
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

7-2009 

Leak-Free Mediated Group Signatures Leak-Free Mediated Group Signatures 

Xuhua DING 
Singapore Management University, xhding@smu.edu.sg 

Gene TSUDIK 
University of California - Irvine 

Shouhuai XU 
University of Texas at San Antonio 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Information Security Commons 

Citation Citation 
DING, Xuhua; TSUDIK, Gene; and XU, Shouhuai. Leak-Free Mediated Group Signatures. (2009). Journal of 
Computer Security. 17, (4), 489-514. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/792 

This Journal Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F792&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F792&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Leak-free Mediated Group Signatures∗

Xuhua Ding

School of Information Systems

Singapore Management University

xhding@smu.edu.sg

Gene Tsudik

Department of Information and Computer Science

University of California at Irvine

gts@ics.uci.edu

Shouhuai Xu

Department of Computer Science

University of Texas at San Antonio

shxu@cs.utsa.edu

Abstract

Group signatures are a useful cryptographic construct for privacy-preserving non-repudiable authen-

tication, and there have been many group signature schemes. In this paper, we introduce a variant of

group signatures that offers two new security properties called leak-freedom and immediate-revocation.

Intuitively, the former ensures that an insider (i.e., an authorized but malicious signer) be unable to

convince an outsider (e.g., signature receiver) that she indeed signed a certain message; whereas the

latter ensures that the authorization for a user to issue group signatures can be immediately revoked

∗An earlier version appeared in the Proceedings of IEEE ICDCS’04 [32].

1



whenever the need arises (temporarily or permanently). These properties are not offered in existing

group signature schemes, nor captured by their security definitions. However, these properties might be

crucial to a large class of enterprise-centric applications because they are desirable from the perspective

of the enterprises who adopt group signatures or are the group signatures liability-holders (i.e., will be

hold accountable for the consequences of group signatures). In addition to introducing these new security

properties, we present a scheme that possesses both traditional and these newly introduced properties.

Our scheme is constructed using an architectural approach where a mediation server is exploited to trade

on-line communications for the extra security properties, which explains why the resulting scheme is

called “leak-free mediated group signatures.”

2



1 Introduction

The concept of group signatures was introduced by Chaum and van Heyst [27]. Intuitively, a group signature

can be seen as a normal digital signature with some extra properties:

Any verifier can establish that a valid (i.e., verifiable) group signature was generated by a legit-

imate group member (i.e., one of a set of possible signers), while the actual signer can only be

identified by a designated entity, called group manager. In addition, group signatures are un-

linkable and neither a group member nor even a group manager can mis-attribute a valid group

signature. More specifically, group signatures facilitate the following functionalities simultane-

ously: (1) only a group member can sign on behalf of the group; (2) anyone can verify a group

signature, (3) no one, except a designated entity called group manager, can discover the signer’s

identity or link/un-link multiple signatures; (4) no one can mis-attribute a valid group signature;

and (5) if necessary, a group signature can be “opened” by the group manager in order to identify

the actual signer.

Group signatures have many applications. In particular, they can be used as foundation for anonymous

credential systems in various application contexts (cf. [16, 18]).

In the past decade, many research efforts and results focused on seeking precise definitions and efficient

constructions of group signature schemes [5, 43, 13, 10, 20], or their interactive dual, identity escrows [45].

In particular, group signature schemes were striving to satisfy a jumble of (perhaps redundant and/or

overlapping) security requirements: unforgeability, exculpability, traceability, coalition-resistance, no-framing,

anonymity, and unlinkability, which were developed in a series of investigations [27, 28, 22, 16, 21, 45, 4,

15, 54, 3, 17]. To untangle and simplify these somewhat messy requirements, Bellare et al. [5] investigated

“minimal” security requirements for group signature schemes. This line of research is very important, as

is the pursuit of similar requirements for secure public key encryption schemes [38, 49, 51, 33] and secure

key exchange protocols. Specifically, Bellare et al. showed that two security properties, full-traceability and

full-anonymity, are sufficient to subsume all of the above seven requirements (but not an important property

known as no-misattribution).

3



1.1 Motivation: New Security Requirements

In this section we show that, in addition to the aforementioned full-traceability, full-anonymity and no-

misattribution, there are other important properties that are crucial to a large class of group signature

applications. Two properties we identify are: leak-freedom and immediate-revocation. We briefly explain

these two concepts below and highlight their importance in from an application perspective. A more formal

treatment including definitions and analysis is given in Section 2. Intuitively, leak-freedom means that no

signer can convince anyone (except the group manager who can identify a signer anyway) that she indeed

generated a given group signature. Also informally, immediate-revocation means that, once a group member

is revoked, her capability of generating group signatures is disabled immediately.

Why is leak-freedom important? Consider the following example: One of the most often cited uses of

group signatures is for an organization (commercial, government or military) to hide its internal structure.

Suppose that Alice is an employee of a company (say, ABC) who is designated to sign purchase orders and

one of the suppliers is another company (say, XYZ). If, via her signature, Alice can convince XYZ that she is

the signer, she could obtain kick-backs from XYZ as “gratitude” for her supplier selection. This information

leakage illustrates potential abuse of group signatures.

Informally, we say that Alice successfully leaks a group signature if, without revealing her private key

and/or any other long-term secrets, she can convince a verifier that she is the signer of a given group signature.

Therefore, leak-freedom is an important property for a large class of enterprise-centric applications.

Why is immediate-revocation important? We continue along with the previous example: Clearly, any

purchase order signed by Alice on behalf of ABC for a supplier XYZ – using any reasonable group signature

scheme maintained by ABC – imposes certain financial and/or legal responsibilities on ABC. However,

suppose that Alice’s private key is lost or purposely revealed. Alternatively, Alice might be aware of her

impending lay-off or termination at ABC. In any case, Alice (or whoever has her private key), in collusion

with the crooked supplier XYZ, has the incentive to sign unneeded purchase orders for ABC.

This type of abuse is possible – no matter what existing group signature revocation methods is used –

unless we assume mandatory group signature time-stamping service or we impose a strict time limits on

“depositing” all outstanding group signatures. Neither assumption is realistic. Therefore, the liability for

4



such a “poisoned” group signature can not be relegated to Alice; thus, the company has to bear all attendant

cost and responsibilities. We remark that forward-security [1, 6, 54] does not help here at all, since Alice

could simply misbehave by keeping copies of private keys corresponding to all previous time periods. We

also note that this problem is less grave in traditional public key infrastructures (PKI-s) where a “poisoned”

signature cannot be attributed to anyone other than the public key certificate owner.

1.2 Our Contributions

The concept of group signatures is not only a cryptographic notion, but has a wide spectrum of practical

applications. In this paper, instead of studying it as a cryptographic primitive from a theoretic perspective,

we consider the security issues of applying group signatures within a large organization.

The main contribution of this paper is twofold: First, we identify the aforementioned two important

security properties: leak-freedom and immediate-revocation which are necessary for a large class of group

signature applications. Second, we propose a scheme that possesses both traditional and the newly introduced

security properties. Specifically, our scheme exploits a semi-trusted but online entity called mediation server

to achieve immediate-revocation, and a cryptographic trick to fulfill leak-freedom. Therefore, we call the

resulting scheme “leak-free mediated group signatures.” Third, our scheme outperforms other group signature

schemes on the following aspects.

1. Signature Issuance/Verification: Our scheme only needs 11 modular exponentiations to generate

a group signature. More importantly, the resulting group signature is in the form of plain non-group

digital signatures, such as RSA signatures. Therefore, its signature length is the shortest. Its verifi-

cation is equivalent to verifying a single plain signature. This is appreciably more efficient than the

state-of-the-art [2, 17, 10]. This is also relevant when comparing the proposed scheme with an imagi-

nary two-party mediated group signature scheme (i.e., the signing capability of an authorized user is

distributed to the user and the mediation server) — even if it is made leak-free.

2. User Revocation: In other group signature schemes [17, 56, 10] that support revocations, a revocation

requires the group manager to update the cryptographic setting e.g., the group public key. The new

setting should be broadcast to all group members and the verifiers. In our scheme, no changes are

5



made in the cryptographic setting, meaning that the process of revocation is transparent to all other

group members and the verifiers. Our instant revocation feature releases the verifiers the burden of

revocation checking and minimize the incurred computation cost.

