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ABSTRACT
Software is a ubiquitous component of our daily life. We of-
ten depend on the correct working of software systems. Due
to the difficulty and complexity of software systems, bugs
and anomalies are prevalent. Bugs have caused billions of
dollars loss, in addition to privacy and security threats. In
this work, we address software reliability issues by proposing
a novel method to classify software behaviors based on past
history or runs. With the technique, it is possible to gener-
alize past known errors and mistakes to capture failures and
anomalies. Our technique first mines a set of discriminative
features capturing repetitive series of events from program
execution traces. It then performs feature selection to select
the best features for classification. These features are then
used to train a classifier to detect failures. Experiments and
case studies on traces of several benchmark software systems
and a real-life concurrency bug from MySQL server show the
utility of the technique in capturing failures and anomalies.
On average, our pattern-based classification technique out-
performs the baseline approach by 24.68% in accuracy1.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications – Data Mining

General Terms: Algorithms, Experimentation
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1. INTRODUCTION AND MOTIVATION
In the information age, software is omnipresent. Many of

our activities are dependent on the correct working of soft-
ware systems. Ensuring the reliability of systems throughout
their lifetime is certainly a worthwhile goal.

If analyzed, software produces a massive amount of data
corresponding to its various behaviors. Software behavior
is the way a program executes. It corresponds to a path a
program takes when executing from the start of the program
till the end when it terminates. Some behaviors are desirable
while a minority of others are not. Undesirable behaviors
can correspond to bugs, malwares, intrusions, etc.. These
undesirable behaviors are often referred to as failures.

Note that failures are often not easily identifiable. Some
failures cause crashes (e.g., blue screen in windows, unhan-
dled exception thrown, etc.) which are noticeable. How-
ever, many others do not cause any “visible” effect. The
software still runs to completion, while the computation re-
sult is wrong, data stored in the database is erroneous, or
some system security constraints are violated. These “non-
crashing” failures are often hard to identify and one might
only have a few known samples of these. These failures are
worthy of special concerns since they are not easily identifi-
able and might potentially pose serious security risks. US
National Institute of Standards and Technology (NIST) re-
ported that software bugs cost US economy 59.5 billions
annually [25].

Can data mining help? In this paper, as a new step to ad-
dress the reliability of software systems, we present a novel
classification approach to predict software behaviors. Based
on historical data of software and known failures, we con-
struct a classifier to generalize the failures and to further
detect other unknown failures. Generalizing past failures are
useful in many situations as: programmers might miss other
related failures in the program, programmers could make
similar mistakes as those made before, many programmers
could commit the same errors in using common or standard
libraries, programs could be re-infected by the same mal-
ware, etc.. This step of failure detection is the first step
of the software quality assurance process. After a failure
is detected, fault localization approaches, e.g., [18], which
assume that a set of relevant failures are known, can then



be employed to localize the bug in the code. Failure detec-
tion techniques can be applied periodically in the lifecycle
of a software system to improve the reliability of the sys-
tem. Furthermore, the classifier can aid other software en-
gineering tasks, for example, by serving as a test oracle for
test-suite augmentation (i.e., adding new test cases to a test
suite) [7].

A software behavior can be viewed as a series of events,
where an event can correspond to the invocation of a method,
the execution of a program statement, etc.. When recorded,
this path or behavior is referred to as an execution trace.
A set of these execution traces can be represented as a se-
quence database which is the basis of our analysis.

Recently there are active interests in developing discrimi-
native pattern-based classifiers [10, 9, 29], especially for un-
structured or semi-structured data including itemsets and
graphs. A set of patterns are mined and used to represent
multi-dimensional discriminative features from a set of data.
These features are then further selected and used to build ef-
fective classifiers. On a related front, iterative pattern min-
ing, based on the semantics of several software modeling
languages, has been proposed to extract frequent repetitive
series of events from program execution traces as candidate
software specifications [21]. Iterative pattern mining con-
siders ordering among events in the traces. It further takes
into account repeated occurrences of patterns both within a
sequence and across multiple sequences to address loops and
repetitions in an execution trace.

