidate tuples using
synopsis join. Ahmad et al. [14] proposed a join algorithm by utilizing the data
and space locality in a network. Their focus is on optimizing the output delay in-
stead of the communication cost. Recently Abadi et al. [15] designed techniques
to perform event detection using distributed joins. The technique joins sensor
data with external static tables, and does not address the problem of joining
in-network sensor readings. Also related is the work from Bonfils et al. [16] ad-
dressing the problem of optimal operator placement in a sensor network. The
join is limited on only a single node, which is prohibitive for large data tables.

7 Conclusions

In this paper, we present a synopsis join strategy for efficient processing of BEJ
queries in sensor networks. Unlike the general strategies, the synopsis join strat-

274 H. Yu, E.-P. Lim, and J. Zhang

egy executes a synopsis join step before performing a final join. The synopsis
join step joins synopses generated by the sensors to filter out non-candidate
data tuples and avoid unnecessary data transmission. As part of the synopsis
join strategy, we have developed methods for determining the optimal set of
synopsis join nodes and final join nodes. We have also performed cost analysis
on synopsis join. Our preliminary experiments have shown that synopsis join
performs well for joins with low selectivity and does not incur much overheads
for high join selectivity.

References

1. Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., Anderson, J.: Wireless
sensor networks for habitat monitoring. In: Proceedings of WSNA’02. (2002)

2. Estrin, D., Govindan, R., Heidemann, J.S., Kumar, S.: Next century challenges:
Scalable coordination in sensor networks. In: Proceedings of MobiCom. (1999)

3. Estrin, D., Govindan, R., Heidemann, J.S., eds.: Special Issue on Embedding the
Internet, Communications of the ACM. Volume 43. (2000)

4. Bonnet, P., Gehrke, J.E., Seshadri, P.: Towards sensor database systems. In:
Proceedings of MDM, Hong Kong (2001)

5. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: A Tiny AGgregation
service for ad-hoc sensor networks. In: Proceedings of OSDI’02. (2002)

6. Yao, Y., Gehrke, J.E.: The cougar approach to in-network query processing in
sensor networks. SIGMOD Record 31(3) (2002) 9–18

7. Karp, B., Kung, H.T.: GPSR: Greedy perimeter stateless routing for wireless
networks. In: Proceedings of MobiComm’00, Boston, USA (2000)

8. Lu, H., Carey, M.J.: Some experimental results on distributed join algorithms in
a local network. In: Proceedings of VLDB, Stockholm, Sweden (1985)

9. Chowdhary, V., Gupta, H.: Communication-efficient implementation of join in
sensor networks. In: Proceedings of DASFAA, Beijing, China (2005)

10. Ratnasamy, S., Karp, B., Li, Y., Yu, F., Estrin, D., Govindan, R., Shenker,
S.: GHT: A geographic hash table for data-centric storage. In: Proceedings of
WSNA’03, Atlanta, USA (2002) 56–67

11. Greenberg, I., Robertello, R.A.: The three factory problem. Mathematics Magazine
38(2) (1965) 67–72

12. Nath, S., Gibbons, P.B., Seshan, S., Anderson, Z.R.: Synopsis diffusion for robust
aggregation in sensor networks. In: Proceedings of SenSys ’04, ACM Press (2004)

13. Madden, S.: The Design and Evaluation of a Query Processing Architecture for
Sensor Networks. PhD thesis, UC Berkeley (2003)

14. Ahmad, Y., U.Cetintemel, Jannotti, J., Zgolinski, A.: Locality aware networked
join evaluation. In: Proceedings of NetDB’05. (2005)

15. Abadi, D., Madden, S., Lindner, W.: Reed: Robust, efficient filtering and event
detection in sensor networks. In: Proceedings of VLDB. (2005)

16. Bonfils, B.J., Bonnet, P.: Adaptive and decentralized operator placement for in-
network query processing. In: Proceedings of IPSN. (2003)

	On in-network synopsis join processing for sensor networks
	Citation

	Introduction
	Preliminaries
	General Strategies
	Synopsis Join Strategy
	Synopsis Join
	Notification Transmission
	Final Join

	Experiments
	Performance Evaluation

	Related Work
	Conclusions