3. Member JOIN: In all other group signature schemes, JOIN is a costly process. It takes a heavy toll

on the group manager to issue membership certificates. In our construction, the JOIN process is as

simple as the normal certification of a private signing key.

4. Communication Channel: Our scheme allows us to relax the requirement for the underlying anony-

mous communication channel, which is essential in all previous schemes.

Caveat on trading on-line interaction for new security properties: Compared with prior non-

interactive group signature schemes, our scheme requires maintenance of an online server and one signer-

server communication per signature. The architecture of our scheme resembles those used in [11] and [47]. All

these architectures feature an online semi-trusted server assisting users to perform cryptographic operations.

The notable drawbacks of this approach are the cost of interactions and the risk of server failure. Nonetheless,

the payback justifies the cost not only because the new security properties — such as fine-grained control in

[11] and immediate-revocation as well as leak-freedom in the present paper — are important, but also because

the new security properties are very difficult to fulfill otherwise (if not impossible — we leave this as an

important open problem). Therefore, it seems reasonable to trade on-line interactions for the aforementioned

two security properties. (It is interesting to note that trade-offs of this kind have been exploited in other

contexts and applications [36, 42]). Moreover, our scheme would be easy to implement because the mediation

server can be integrated with an organization’s email server or web service server.

1.3 Related Works

This paper can be viewed as one among many efforts pursuing practical and secure group signature or identity

escrow schemes [27, 28, 22, 45, 2, 19], as well as anonymous credential systems [24, 25, 26, 46, 18, 23].

Related works in group signatures. In recent years, major research theme has been to construct practical

group signature schemes. Early schemes (e.g., [28]) have the drawback of either (or both) group public key

6



size or group signature size being linearly dependent on the number of group members. Consequently, the

complexity of generating and verifying signatures is linear in the number of current members. Such schemes

are clearly unsuitable for large groups. Nonetheless, the early schemes offer some advantages: (1) some

of the schemes are proven secure using some standard cryptographic assumptions, and (2) they can easily

support dynamic membership since excluding (or adding) a member can be achieved by the group manager

manipulating the group public key.

In order to avoid aforementioned linear complexity, Camenisch and Stadler [22] constructed a scheme

where both the group public key and a group signature are of constant size. (However, this was achieved

at the cost of expensive signature operations and non-standard assumptions.) Follow-on results, e.g., [21]

and [2], gradually improved on both efficiency and reliance on standard cryptographic assumptions. Despite

these advances, membership revocation has turned out to be a difficult problem. Some attempts have been

made to support revocation in group signature schemes: Bresson and Stern [15], Song [54], and Ateniese, et

al. [3] as well as Camenisch and Lysyanskaya [17].

Unfortunately, even in these schemes, revocation incurs a linear dependency on either the number of

current, or the total number of revoked, members. This is because of: (1) group manager re-issuing all

certificates for each revocation interval; (2) group member proving, as part of signing, that its certificate is

not revoked; or (3) verifier checking each group signature against the current list of revoked certificates. The

state-of-the-art is a scheme obtained by integrating the dynamic accumulator construct of Camenisch and

Lysyanskaya [17] (which allows for an efficient proof that a group member is not revoked) and the “bare”

group signature scheme of [2] (which allows efficient proof of knowledge of a secret key corresponding to

a valid certificate). A more concise and integrated scheme is presented in [56]. However, even in [17, 56],

revocation is explicit and requires all parties to be aware of most recent accumulator parameters which can

be viewed as part of the group public key. Other works on group signatures include, Kiayias and Yung’s

scheme [44] with an efficient and secure user joining protocol and Boyen and Water’s scheme [14] which is

proven secure in the standard model with the signature length being logarithmic in the number of signers.

Among all these prior works, the one that is most relevant to this paper is [19], which presented an

identity escrow scheme (and a corresponding group signature scheme) with the appointed verifier property.

7



Their motivation was to obtain a scheme where a group member can only convince one or more appointed

verifiers of her membership, while no other party can verify membership even if the signer cooperates fully.

(As long as she does not give away her long-term secrets). Clearly, there is a difference between the appointed

verifier property in [19] and the leak-freedom property specified in this paper. Specifically, the [19] scheme,

by definition, allows a signer to convince designated verifiers that she is authorized to conduct relevant

transactions. Cast in the previous example, Alice can always convince XYZ that she is authorized to sign

purchase orders. However, this exact capability can result in the leakage (outlined in Section 1.1) that we

want to avoid! Besides achieving the strictly stronger leak-freedom, our scheme is more efficient than [19]

which requires both a signer and a verifier to compute more than 17k exponentiations, where k is a security

parameter (say, k = 80). Moreover, membership revocation is not supported in [19], whereas, we achieve

immediate-revocation which has only been explored in the context of traditional PKI-s [12].

Related works in anonymous credentials. A credential system is a system where users can obtain

credentials from organizations and demonstrate possession of these credentials. Chaum and Evertse [26]

presented a general scheme using a semi-trusted TTP common to multiple organizations. However, their

scheme is impractical. The credential system by Lysyanskaya, et al. [46] captures many of the desirable

properties. Camenisch and Lysyanskaya [18] presented a better solution with ingredients from a secure group

signature scheme of [2]. The prototype implementation of [18] was done by Camenisch and van Herreweghen

[23]. This scheme requires both signers and verifiers to compute 22 modular exponentiations. Their advanced

scheme which provides all-or-nothing non-transferability (to discourage a signer from sharing her credentials

with other parties) requires both signer and verifier to compute 200 exponentiations.

Other loosely related works. The notion called abuse-freedom investigated in the context of contract

signing [37], is weaker than leak-freedom because the former only intends to prevent the designated verifier

from being able to transfer the information about the actual signer, whereas the latter intends to prevent a

signer as well as the designated verifier from being able to transfer the same information. Moreover, leak-

freedom is similar to receipt-freedom property that has been investigated in the context of voting schemes

[8, 40]. The main difference is that the former disallows a signer to convince a signature receiver for whom

a signature is targeted, whereas the latter has no such targeted signature receiver.

8



The leak-freedom property of group signature schemes introduced in this paper may be reminiscent of

the “deniability” of ring signatures [52, 9]. A ring signature scheme can be seen as a group signature

scheme without a setting-up process. However, exactly because of this ring signatures do not appear to be

appropriate for the applications we target in this paper.

1.4 Outline

The rest of this paper is organized as follows: the next section provides the model and definition of leak-free

mediated group signatures, Section 3 presents a leak-free mediated group signature scheme. Next, Section 4

discusses some extensions and Section 5 concludes the paper.

2 Leak-free Mediated Group Signatures: Model and Definition

In this section we present the functionality and security specifications of the mediated group signature

scheme.

2.1 Model

Participants: A set of group members U, a group manager GM who admits group members, a mediation

server MS, and a set of signature receivers. Each participant is modeled as a probabilistic polynomial-time

interactive Turing machine. The role of MS is to facilitate group members’ signature generation and to

revoke group members on GM’s directives; this abides by the well-known separation-of-duty principle [29].

We assume that MS maintains a secure dynamic database which is used to record signature transactions:

once a record is stored, it cannot be deleted. MS encrypts every entry in the database with GM’s public

encryption key. Although this incurs slight additional complexity, the OPEN process that is only occasionally

invoked remains efficient. In Section 4 we elaborate further on the issue of database secrecy. Besides this

database, both MS and GM maintain a dynamic membership database that allows both insert and delete

operations but cannot be tampered with by unauthorized parties. This is not new since similar assumptions

are made in all prior group signature schemes.

Communication Channels: Our model consists of four kinds of communication channels: 1) the channels

9



between group users and the GM, 2) the channels between the GM and the MS, 3) the channels between

group users and the MS, and 4) the channels between the MS and signature recipients. All of these

channels are assumed to be public (i.e., not private), but the first two kinds of channels are assumed to be

authenticated.

Trust: Providing a precise specification of the trust model turns out to be difficult mainly because of the

introduction of the new party: MS. Nevertheless, In light of the well-known separation-of-duty principle,

we have:

1. The group manager is trusted not to introduce any illegal (or phantom) group members. However,

GM may want to frame an honest group member.