Our proposed classification framework works in a three-
step process. As the first step, we propose a new scalable
algorithm to mine closed unique iterative patterns from pro-
gram traces of known normal and failing executions (i.e.,
failures). By capturing both the important temporal order
and repetitions in a trace, iterative patterns are good fea-
tures to characterize software behaviors and distinguish fail-
ing software traces from normal ones. Mining closed unique
iterative patterns is much more scalable than mining the
set of closed patterns. Feature selection is then applied
to select highly discriminative patterns as classification fea-
tures, which reveal important temporal information in soft-
ware traces. A classifier is constructed based on the training
traces with such pattern-based feature representation. The
classifier can be used to classify unknown program behaviors
corresponding to the current or a future version of a soft-
ware system as similar errors might potentially be made.
The trained classifier can be updated several times during
the life cycle of a software system with new known good and
bad behaviors. It can be treated as a black box to predict
and give warning signals in case the program is behaving in
an undesirable way.

Our approach is not dependent on the availability of source
code and precise documented specification. It follows a re-
cent trend of dynamic analysis and specification mining [5,
21]. Dynamic analysis approaches analyze software execu-
tion traces which can be collected by various instrumenta-
tion methods, c.f., [5, 20]. It is complementary to static
analysis, i.e., analysis of program code, and has the bene-
fit of avoiding some problems faced by static analysis, e.g.,
pointer aliasing and infeasible paths. Furthermore, dynamic
analysis is crucial since (1) many Commercials-Off-The-Shelf
(COTS) components and legacy systems come without any
source code; and (2) many software systems are developed
with poorly documented specifications [5].

To validate the utility of our proposed classifier, we per-
formed controlled experiments and case studies on synthetic
and real datasets. For comparison, we implemented a base-
line classification model based on single events as features.
A simulator proposed in [19] is used to generate synthetic
traces following some real-world models. Real traces are also
generated from programs belonging to the Siemens bench-
mark [15]. Furthermore, we experimented with a real-life
data race concurrency bug from MySQL server [1].

Experiments demonstrate the effectiveness of our proposed
discriminative iterative pattern-based classification for soft-
ware failure detection. Over all tested datasets, our iterative
pattern-based method is 24.68% more accurate on average
than the baseline method. In the MySQL data race bug,
a series of program statements are executed in a wrong or-
der due to bad interleavings of threads. Iterative pattern-
based features are able to characterize the MySQL data
race, order-related bug with 100% classification accuracy
and AUC = 1.0 while simple event-based features fail to
classify this bug accurately (accuracy = 50%, AUC = 0.5).

Our proposed discriminative iterative pattern-based clas-
sification is not only confined to the classification of soft-
ware behaviors, it is also potentially applicable to a range of
other problems including user profile and behavior predic-
tion based on web log analysis, and protein sequence classi-
fication based on motifs (patterns). In summary, our main
contributions include the following:

• We propose a new framework for classifying sequen-
tial data based on discriminative iterative patterns.
A feature selection algorithm based on Fisher score
is proposed to identify highly discriminative patterns
which distinguish the failing traces from normal ones.
This enriches past studies on pattern-based classifica-
tion working on itemsets and graphs [10, 9, 29].

• We design a new scalable algorithm for mining closed
unique iterative patterns which repeat within a trace
and across multiple traces. Closed unique pattern min-
ing addresses the difficulty in mining sequential pat-
terns from trace datasets with varied interleavings of
noise or unrelated events (e.g., appendToXML(), hash-
Code(), toString()) appearing with high frequency.

• We demonstrate through a comprehensive set of ex-
periments and case studies the utility of our proposed
framework to provide an effective solution for the clas-
sification of program traces.

The structure of this paper is as follows. In Section 2 we
introduce preliminary concepts. Section 3 describes our pro-
posed closed unique iterative pattern mining algorithm. In
Section 4, we describe the iterative pattern-based classifica-
tion framework. Experimental evaluation and case studies
are presented in Section 5. Section 6 discusses related work,
followed by conclusions and future work in Section 7.

2. PRELIMINARIES
In this section, we describe preliminary details on software

execution traces and iterative patterns. We also present
some notations and definitions.

2.1 Program Traces and Terminologies
A software behavior can be viewed as a series of events.

An event in turn corresponds to a unit behavior of inter-
est. This can correspond to the execution of a statement,
a method call or a basic block in a Control Flow Graph



(CFG). When logged, a series of events corresponding to a
software behavior forms an execution trace.

We denote a trace or sequence S as 〈e1, e2, . . . , eend〉 where
each ei is an event from an event set I. The set of input
traces or sequence database under consideration is denoted
by TDB.

A pattern P1 (〈e1, e2, . . . , en〉) is considered a subsequence
of another pattern P2 (〈f1, f2, . . . , fm〉) if there exist integers
1 ≤ i1 < . . . < in ≤ m where e1 = fi1 , · · · , en = fin . This
relation is denoted as P1 v P2. P2 is a super-sequence of
P1. We denote the concatenation of two patterns with the
++ operator.

2.2 Iterative Patterns
Patterns which are found in software usually correspond

to programming rules or usage patterns. Some software pat-
terns are well documented: a well-known example is the set
of commonly used software design patterns. The following
are some examples of patterns in software documentations:

1. Resource Locking Protocol : 〈lock, unlock〉
2. Java Transaction Architecture Protocol (c.f., [24]):

〈TxManager.begin, TransactionImpl.enlistResour-
ce, T ransactionImpl.delistResource, TxManager.-
commit, T ransactionImpl.commitResources〉

To mine frequent patterns in software traces, one needs
to consider repetitions both within a sequence and across
multiple sequences. Based on the above motivation of pat-
terns in software, Lo et al. defined iterative patterns [21]
by counting the frequency of a pattern within a sequence
and across multiple sequences. Iterative pattern is defined
based on the semantics of commonly used software modeling
languages: Message Sequence Chart (MSC) (a standard of
International Telecommunication Union (ITU)) [16] and its
extension, Live Sequence Chart (LSC) [14].

Different from frequent itemset [3], iterative pattern takes
into consideration temporal orders in a trace. The behavior
“allocate followed by consume, followed by release” has a
very different meaning from “release followed by consume,
followed by allocate”. In the latter, a resource is consumed
before it is allocated. Different from traditional sequen-
tial pattern mining [4], iterative pattern takes into account
repetitive behaviors within a trace. This is important due to
loops and repetitive behaviors observed by a program. Also
different from episode mining [23], iterative pattern mining
considers a database of sequences rather than a single se-
quence and removes the restriction that related events must
occur close together in an episode. Important patterns like
〈lock, unlock〉 can have their events separated by an arbi-
trary number of other events in the traces. This permits
the pattern to be robust enough to characterize error cases
that appear in different variants due to occurrences of many
unrelated events.

The pattern instance definitioncould be expressed unam-
biguously in Quantified Regular Expression (QRE). Quan-
tified regular expression is very similar to standard regular
expression with ‘;’ as the concatenation operator, ‘[-]’ as the
exclusion operator (e.g., [-P,S] means any event except P
and S), and ‘*’ as the standard Kleene star.

Definition 2.1 (Pattern Instance). Given a pattern
P 〈e1, e2, . . . , en〉, a consecutive series of events SB (sb1, sb2,
. . . , sbm) in a sequence S in TDB is an instance of P iff it
is of the following QRE expression

e1; [−e1, . . . , en]∗; e2; . . . ; [−e1, . . . , en]∗; en.

An instance is denoted compactly by a triple (sidx, istart,
iend) where sidx refers to the ID of a sequence S in the
database while istart and iend refer to the starting point
and ending point of a substring in S. By default, all indices
start from 1.

As an example, consider a pattern P (〈A, B〉) and a data-
base consisting of two sequences:

Identifier Sequence
S1 〈D, B, A, F, B, A, F, B, C, E〉
S2 〈D, B, A, D, B, B, B, A, B〉

The set of instances of P denoted as Inst(P ) is the set of
triples {(1, 3, 5), (1, 6, 8), (2, 3, 5), (2, 8, 9)}. Note that
multiple occurrences of an iterative pattern in the same se-
quence are taken into account to reflect loops and repetitions
in an execution trace. We treat the frequency of pattern in-
stances within a sequence and that across multiple sequences
with an equal weight.

Definition 2.2 (Frequent Iterative Pattern). For
a trace (sequence) dataset TDB, an iterative pattern P is
frequent if its instances occur above a certain threshold of
min sup in TDB, i.e., |Inst(P, TDB)| ≥ min sup. The
size of Inst(P, TDB) is referred to as the support of the
pattern and is denoted as sup(P ).

Furthermore, an iterative pattern is closed if the following
requirements stated in Definition 2.3 are satisfied.

Definition 2.3 (Closed Iterative Pattern). A fre-
quent iterative pattern P is closed if there exists no super-
sequence Q s.t.:
1. P and Q have the same support;
2. Every instance of P corresponds to a unique ins-

tance of Q, denoted as Inst(P ) ≈ Inst(Q).
An instance of P (seqP , startP , endP ) corresponds to an

instance of Q (seqQ, startQ, endQ) iff seqP = seqQ and
startP ≥ startQ and endP ≤ endQ.