2. MS is trusted to enforce GM’s policy, e.g., to stop services for the revoked group members as re-

quested by GM and to produce group signatures only for legitimate members. In the suggested system

configuration where MS delivers group signatures, MS will introduce appropriate delay for blocking

trivial traffic analysis attack. Nonetheless, MS may want to: 1) forge an honest member’s group

signatures, 2) generate a group signature without being caught, and 3) compromise anonymity of an

honest group member (e.g., via an out-of-band channel).

2.2 Definition

Definition 1 A leak-free mediated group signature scheme consists of the following six procedures:

• SETUP: A probabilistic algorithm that, on input of a security parameter ρ, outputs the group public key

pkG (including all system parameters), the group manager’s public/secret key pair: pkGM/skGM, the

mediation server’s public/secret key pair pkMS/skMS .

• JOIN: A protocol between the group manager GM and a user results in the user becoming a group

member U . Their common output contains the user’s unique membership public key pkU , and perhaps

some updated information that indicates the current state of the system. The user’s output includes a

membership secret key skU .

10



• REVOKE: An algorithm executed by GM and MS, which, on input of the identity of a group member

(and perhaps her public key pkU ), outputs some updated information that indicates the current state of

the system after revoking the membership of this group member.

• SIGN: A probabilistic algorithm jointly executed by user U and MS, which, on input of a group public

key pkG , U ’s membership secret/public key-pair (skU , pkU), MS’s public/secret key-pair (pkMS , skMS)

and a message m, outputs a group signature δ on m.

• VERIFY: A public algorithm that, on input of a group public key pkG , a group signature δ and a message

m, outputs a binary value TRUE/FALSE indicating whether δ is a valid group signature of m.

• OPEN: An algorithm jointly executed by GM and MS, which takes as input of a message m, a group

signature δ, the group public key pkG and the group manager’s secret key skGM. It first executes VERIFY

on the first three inputs and, if the δ is valid, outputs some incontestable evidence (e.g., a membership

public key pkU and a proof) that either allows anyone to identify the actual signer or determine that

MS cheated.

2.3 Security

We now summarize the security properties of mediated group signatures: correctness, full-traceability, full-

anonymity, no-misattribution, leak-freedom and immediate-revocation. Among them, the leading four prop-

erties are defined based on their counterparts of traditional group signatures [5], with slight modification.

leak-freedom and immediate-revocation are defined for the first time. Although it is straightforward to extend

the two definitions to traditional group signatures, we conjecture that it is difficult to achieve them with

existing techniques.

Definition 2 (Security Properties of Mediated Group Signatures)

• Correctness: All signatures produced by any group member using SIGN must be accepted by VERIFY.

• Full-traceability: No collusion among group members and MS (even consisting of the entire group, and

even being in possession of the group manager’s secret key) can create valid signatures that cannot be

11



opened, or signatures that cannot be traced back to some member in collusion. We remark that allowing

the adversary to know the group manager’s secret key for opening signatures is to show the strength of

a group signature scheme, and not for accommodating corruption of the group manager.

• Full-anonymity: It is computationally infeasible for an adversary (who is not in possession of the group

manager’s secret key for opening signatures) to recover the identity of the signer from a group signature,

even if the adversary has access to the secret keys of all group members and MS.

• No-misattribution: It is infeasible for the GM to frame an honest group member (by misbehaving during

the OPEN process). This property has been implicitly considered in prior group signature schemes (e.g.,

[2]), where the group manager typically publishes a proof that it “correctly” attributed a signature

to the actual signer. Note that this property is not implied by full-traceability since the GM may be

dishonest only in the OPEN process. In contrast, full-traceability assumes that the OPEN process is always

honestly done. We note that this property was ignored in [5] perhaps since in their trust model, a group

manager is trusted to honestly execute the OPEN process. We observe that this assumption in general is

impractical. To illustrate this, we continue with the previous example. Suppose that Alice and Cindy

are given identical rights to sign purchase orders. Then, the group manager (colluding with Alice or

not) can maliciously claim that a signature was generated by Cindy although it was actually generated

by Alice.

• Leak-freedom: It is infeasible for a signer to prove the ownership of a given group signature without

giving away her private key, even if she is in possession of all other members’ secrets (but not the

secret key of the group manager for opening signatures). Note that the same information could also be

available to an adversary targeting full-anonymity. While full-anonymity does not guarantee a signer’s

incapability to convince anyone that she generated a given signature, leak-freedom does not necessarily

imply full-anonymity either (see the remark in Section 3.6 for a concrete example).

• Immediate-revocation: It is infeasible for a group member revoked at time t to generate a valid signa-

ture at any time t′ > t. This addresses all potential disputes that might result from the underlying

asynchronous communication channel.

12



Remark I. It is clear that leak-freedom becomes irrelevant when an authorized signer is willing to give

away her private key to someone else. Also, we do not consider some possible “semantics-based” attacks

such as the message that is being signed is embedded with randomness (e.g., hash of a string) provided

by one to whom the signer plans to prove the ownership of group signature. This kind of attack can be

defeated by only allowing “randomness-free” messages with a prescribed format. It is worthwhile to note

that leak-freedom is a security property against potentially dishonest signers, not against the GM because

the GM must be able to identify the actual signer in a no-misattribution fashion.

Remark II. The immediate-revocation property releases verifiers from the burden of CRL or time-stamp

checking, since at the moment a group signature was issued, the signer’s secret key was verified valid. This

is important not only when an authorized signer need be permanently revoked, but also when an authorized

signer need be temporarily revoked.

3 Leak-free Mediated Group Signatures: Construction

In contrast to most prior works, our construction is designed from a system, rather than purely cryptographic,

perspective, though cryptography still plays a major role. The system functions as follows: each time a group

member needs to generate a signature, she has to somehow “identify” herself to the mediation server which

then, if the member is not revoked, produces a group signature that can be verified using the group public

key. As described below, the mere introduction of the mediation server does not imply that we can trivially

obtain a group signature scheme possessing all the desired properties.

The rest of this section is organized as follows. First, we further motivate the need for a non-trivial solu-

tion. Then, Section 3.2 introduces some cryptographic preliminaries used as ingredients in the construction.

Section 3.3 presents the definition of a major building block – accountable designated verifier signatures,

and Section 3.4 gives such a concrete scheme. Finally, Section 3.5 presents our group signature construction,

and its security is analyzed in Section 3.6.

13



3.1 Further Motivation

At this point, it is natural to wonder whether a practical solution that satisfies all aforementioned require-

ments can be obtained in a trivial fashion. One natural approach is to make the group manager an on-line

entity and have it to “filter” all group signature requests. Each group member has an anonymous chan-

nel to the group manager GM and, for each message to be signed, it submits a message signed under its

normal long-term signature key. GM then “translates” each incoming signature into a signature under its

own well-known group public key. The latter is then released to the requesting member and treated as a

group signature. This approach is trivial, yet seemingly very effective. All security properties including

leak-freedom and immediate-revocation are trivially satisfied and signature generation/verification costs are

minimal.

There are, however, several issues with the above approach. If constant security of GM can be assured,

then the trivial solution is perfect. However, having a fully-trusted on-line entity is typically undesirable

and sometimes simply unrealistic. Moreover, such an entity would be the single point of failure in the sense

of both security (i.e., compromise of GM means compromise of the whole system) and anonymity (i.e., a

dishonest GM can arbitrarily “open” a group signature without being held accountable). It essentially “puts

all eggs in one basket.” One standard way to avoid a single point of failure is to utilize a distributed cryp-

tosystem, which usually takes a heavy toll in system complexity, including management, computation and

communication. The situation here is seemingly more complicated because it might require some advanced,

(and therefore) less efficient tools. To avoid such a single point of failure while ensuring that the resulting

scheme is practical, we design a system under the guidance of the well-known separation of duty principle.

(See the seminal work of Clark and Wilson [29] for necessary background.) This approach, as will be shown

below, facilitates a similar flavor of distributed security. Namely, compromise of either GM or the newly

introduced mediation server MS, but not both, does not necessarily imply complete compromise of the

system since opening a group signature requires cooperations between GM and MS.