3. ITERATIVE PATTERN MINING
Iterative patterns capture higher-order features from ex-

ecution traces. Traces correspond to the various program
behaviors a software system exhibits. An event in a trace,
corresponding to an execution of a method, a statement, or
a building block, can be treated as a feature of the behav-
iors. These features are not occurring in isolation. Rather,
related features happening before or after a particular fea-
ture dictate whether the feature corresponds to a correct or
failing behavior. Difficult-to-find bugs are often caused by
interactions between multiple features. Single events occur-
ring separately might be permissible, however, when they
occur together in a particular order or context, they might
cause a problem to the system.

Iterative pattern mining not only captures higher-order
features but also their frequencies. To distinguish software
behaviors, the frequency of an iterative pattern within a sin-
gle trace is important. A program may work well for most
cases, but fails on boundary cases. Errors might not oc-
cur when a program behavior repeats one or two times, but
might crop out when a program behavior is repeated many
times. An example is recursion, where after a certain num-
ber of recursions, system stack space might be exhausted.
At times, a state-based system might run well when a behav-
ior occurs once but becomes erroneous on a future repetition
due to a wrong assignment made to the program state.

To reduce the number of iterative patterns, we tried to
mine closed iterative patterns introduced in Definition 2.3



since they capture the frequency of all frequent iterative pat-
terns without any loss of information. However, even with
a closed definition, we may still generate a large number
of iterative patterns, due to the combination between sin-
gle events, especially if “noise” or unrelated events appear
often in the trace. The “noise” can correspond to utility
related events, for example, appendToXML(), hashCode(),
toString() method calls, etc. that appear very frequently
but carry little meaning. Consider for example the follow-
ing database:

Identifier Sequence
S1 〈A, C, A, A, A, C, A, A, A, C〉
S2 〈A, A, A, A, C, A, A, A, A, C〉

Given min sup = 2, patterns 〈A, C〉, 〈A, A, C〉, 〈A, A, A, C〉
and 〈A, A, A, A, C〉 will be reported. These four patterns
have different support values and hence each one is not sub-
sumed by the other. If we mine closed patterns, all four
patterns will be reported. If the traces are reasonably long
and the “noise” event A appears very often, the pattern set
is likely to explode due to random pairings with the “noise”.
To avoid this problem and further reduce the number of pat-
terns, we propose to mine a compact set of closed patterns
that are composed of unique events. We define closed unique
patterns as follows.

Definition 3.1 (Closed Unique Pattern). A frequ-
ent pattern P is a closed unique pattern if P contains no re-
peated constituent events, and there exists no super-sequence
Q s.t.:
1. P and Q have the same support;
2. Every instance of P corresponds to a unique

instance of Q;
3. Q contains no constituent events that repeat.

As an example, consider a database with two sequences:

Identifier Sequence
S1 〈A, B, B, B, B, C, E, D, A, B, B〉
S2 〈C, E, D, A, B, B, B, B, B〉

Assume min sup = 2. The pattern 〈A, B〉 is a closed
unique pattern. It contains unique elements A and B, and
there is no longer unique patterns having the same support
as 〈A, B〉. Consider another pattern 〈C, D〉 which is unique.
This pattern is not closed, as there exists a longer pattern
〈C, E, D〉 which is also unique and the two patterns have
corresponding instances.

Although we do not prove it formally, instances of closed
unique patterns are guaranteed to be non-overlapping. In
our experiments, the set of closed unique patterns is much
less than the set of closed patterns, and it is much more
efficient and scalable to mine closed unique patterns.

Algorithm 1 presents the pseudocode for mining closed
unique patterns. The algorithm performs a depth-first traver-
sal of the search space to grow iterative patterns. It first
computes frequent single events (Line 1). The frequent
events are then grown in a depth-first fashion by performing
recursive calls to the procedure GrowRec. At each recursive
step, a check is performed to test whether the current pat-
tern to-be-grown is closed and unique. If this is the case, we
will output the current pattern (Line 6). If a pattern is not
unique, all its extensions will not be unique either. Hence,
we only grow the current pattern if it is composed of unique
events (Line 7). NPt is a new pattern grown from Pat
concatenated with a unique event f (Line 9). We use the
InfixScan pruning property in [21] to cut the search space of

Algorithm 1 Mining Closed Unique Iterative Patterns

Procedure: Mine Closed Unique Patterns
Inputs: TDB: Trace database

min sup: Minimum support threshold

1: Let FqEv = {p|(|p| = 1) ∧ (sup(p) ≥ min sup)}
2: for every e in FqEv
3: Call GrowRec (e, TDB, min sup, FqEv)

Procedure GrowRec
Inputs: Pat: Pattern so far

TDB: Trace database
min sup: Minimum support threshold
FqEv: Set of frequent events

4: Let FqLoc = {e ∈ FqEv|sup(Pat++e) ≥ min sup)}
5: if (Pat is closed unique)
6: Output Pat
7: if (Pat is unique)
8: for every f 6∈ Pat in FqLoc
9: Let NPt = Pat++f
10: if NPt doesn’t satisfy the InfixScan pruning

condition in [21]
11: Call GrowRec(NPt, TDB, min sup, FqEv)

non-closed patterns. We only grow the pattern NPt if it does
not satisfy the pruning condition (Lines 10-11). We abstract
the support computation process from the algorithm; to ef-
ficiently calculate support, we use the projected database
operations defined in [21].

In Section 5, we show through experiments and case stud-
ies that closed unique patterns are powerful enough to be
utilized as discriminative features and achieve satisfactory
classification accuracy. We also show that Algorithm 1 is
scalable and efficient even with low min sup thresholds on
datasets, while closed iterative pattern mining is unable to
finish even at a high min sup due to an explosion in the
number of patterns. To abbreviate, after this point, unless
otherwise stated, closed patterns refer to closed unique iter-
ative patterns.

4. ITERATIVE PATTERN-BASED CLASSI-
FICATION OF SOFTWARE TRACES

Different from relational data, a program trace, which is
composed of a sequence of single events, has no predefined
feature vector. One could potentially use the set of events as
a feature vector, however the single events by themselves are
not discriminative to capture the temporal order in a trace.
To solve this problem, we generate the set of closed pat-
terns by Algorithm 1 from a set of program execution traces
containing failing and normal traces, and use them as classi-
fication features. This is the core idea of our proposed itera-
tive pattern-based classification approach. Existing studies
which used frequent itemsets [9] and frequent subgraphs [10,
29] for classifying transaction data and graphs have demon-
strated the effectiveness of the frequent pattern-based clas-
sification approach. Furthermore, Cheng et al. [9] derived
a frequency upper bound of discriminative measures such
as information gain and Fisher score, showing a close re-
lationship between frequency and discriminative measures.
The theoretical results demonstrate that most discrimina-



Algorithm 2 Feature Selection on Iterative Patterns

Procedure: Feature selection
Inputs: F : A set of frequent iterative patterns

TDB: Trace database
δ: Coverage threshold

Output: Fs: A selected set of iterative patterns

1: Sort iterative patterns in F in decreasing order of
Fisher score;

2: Start with the first pattern f0 in F ;
3: while (true)
4: Find the next pattern f ;
5: if f covers at least one sequence in TDB
6: Fs = Fs ∪ {f};
7: F = F − {f};
8: if a sequence S in TDB is covered δ times
9: TDB = TDB − {S};
10: if all sequences are covered δ times or F = φ
11: break;
12: return Fs

tive patterns likely fall into the high-quantile of frequency,
i.e., if we rank all iterative patterns according to their fre-
quency, those discriminative patterns usually have a high
rank. We name this phenomenon frequency association. Our
proposed frequent iterative patterns will serve as discrimi-
native features for distinguishing software behaviors.

The pattern-based classification method includes three
major steps: iterative pattern mining which has been dis-
cussed in Section 3, feature selection and model learning.
In the following, we will examine the feature selection and
model learning issues.

4.1 Feature Selection
The set of closed iterative patterns mined from the set

of failing and normal traces are considered as the initial
set of features. Usually a large number of patterns will be
generated from the mining step. Assume the initial feature
set is F = {f1, f2, ..., fm} where each iterative pattern fi

represents a feature. Given a software trace S and a feature
set F , x is the feature vector representation of S. Then,

xi =

{
sup(fi, S), if S contains fi

0, otherwise.
(1)

where sup(fi, S) is the support of fi in the trace S. In
other words, we treat an iterative pattern fi as a feature
and its occurrence frequency sup(fi, S) in a sequence S as
the corresponding feature value.