14



3.2 Cryptographic Preliminaries

Digital Signature Schemes. A digital signature scheme SIG consists of three algorithms, namely SIG =

(Gen, Sign, Ver). On input a security parameter, a user U runs the probabilistic Gen to obtain a pair of public

and private keys (pk, sk). On input a private key sk and a message m, U runs Sign to produce a signature

σ = SignU(m). On input a public key pk, a message m, and a tag σ, everyone can run Ver to check whether

σ is a valid signature or not. We require a signature scheme to be existentially unforgeable under adaptive

chosen-message attack [39]. We will utilize a secure digital signature scheme without pinning down on any

concrete construction, which provides us with the flexibility when we implement the system.

Discrete Logarithm based Cryptographic Setting. For specific building blocks, we need a standard

setting of discrete logarithm cryptosystem. Specifically, let Gq be the q-order subgroup of Z∗
p, where both

p and q are primes and p = lq + 1 such that l is co-prime to q. We will omit all the moduli when they are

clear from the context.

Proof of Knowledge of Discrete Logarithm. Suppose in a discrete logarithm setting, that Alice

knows that the discrete logarithm of y with respect to base g is x, i.e. y = gx. Alice can prove to Bob of her

knowledge of x without revealing any information on x. Such an interactive proof can be easily converted into

the so-called signature of proof of knowledge under the random oracle model [7]. Alice’s signature proof is a

tuple (c, s), satisfying c = H(m‖gsy−c), where H() denotes a cryptographically secure hash function (drawn

from a family of hash functions). For security reason, we require that the security parameter κ ≤ log q. This

way, gs for a random s takes a specific value is no more than 1/(q − 1) ≤ 2/2κ.

Proof of ElGamal Ciphertext Content. Suppose that Bob has a pair of ElGamal [34] public and

private keys 〈y = gx, x〉 where g is of order q and generates Gq, namely Gq = 〈g〉. To generate an ElGamal

encryption of a plaintext m ∈ Gq for Bob, Alice chooses k ∈R Z∗
q and sends Bob 〈ykm, gk〉. Bob decrypts

an incoming message 〈A, B〉 by computing A/Bx. Security of ElGamal encryption can be based on the

intractability of Decision Diffie-Hellman (DDH) problem [55].

Given an ElGamal ciphertext 〈A, B〉 = 〈ykm, gk〉, both Alice and Bob can prove that m is the corre-

sponding plaintext using standard techniques. Specifically, Alice proves logy(A/m) = loggB and Bob proves

loggy = logB(A/m) using a Σ-protocol [30] such as Schnorr’s [53]. Alice’s proof of ElGamal ciphertext

15



content with respect to (A, B) is a tuple (c, s), satisfying c = H(ys(A/m)−c‖gsB−c). Similarly, Bob’s proof

is a tuple (c, s) satisfying c = H(Bs(A/m)−c‖gsy−c). With such Σ-protocols, conjunctions and disjunctions

(i.e., ANDs and ORs) of certain statements/predicates [31] can be proved as well. Moreover, one can use

the Fiat-Shamir heuristics [35] to transform an interactive Σ-protocol into a signature scheme, which is

nevertheless secure in the random oracle model.

3.3 Definition of Accountable Designated Verifier Signatures

This is a notion that can be viewed as an enhancement of the private contract signature scheme in [37]. Infor-

mally, a private contract signature is a designated verifier signature that can be converted into a universally-

verifiable signature by either the signer or a trusted third party (TTP) appointed by the signer. The TTP’s

identity and power to convert can be verified without interaction by the designated verifier. An accountable

designated verifier signature scheme, on the other hand, emphasizes on the trusted third party’s capability

of identifying an actual signer of a valid signature.

Definition 3 Suppose that Pi and Pj are two participants where i 6= j, and that T is a trusted third party. An

accountable designated verifier signature scheme, ADVS, is a tuple of polynomial-time algorithms (ADVS-Sign,

ADVS-Ver, ADVS-Proof) defined as follows.

1. ADVS-Sign, which is executed by participant Pi on message m for participant Pj with respect to T ,

outputs an accountable designated verifier signature δ = ADVS-SignPi
(m, Pj , T ).

2. ADVS-Ver allows only Pj to verify the validity of an input tag δ so that

ADVS-Ver(m, Pi, Pj , T ; δ) =















TRUE if δ = ADVS-SignPi
(m, Pj , T )

FALSE otherwise

3. ADVS-Proof, which is executed by T on input Pi, m, Pj , and a tag δ, produces a proof via a Σ-protocol

for the predicate SignedBy(δ, Pi) which is TRUE iff δ = ADVS-SignPi
(m, Pj , T ), and FALSE otherwise.

For practical reasons, T typically turns such a proof into a signature using the Fiat-Shamir heuristics.

Remark We stress that the above definition does not capture whether Pi should be able to produce a proof

for SignedBy(δ, Pi). This capability is necessary in the context of [37], but undesirable in our application

16



contexts. Imagine that we want to prevent Alice from convincing XYZ that she did produce δ. A more precise

explanation of this crucial difference between a private contract signature and an accountable designated

verifier signature is the following: the former only intends to prevent Pj from being able to transfer the bit

information SignedBy(δ, Pi) by whatever means, whereas the latter intends to prevent both Pi and Pj from

transferring the bit information SignedBy(δ, Pi).

Definition 4 An accountable designated verifier signature scheme is secure if all the following are satisfied:

1. Unforgeability of ADVS-SignPi
(m, Pj , T ): For any m, it is infeasible for anyone not belonging to {Pi, Pj}

to produce δ such that ADVS-Ver(m, Pi, Pj , T ; δ) = TRUE.

2. Unforgeability of the proof for SignedBy(δ, Pi): For any δ = ADVS-SignPi
(m, Pj , T ), it is infeasible for

anyone not belonging to {T, Pi} to produce a proof for SignedBy(δ, Pi) = TRUE.

3. Indistinguishability of ADVS-SignPi
(m, Pj , T ) and ADVS-SignPj

(m, Pi, T ): Given δi = ADVS-SignPi
(m, Pj , T )

and δj = ADVS-SignPj
(m, Pi, T ), without the knowledge of T ’s private key, no entity has non-negligible

advantage in distinguishing the origins of δi and δj than random guess.

Remark The definition of Indistinguishability implies that for any message m, both Pi and Pj can compute

an ADVS signature with respect to each other. Moreover, no entity except T is able to distinguish the

ownership of these two signatures.

Definition 5 An accountable designated verifier signature scheme is strong-secure if, in addition to being

secure, it ensures that a signing party Pi cannot produce a proof for SignedBy(δ, Pi) = TRUE with non-

negligible probability, where δ = ADVS-SignPi
(m, Pj , T ).

Note that the notion of strong-secure captures the aforementioned requirement of preventing the signer

from proving the ownership of her generated signatures. This feature is not concerned in most signature

schemes. However, it reflects the leak-freedom requirement in group signature settings.

3.4 A Secure Accountable Designated Verifier Signature Scheme

Ideally we need a strong-secure ADVS scheme because such a scheme allows us to construct a simpler leak-free

group signature system. Unfortunately, we do not know how to construct such a scheme with adequate

17



efficiency. We leave it as an interesting open problem and discuss it in Section 4. In order to facilitate a

group signature scheme that is leak-free with immediate-revocation, we utilize a secure ADVS scheme that is

based on the ideas in [37], which is, in turn, based on [31, 30, 41]. Suppose that Pl, l ∈ {i, j}, has a pair

of public and private keys 〈yl = gxl , xl〉 and that the trusted third party T has a pair of public and private

keys 〈yT = gxT , xT 〉, where Gq = 〈g〉.

Thereby, Pi can generate an accountable designated verifier signature on message m for Pj by presenting

a proof of a statement [37] such as

“X is a T -encryption of ‘gi’ AND I can sign m as Pi

OR

X is a T -encryption of ‘gj’ AND I can sign m as Pj”

where X is some value(s) and T -encryption denotes a message encrypted via ElGamal using yT . Pi can do

this because she can perform a T -encryption of “gi” to generate X , and she can sign m by herself. Upon

receiving this proof, Pj can verify its correctness, but he cannot convince any other party that Pi produced

such a proof (or the corresponding signature obtained using the Fiat-Shamir heuristics) because Pj can

simply produce a similar proof for the same statement.

In order to facilitate practitioners, we give a concrete implementation of a secure ADVS scheme.

1. ADVS-Sign: Pi generates an ElGamal encryption of gi ∈ Gq using yT ; denote the ciphertext by

〈A = gi · yk
T , B = gk〉 where k ∈R Zq. Then it executes as follows:

(a) Choose r1, r2 ∈R Zq and compute u = yr1

T , v = gr1 , and w = gr2 .

(b) Choose d′
1
, d′

2
, c′ ∈R Zq and compute u′ = y

d′
1

T (A/gj)−c′ , v′ = gd′
1B−c′ , and w′ = gd′

2y−c′

j .

(c) If i ≤ j, compute θ = H(m‖A‖B‖u‖v‖w‖u′‖v′‖w′),

otherwise θ = H(m‖A‖B‖u′‖v′‖w′‖u‖v‖w), where H : {0, 1}∗ → Zq behaves like a random oracle,

and ‖ denotes the concatenation of binary strings.

(d) Compute c = θ − c′ mod q.

(e) Compute d1 = c · k + r1 mod q and d2 = c · xi + r2 mod q.

18



(f) If i ≤ j, Pi’s accountable designated verifier signature on message m with respect to Pj is δ =

(m, A, B, c, d1, d2, c
′, d′

1
, d′

2
); Otherwise, δ = (m, A, B, c′, d′

1
, d′

2
, c, d1, d2).

2. ADVS-Ver: Given δ = (m, A, B, c, d1, d2, c
′, d′

1
, d′

2
), the verifier checks if:

c + c′ = H(m‖A‖B‖yd1

T (A/gi)−c‖gd1B−c‖gd2y−c
i ‖y

d′
1

T (A/gj)−c′‖gd′
1B−c′‖gd′

2y−c′

j )

.

3. ADVS-Proof: Given a valid δ, T decrypts (A, B) into gl such that either l ∈ {i, j}. T then publishes a

proof for loggyT = logB(A/gl), which corresponds to the predicate SignedBy(δ, Pl). In plain words, T ,

having the decryption key for ElGamal ciphertext (A, B), proves the clause that “X is a T-encryption

of gl”. The proof of knowledge of ElGamal ciphertext content ensures δ is indeed generated by Pl.

The details are straightforward and omitted.

The computational complexity for the signing party is 11 exponentiations (among them 6 exponentiations

can be calculated using the implementation speedup technique [48]); the computational complexity for the

verifier is 12 exponentiations (all of them can be calculated using the speedup technique).

We note that the ADVS signature scheme can be simulated without knowing any of xi and xj because we

can first choose c and c′, and then define θ to be c+ c′ mod q. In order to prove security of ADVS, we need a

slight variant of the Forking Lemma [50], which basically states that if there is an adversary that can forge a

signature with a non-negligible probability, then there exists a polynomial-time algorithm that can produce

two signatures with a non-negligible probability. Proof of the lemma is essentially the same as in [50], in

what follows we highlights the difference caused by the difference between ADVS and the scheme in [50].

Lemma 1 If there is an adversary that can forge an ADVS signature with a non-negligible probability, then

there exists a polynomial-time algorithm that produces two ADVS signatures with respect to θ1 6= θ2 (and thus

c1 = θ1 − c′ mod q, c2 = θ2 − c′ mod q, and c1 6= c2).

Proof 1 (sketch) Suppose the attacker asks a distinct queries to the random oracle, and b queries for obtain-

ing ADVS signatures. The queries can be answered by the simulator mentioned above, which does not know the

secret key xi of Pi and xj of Pj. The simulation cannot get through when we encounter a “collision” in the

19



definition of the random oracle. Note that the probability for a “commitment” (i.e., m‖A‖B‖u‖v‖w‖u′‖v′‖w′

in this case) happens to match the simulated output of the signing oracle is no more than the probability

that w happens to match the simulated output of the signing oracle, which is negligible in security pa-

rameter κ. Note that some m‖A‖B‖u‖v‖w‖u′‖v′‖w′, which the simulator outputs, appears in the list of

queries made to the random oracle by the attacker is less than 2ab/2κ. Moreover, the probability that some

m‖A‖B‖u‖v‖w‖u′‖v′‖w′ is produced by the simulator twice is bounded by b2/2κ. Combining them together

and borrowing the remainder of the proof from [50], it can be shown that the lemma holds.

Theorem 1 The above ADVS scheme is secure under the random oracle model and the Decision Diffie-

Hellman assumption.

Proof 2 (sketch) We show that the scheme satisfies the Definition 4.

• Unforgeability of ADVS-SignPi
(m, Pj , T ). Suppose there is a probabilistic polynomial-time algorithm A

that does not know xi and xj , and is nevertheless able to forge a δij = ADVS-SignPi
(m, Pj , T ) with

non-negligible probability. Then there is a probabilistic polynomial-time algorithm B that is able to

break the discrete logarithm assumption (which implies the DDH assumption). Basically, B embeds

a discrete logarithm challenge instance as the pair of public and private keys of (yi, xi) or (yj , xj),

with equal probability. Lemma shows that if A is able to forge a δ, then B can obtain two accepting

transcripts for the corresponding Σ-protocol with respect to two different θ’s, which corresponds to two

different c’s or two different c′. This means that either xi or xj can be extracted.

• Unforgeability of the proof for SignedBy(δ, Pi). Given a valid δ produced by either Pi or Pj, suppose that

there exists a probabilistic polynomial-time algorithm F , that is able to forge a proof for SignedBy(δ, Pi)

without knowing Pi and T ’s secret key.

Case I: δ is indeed produced by Pi. Then we can construct a polynomial-time algorithm D to break the

DDH assumption. Given a DDH challenge (g, g1, r, r1), D simply sets yT = g1, B = r and A = r1 · g
i.

Note that D can answer all ADVS-Proof queries by having control over Pj. If the challenge is a DDH

instance, then F succeeds with non-negligible probability; otherwise, F cannot. If F succeeds, then D

bets that the challenge is a DDH instance; otherwise, outputs a random guess. Therefore, D succeeds

20



with non-negligible advantage over random guess.

Case II: δ is produced by Pj . This means that (A = gj · yk
T , B = gk) for some k ∈ Zq; otherwise,

Lemma allows us either to extract xi or to have two acceptable transcripts for loggB = logyT
(A/gj),

both of which are contradictions. If F is able to produce such a proof that loggB = logyT
(A/gi), then

Lemma shows that we can get two acceptable transcripts, which is impossible since the input is not in

the language.

• Indistinguishability of ADVS-SignPi
(m, Pj , T ) and ADVS-SignPj

(m, Pi, T ). Without loss of generality, let

i ≤ j. Let ADVS-SignPi
(m, Pj , T ) be (m, A, B, c, d1, d2, c

′, d′
1
, d′

2
) denoted by δ, and ADVS-SignPj

(m, Pi, T )

be (m, Ā, B̄, c̄, d̄1, d̄2, c̄
′, d̄′

1
, d̄′

2
), denoted by δ̄. It is straightforward to observe that the two distributions

of δ and δ̄ are the same. First, due to the semantic security of ElGamal encryption, the distribution

of (A, B) and (Ā, B̄) are indistinguishable. Secondly, c′, d′
1
, d′

2
, c̄′, d̄′

1
, d̄′

2
are random numbers indepen-

dently selected from Zq. Since the hash function H() is modeled as a random oracle, its outputs are

random numbers. Thus, c and c̄ have a uniform distribution over Zq. Both (d1, d2) and (d̄1, d̄2) are

also random as they are the sum of random numbers. Thus, the distributions of δ and δ̂ are identical.

3.5 Leak-free Mediated Group Signature Scheme: Putting the Pieces Together

We are finally ready to present a concrete construction of group signatures satisfying all aforementioned

requirements. As mentioned earlier, we use a system approach combined with the well-known separation-

of-duty principle [29]. GM sets group policies, makes all decisions regarding group membership (admis-

sion/revocation), and performs the OPEN process on disputed group signatures, while MS enforces the

policies and decisions.

The basic operation of our scheme is as follows. To sign a message m, a group member Ui presents

an accountable designated verifier signature δ = ADVS-SignUi
(m,MS,GM) to the mediation server MS

thereby requesting a plain signature σ = SignMS(m). The latter is treated as a group signature on the

message m. The process of group signature verification is the same as VerMS(σ, m), except that the verifier

has to check whether the certificate for MS’s public key certifies MS as the mediation server for the involved

group. Note that, since GM plays the role of a trusted third party in the ADVS scheme, it can hold the actual

21



signer accountable. We also note that our trust model implies that there are no issues with fair exchange of

δ = ADVS-SignUi
(m,MS,GM) for σ = SignMS(m). The details of our construction are as follows.

SETUP. This consists of initializing group manager GM and mediation server MS.

1. The initialization of group manager GM includes the following:

• It chooses a security parameter κ, based on which it chooses a discrete-logarithm based crypto-

context including Z∗
p and its q-order subgroup Gq, as specified in Section 3.2. The parameter κ

and the crypto-context are thus followed system-wide by group members, MS, and GM itself.

• It specifies a user set U so that each user or group member will be assigned with a unique identity

U ∈ U.

• It specifies (according to κ and crypto-context) an accountable designated verifier signature scheme

ADVS as in Section 3.3. In order for GM to play the role of the TTP in the ADVS scheme, it chooses

a pair of public and private keys 〈YGM = gXGM , XGM〉.

• It initializes a database DBUser-GM of entry structure 〈user-id, user-public-key, status〉, where

“status” is for recording information such as the time “user-id” joins or is revoked. This database

is to keep record of all the current group members and ex-members who have been revoked.

2. The initialization of mediation server MS consists of the following:

• In order for MS to play a role in the ADVS scheme, it chooses a pair of public and private group

membership keys 〈YMS = gXMS , XMS〉 according to κ and crypto-context.

• It chooses a pair of keys for a normal digital signature scheme SIG = (Gen, Sign, Ver) that is

secure against adaptive chosen-message attack (an alternative may be that GM specifies SIG).

Denote by 〈pkMS , skMS〉 the pair of group signature verification and generation keys, where

pkMS is publicly known. We remark that any secure signature scheme can be used as SIG. We

assume that MS knows skMS in its entirety; this is to prevent attacks from happening because

of an inappropriate system initialization, and can be ensured by utilizing techniques due to [57].

• It initializes a database DBMember-MS of entry structure 〈group-member-id, group-member-

public-key〉.

22



• It initializes a database DBSig-MS of entry structure 〈group-member-id, ADVS-signature, normal-

signature〉, which will be explained below.

JOIN. Whenever the group manager GM decides to admit a new group member, it assigns a unique identity

Ui to the user. Then, the following protocol is executed.

1. In order to play a role in the ADVS scheme, Ui chooses a pair of public and private keys 〈YUi
= gXUi , XUi

〉

according to the system-wide parameter κ and crypto-context.

2. GM inserts an entry (Ui, YUi
, ∗) into its database DBUser-GM where “∗” stands for any information

GM wants to record, and may simply forward (Ui, YUi
) to the mediation server MS over a communi-

cation channel that is assumed to be authenticated and has no delay in delivering messages.

3. After receiving (Ui, YUi
) from GM via the authenticated communication channel, MS inserts an entry

(Ui, YUi
) into its database DBMember-MS.

REVOKE. Whenever the group manager GM decides to revoke the membership of a group member Ui, the

following protocol is executed.

1. GM records relevant information (e.g., when membership is revoked) in the “status” column corre-

sponding to Ui in its database DBUser-GM.

2. GM informs MS that Ui should be revoked over the communication channel. For the revocation

purpose, MS simply deletes the entry (Ui, YUi
) from its database DBMember-MS.

SIGN. Whenever a group member Ui wants to generate a group signature on a message m, the following

protocol is executed.

1. Ui sends to MS an accountable designated verifier signature δ = ADVS-SignUi
(m,MS,GM) over a

public and unauthenticated channel.

2. On receiving δ, MS retrieves Ui’s public key YUi
from its database DBMember-MS. If no entry is found,

MS simply ignores the request. Otherwise, MS verifies δ by checking whether ADVS-Ver(m,MS,GM; δ) =

TRUE. MS then produces a normal signature γ = SignMS(m) and inserts a new record: (Ui, δ, γ)

23



into its database DBSig-MS. The signature γ will be treated as a group signature on message m. How

to send the group signature γ to the potential verifier(s) depends on the local policy. One option that

allows us to completely get rid of all anonymous channels is to let MS send γ to the receiver.1 Another

option, which is not so elegant, is to let MS broadcast γ so that Ui can get and resend γ to the receiver

via an anonymous channel.

3. When the security of DBSig-MS is not assumed, MS encrypts (Ui, δ, γ) using ElGamal encryption

algorithm under GM’s public key YGM.

For the clarity purpose, throughout the paper we still call Ui the originator or the signer of group signature

γ, despite the fact that γ is actually computed by MS.

VERIFY. Given pkMS and a tag γ, anyone can verify whether γ is a valid group signature by running Ver on

inputs: pkMS , m, and γ.

OPEN. Whenever GM decides to identify the actual signer of the signature γ on message m (i.e., the group

member that requested γ from MS), the following protocol is executed by the group manager GM and the

mediation server MS:

1. GM sends γ to MS via an authenticated communication channel.

2. On receiving γ, MS retrieves from its databases the encrypted (Ui, δ, γ) and sends it to GM via the

same channel.

3. After decryption of the entry, GM checks whether ADVS-Ver(m,MS,GM; δ) = TRUE. If not, GM

aborts the OPEN procedure and determines that MS is faulty. Otherwise, GM executes ADVS-Proof

to produce a proof for SignedBy(δ,Ui). If SignedBy(δ,Ui) is TRUE, Ui is the signer; otherwise MS

takes the responsibility.

3.6 Security Analysis

The correctness of our scheme can be verified by inspection. In the following, we first show that our con-

struction satisfies three basic security requirements for group signatures, i.e., full-traceability, full-anonymity

1In this case, there may need a random delay to defeat traffic analysis, but such a delay exists in current anonymous channels.

24



and non-misattribution. Then, we show that our construction satisfies leak-freedom and supports immediate-

revocation.

Theorem 2 The proposed group signature scheme is secure, in the sense of satisfying full-traceability, full-

anonymity and non-misattribution.

Proof 3 (sketch)

(1) Full-traceability. The proof of full-traceability is quite trivial. Let C ⊆ U denote the set of participants

that an adversary A compromised. In particular, we allow A to compromise all group members and the

mediation server MS.

Suppose that A is able to produce a signature γ such that it is valid with respect to MS’ public verification

key pkMS . When GM attempts to open γ, there are two possible cases:

Case I: GM fails in Step 2 of the OPEN algorithm, i.e. no corresponding (Ui, δ, γ) tuple is found. Note

that our group signature scheme does not provide the adversary any advantage in attacking SIG since the

computation of SIG is cryptographically independent of ADVS signatures. In other words, SIG is still secure

against existential forgery. Thus, GM asserts that MS is the originator of γ.

Case II: GM obtains the corresponding (Ui, δ, γ) from MS. Assume that the database is secure against

unauthorized modifications, the OPEN process can identify the entity responsible for γ. GM first verifies δ.

If it is verified false, GM asserts that MS takes the responsibility since she violates the protocol. If δ is

valid, GM executes ADVS-Proof to produce a proof for SignedBy(δ,Ui). If SignedBy(δ,Ui) is TRUE, Ui is

the originator. Otherwise, the signature δ is issued by MS.

Therefore, combining Case I and Case II, GM is always able to trace the originator or a part of the

originators of a correct group signature.

(2) Full-anonymity. The adversary A is challenged to identify the actual signer of a given group signature γ,

which is generated by either Ui and Uj. Let C ⊆ U ∪ {MS} denote the set of entities that the adversary A

has compromised after A is given its challenge γ. Note that A is allowed to compromise MS’s private keys

XMS for the ADVS scheme as well as skMS for the normal signature scheme SIG. Of course, A does not

know GM’s private key XGM.

Clearly, without access to the database DBSig-MS, A has no clue about the actual signer and, thus,

25



full-anonymity is trivially obtained. (Eavesdropping on the communication channels does not help A at all.)

In order to show the strength of our scheme (as was done in [5] with respect to previous group signature

schemes), we do not make assumptions on the security of DBSig-MS. We allow A to break into DBSig-

MS. Nonetheless, penetration of DBSig-MS does not offer A any advantage in determining the identity of

the signer. Recall that in Step 3 of the SIGN algorithm, all database entries are encrypted using ElGamal

encryption under GM’s public key. The semantic security of ElGamal encryption ensures that A does not

even learn one bit information of its plaintext (Ul, δ, γ), where l ∈ {i, j}. Therefore, the adversary is incapable

of determining the actual signer even if she compromises all secret keys except GM’s.

(3) No-misattribution. Given a group signature γ, let (Ui, δ, γ) be the corresponding request entry in DBSig-

MS. We prove below that GM cannot misattribute δ = ADVS-SignUi
(m,MS,GM) to group member Uj,

where i 6= j.

Without loss of generality, let δ = (m, A, B, c, d1, d2, c
′, d′

1
, d′

2
), where A = gi · Y k

GM, B = gk. Suppose

that GM can present a proof for SignedBy(δ,Uj) = TRUE. The validity of the proof implies that GM has

the knowledge of logg YGM and logg YGM = logB(A/gj). Therefore, A = gjBx. Obviously, it contradicts to

A = giBx, which proves the non-misattribution property.

Now we show that our group signature construction also satisfies two new requirements introduced earlier

in this paper. It is summarized in the following theorem.

Theorem 3 The proposed group signature scheme fulfills leak-freedom and immediate-revocation.

Proof 4 (sketch) It is quite trivial to observe that group members can be immediately revoked. Once GM

updates MS the latest revoked member list, MS stops services for them instantly. Without the help from

MS, the revoked members are unable to produce any group signatures.

Given a group signature γ issued by MS upon Ui’s request δ, our next goal is to prove that neither MS

nor Ui is able to convince a third party V, that Ui is the originator of γ.

We first show MS’s inability in leaking information of Ui. In order to convince V, MS must show as the

evidence that (Ui, δ, γ) is stored in DBSig-MS . One may argue that MS may keep all randomness used in

previous encryptions of DBSig-MS entries. Therefore it is easy for MS to prove, and reveal, that (Ui, δ, γ) is

26



indeed the plaintext of a DBSig-MS entry. Nonetheless, even if MS manages to achieve this, she is unable

to convince V that δ is the original request generated by Ui. This is in fact due to the indistinguishability of

ADVS signatures. V is not certain whether δ is issued by Ui or by MS.

Then, we show that it is also infeasible for Ui to leak the information of γ even if she is the originator.

As argued above, Ui has to prove that her signature δ is part of the plaintext of some entry in DBSig-

MS. Consider the extreme case that Ui successfully breaks into DBSig-MS and luckily obtains the entry for

(Ui, δ, γ). Even if she knows that the entry is the ElGamal encryption of (Ui, δ, γ), she is unable to prove it

to anyone. Note that the proof of knowledge of an ElGamal encryption can only be done by the encrypter,

which is MS, and the one who has the decryption key, which is GM. Thus Ui cannot construct a proof.

In summary, neither Ui nor MS is able to leak information of the identity of the originator of γ. It is

obvious that other group member are unable to leak either which is evident from full-anonymity.

4 Extension and Discussion

Full-anonymity vs. leak-freedom. The difference between full-anonymity and leak-freedom is quite

subtle, yet important. They are geared to addressed two different security aspects of group signatures.

Full-anonymity emphasizes on the resistance against external attacks, including key compromise, whereas

leak-freedom constrains the behavior of insiders. An adversary might be able to compromise a group member

or MS’s secret key somehow. Nonetheless, such a security failure does not imply that the adversary obtains

the victim’s history state, including random numbers used in computation prior to attacks. Leak-freedom

handles stronger attacks where the insiders could be adversary, who can easily record all previous states.

Full-anonymity does not imply leak-freedom. Many existing group signatures satisfy full-anonymity, while

their group members are able to leak the ownership of signatures. On the other hand, leak-freedom does

not imply full-anonymity either. For example, a message authentication code is leak-free, but is not a group

signature scheme and does not offer full-anonymity.

Enhancing anonymity against traffic-analysis. Our scheme does not assume that the channel between a

group member U and the mediation server MS is authenticated, nor is it assumed that there is an anonymous

channel. This gain comes from the general assumption that the MS has potential incentives to cheat an

27



outsider, which implies:

• Even if an adversary can eavesdrop all the channels, there could still be an out-of-band channel between

a group member and MS, and thus the eavesdropping adversary could still be fooled.

• MS can easily cheat an outsider by inserting fake ADVSs into the network or fake entries into its

database.

But what if it is known that a mediation server MS, while not being trusted to preserve anonymity, does

not always insert fake traffic into the network? Then an eavesdropping adversary still has a good chance to

compromise the anonymity of some honest group members by simply conducting a traffic-analysis attack.

Fortunately, this can be easily resolved by letting the mediation server choose a public key cryptosystem

whereby the communication between any group member and MS is protected.

On strong-secure ADVS vs. secure ADVS. In our construction we utilized an ADVS that is secure, but

not strong-secure. As a consequence, we assume that the storage of the mediation server MS, particularly

secrecy of the entries of (Ui, δ = ADVS-SIGUi
(m,MS,GM), SignMS(m)) is ensured. This is necessary to

avoid the following attack: If an attacker has access to such an entry in the database of MS, then Alice can

easily convince any party such as XYZ that she resulted in SignMS(m). Clearly, if a strong-secure ADVS is

utilized, then we can achieve strictly stronger security that (for instance) Alice is still unable to convince

XYZ that she resulted in a signature, even if she has access to the corresponding entry in the database of

MS.

Robustness against denial-of-service attack. Since the mediation server MS always needs to calculate

modular exponentiations before it can discard an incoming illicit signature request, there is potentially the

risk of denial-of-service attack for exhausting the resources of the MS. We propose a simple solution that

can substantially ease this concern. The idea is to let a group member Ui shares a unique symmetric key wi

with the MS. Each signature request from Ui must also be accompanied with a message authentication code

(MAC) with respect to wi, whose validity is then verified before MS verifies the validity of the accountable

designated verifier signature. We remark that the introduction of message authentication code does not

jeopardize the properties of our scheme, because wi is common to both Ui and MS. (Clearly, no group

28



signature scheme can be based on such common secrets; it is only for the purpose of robustness against

denial-of-service attack.)

5 Conclusion

We identified two new properties, namely leak-freedom and immediate-revocation, that are necessary for a large

class of group signature applications. We also constructed a practical scheme that achieves all traditional

and newly-introduced goals by following a system architectural approach, which is practical and easy to

implement. Specifically, our scheme needs only 11 exponentiations for a group member to generate a group

signature and one normal signature verification, such as RSA, for its validation. Another contribution of our

approach is a careful examination of the corresponding trust model that we relax the requirement for the

underlying anonymous communication channel, which is essential in all previous schemes.

There are several interesting open problems for future investigation:

• How to construct a practical strong-secure accountable designated verifier signature scheme?

• How to construct a leak-free group signature scheme with immediate-revocation without relying on

a mediation server? Although we believe that the existence of a mediation server is more realistic

than the existence of a time-stamping service, it is nevertheless conceivable that other alternatively

constructions could fit well into different specific application scenarios.

• How to minimize MS’s load? One possible venue is to construct a weaker form of mediation where

the interaction with MS is not per-signature based. Another is to build a stateless MS. This is not

trivial since a trapdoor is needed to allow the group manager to open group signatures. A promising

approach is to encrypt the state and embeds the ciphertext into group signatures.

Acknowledgement. We are grateful to the reviewers for their constructive comments that helped improve

the paper.

Shouhuai Xu was supported in part by ARO, NSF, and AFOSR.

29



References

[1] R. Anderson. Two remarks on public key cryptography, Invited talk on ACM CCS 1997.

[2] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably secure coalition-resistant

group signature scheme. In Proceedings of Advances in Cryptology – CRYPTO ’2000, pages 255–270.

[3] G. Ateniese, D. Song, and G. Tsudik. Quasi-efficient revocation of group signatures. In Proceedings of

Financial Cryptography’2002.

[4] G. Ateniese and G. Tsudik. Some open issues and new directions in group signatures. In Proceedings

of Financial Cryptography’1999.

[5] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: Formal definitions,

simplified requirements, and a construction based on general assumptions. In Proceedings of Advances

in Cryptology – EUROCRYPT ’2003.

[6] M. Bellare and S. Miner. A forward-secure digital signature scheme. In Proceedings of Advances in

Cryptology – CRYPTO ’99, pages 431–448.

[7] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols.

In Proceedings of ACM Computer and Communications Security Conference (CCS)’93, pages 62–73.

[8] J. Benaloh and D. Tuinstra. Receipt-free secret-ballot election (extended abstract). In Proceedings of

Annual Symposium on Theory of Computing (STOC)’94.

[9] A. Bender, J. Katz, and R. Morselli. Ring signatures: Stronger definitions, and constructions without

random oracles. In Proceedings of Theory of Cryptography (TCC), 2006.

[10] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Proceedings of Advances in Cryptology

– CRYPTO ’04.

[11] D. Boneh, X. Ding, and G. Tsudik. Fine-grained control of security capabilities. ACM Transactions on

Internet Technology, 4(1), February 2004.

30



[12] D. Boneh, X. Ding, G. Tsudik, and C. Wong. A method for fast revocation of public key certificates

and security capabilities. In Proceeding of 10th USENIX Security Symposium, 2001.

[13] D. Boneh and H. Shacham. Group signatures with verifier-local revocation. In Proceedings of ACM

Computer and Communications Security Conference (CCS)’94.

[14] X. Boyen and B. Waters. Compact group signatures without random oracles. In Proceedings of Advances

in Cryptology – EUROCRYPT ’2006.

[15] E. Bresson and J. Stern. Group signatures with efficient revocation. In Proceedings of International

Workshop on Practice and Theory in Public Key Cryptography (PKC) ’2001.

[16] J. Camenisch. Group Signature Schemes and Payment Systems Based on the Discrete Logarithm Prob-

lem. PhD thesis, ETH Zurich, 1998.

[17] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient revocation of

anonymous credentials. In Proceedings of Advances in Cryptology – CRYPTO ’2002, pages 61–76.

[18] J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anonymous credentials with

optional anonymity revocation. In Proceedings of Advances in Cryptology – EUROCRYPT ’2001, pages

93–118.

[19] J. Camenisch and A. Lysyanskaya. An identity escrow scheme with appointed verifiers. In Proceedings

of Advances in Cryptology – CRYPTO ’2001, pages 388–407.

[20] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials from bilinear maps.

In Proceedings of Advances in Cryptology – CRYPTO ’04.

[21] J. Camenisch and M. Michels. A group signature scheme with improved efficiency (extended abstract).

In Proceedings of Advances in Cryptology – ASIACRYPT ’98.

[22] J. Camenisch and M. Stadler. Efficient group signature schemes for large groups (extended abstract).

In Proceedings of Advances in Cryptology – CRYPTO ’97, pages 410–424.

31



[23] J. Camenisch and E. van Herreweghen. Design and implementation of the idemix anonymous credential

system. In Proceedings of ACM Computer and Communications Security Conference (CCS)’02.

[24] D. Chaum. Showing credentials without identification. In Proceedings of Advances in Cryptology –

EUROCRYPT ’85.

[25] D. Chaum. Security without identification: transaction systems to make big brother obsolete. Commu-

nications of the ACM, 28(10):1030–1044, October 1985.

[26] D. Chaum and J. Evertse. A secure and privacy-protecting protocol for transmitting personal informa-

tion between organizations. In Proceedings of Advances in Cryptology – CRYPTO ’86, pages 118–167.

[27] D. Chaum and E. van Heyst. Group signatures. In Proceedings of Advances in Cryptology – EURO-

CRYPT ’91, pages 257–265.

[28] L. Chen and T. Pedersen. New group signature schemes. In Proceedings of Advances in Cryptology –

EUROCRYPT ’94, pages 171–181.

[29] D. Clark and D. Wilson. A comparison of commercial and military computer security policies. In

Proceedings of the IEEE Symposium on Research in Security and Privacy ’87.

[30] R. Cramer. Modular Design of Secure yet Practical Cryptographic Protocols. PhD thesis, University of

Amsterdam, 1997.

[31] R. Cramer, I. Damgard, and B. Schoenmakers. Proofs of partial knowledge and simplified design of

witness hiding protocols. In Proceedings of Advances in Cryptology – CRYPTO ’94, pages 174–187.

[32] X. Ding, G. Tsudik, and S. Xu. Leak-free group signatures. In Proceedings of IEEE International

Conference on Distributed Computing Systems (ICDCS), 2004.

[33] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. In Proceedings of Annual Symposium

on Theory of Computing (STOC)’91.

[34] T. ElGamal. A public-key cryptosystem and a signature scheme based on the discrete logarithm. IEEE

Transactions on Information Theory, 31(4):469–472, 1985.

32



[35] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature

problems. In Proceedings of Advances in Cryptology – CRYPTO ’86, pages 186–194.

[36] Z. Galil, S. Haber, and M. Yung. Symmetric public-key encryption. In Proceedings of Advances in

Cryptology – CRYPTO ’85, pages 128–139.

[37] J. Garay, M. Jakobsson, and P. MacKenzie. Abuse-free optimistic contract signing. In Proceedings of

Advances in Cryptology – CRYPTO ’99, pages 449–466.

[38] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences,

28(1):270–299, 1984.

[39] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive chosen-

message attacks. SIAM Journal on Computing, 17(2), 1998.

[40] M. Hirt and K. Sako. Efficient receipt-free voting based on homomorphic encryption. In Proceedings of

Advances in Cryptology – EUROCRYPT ’2000, pages 539–556.

[41] M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and their applications. In

Proceedings of Advances in Cryptology – EUROCRYPT ’96, pages 143–154.

[42] J. Katz. Efficient and non-malleable proofs of plaintext knowledge and applications. In Proceedings of

Advances in Cryptology – EUROCRYPT ’2003.

[43] A. Kiayias and M. Yung. Extracting group-signatures from traitor tracing schemes. In Proceedings of

Advances in Cryptology – EUROCRYPT ’2003.

[44] A. Kiayias and M. Yung. Group signatures with efficient concurrent join. In Proceedings of Advances

in Cryptology – EUROCRYPT ’2005.

[45] J. Kilian and E. Petrank. Identity escrow. In Proceedings of Advances in Cryptology – CRYPTO ’98,

pages 169–185.

[46] A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In 6th Annual Workshop on

Selected Areas in Cryptography (SAC ’99).

33



[47] P. MacKenzie and M. K. Reiter. Networked cryptographic devices resilient to capture. In Proceedings

of the 2001 IEEE Symposium on Security and Privacy, pages 12–25, May 2001.

[48] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of applied cryptography. CRC Press,

1997. ISBN 0-8493-8523-7.

[49] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. In

Proceedings of Annual Symposium on Theory of Computing (STOC)’90.

[50] D. Pointcheval and J. Stern. Security proofs for signature schemes. In Proceedings of Advances in

Cryptology – EUROCRYPT ’96, pages 387–398.

[51] C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge and chosen ciphertext

attack. In Proceedings of Advances in Cryptology – CRYPTO ’91, pages 433–444.

[52] R. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In Proceedings of Advances in Cryptology

– ASIACRYPT ’01.

[53] C. P. Schnorr. Efficient identification and signatures for smart cards. In Proceedings of Advances in

Cryptology – CRYPTO ’89, pages 239–252.

[54] D. Song. Practical forward-secure group signature schemes. In Proceedings of ACM Computer and

Communications Security Conference (CCS)’01.

[55] Y. Tsiounis and M. Yung. On the security of elgamal based encryption. In Proceedings of International

Workshop on Practice and Theory in Public Key Cryptography (PKC) ’98.

[56] G. Tsudik and S. Xu. Accumulating composites and improved group signing. In Proceedings of Advances

in Cryptology – ASIACRYPT ’2003.

[57] S. Xu and M. Yung. The dark side of threshold cryptography. In Financial Crypto (FC ’02).

34


	Leak-Free Mediated Group Signatures
	Citation

	jmgs.dvi