To evaluate the discriminative power of a feature, the
popularly used statistical measure of Fisher score [13] is
adopted. This score is defined as:

Fr =

∑c
i=1 ni(µi − µ)2∑c

i=1 niσ2
i

(2)

where ni is the number of data samples in class i, µi is the
average feature value in class i, σi is the standard deviation
of the feature values in class i, and µ is the average feature
value in the whole dataset. Assume xij is the attribute value
for the jth instance in class i, then µ, µi and σi are defined

as µ =
∑

i

∑
j xij∑

i ni
, µi =

∑
j xij

ni
, σi =

√∑
j(xij−µi)2

ni
, respec-

tively. When µ is quite different from each µi, or when each

σi is very small, Fisher score becomes large. A feature will
have a very large Fisher score if it has very similar values
within the same class and very different values across differ-
ent classes. In this case, this feature is very discriminative
to differentiate instances from different classes. Therefore, if
the occurrence frequency of an iterative pattern in the failing
traces is different from that in the normal traces, the pat-
tern is discriminative with a large Fisher score. On the other
hand, an iterative pattern with similar occurrence frequency
in both failing and normal executions is not discriminative.

We then rank the set of iterative patterns in the descend-
ing order of Fisher score. A feature selection algorithm is
proposed in Algorithm 2 to filter indiscriminative patterns.
The algorithm performs a sequential scan of the ranked iter-
ative patterns. If a pattern covers some training instances,
it will be selected. Any data instances covered by at least
δ features will be removed from further consideration. The
algorithm terminates if either all instances are covered by
the selected features or the feature set becomes empty.

4.2 Iterative Pattern-based Classification
Our proposed iterative pattern-based classification frame-

work can be divided into three stages:
1. Mine closed unique iterative patterns from a software

trace database TDB using Algorithm 1.
2. Select discriminative iterative patterns from the pat-

tern set in step 1 using Algorithm 2. Then represent
the trace database TDB in the feature space of the
selected iterative patterns.

3. Train a classifier from the trace database TDB. In
this study, LIBSVM [8] with probability estimates is
used as the classification model.

The iterative pattern-based classification framework is de-
scribed in Algorithm 3.

Algorithm 3 Iterative Pattern-based Classification

Procedure: Model construction
Inputs: TDB: Trace database

min sup: Minimum support threshold
δ: Coverage threshold

Output: Classifier: Software behavioral classifier

1: Let F = Mine Closed Unique Pat(TDB, min sup);
2: Let Fs = Feature Selection(F , TDB, δ);
3: Transform TDB into the feature space of Fs;
4: Classifier = Train a classifier on TDB;
5: return Classifier;

4.3 Handling Skewed Class Distribution
Collected failing traces are usually much fewer than nor-

mal traces. For example, from the print tokens system de-
scribed in Section 5, the portion of traces with anomalies
is less than 10%. The skewed class distribution causes two
problems in the iterative pattern-based classification pro-
cess. First, when directly mining from the skewed dataset
with both failing and normal traces, iterative patterns preva-
lent in the normal execution traces will dominate the result
set while iterative patterns unique in the failing traces are
overwhelmed. As a consequence, the failing traces will be
insufficiently represented by iterative pattern features. Sec-
ond, skewed class distribution also poses great challenges
in the model learning phase. Traditional inductive learn-
ing methods would perform rather poorly on such software



traces with skewed distribution, since the goal of those meth-
ods is to minimize classification error rate. As a result, the
failing traces tend to be ignored and every instance is pre-
dicted as normal. In such cases, we could build a model with
very high accuracy, but of very little use in practice.

To address the above two challenges caused by skewed
class distribution, the failing traces in the training set are
duplicated multiple times until the class distribution be-
comes balanced. Iterative pattern mining on the balanced
training set will discover discriminative patterns from both
classes. In addition, a classification model from the balanced
training set avoids bias towards the majority class as well
as improves recall on the minority class. Other techniques
to handle the class imbalance issue are also applicable, in-
cluding sampling [6] and ensemble [12]. But it is beyond the
scope of this paper.

5. EXPERIMENTS AND CASE STUDIES
To validate the utility of our proposed classifier, we per-

formed a set of controlled experiments on simulated trace
data and case studies on real trace data. The experiments
and case studies are designed to test whether the iterative
pattern-based features are useful in detecting software fail-
ures. A characterization of failures based on how successful
the pattern-based features are in training good classifiers is
also discussed.

5.1 Evaluation Methodology
We test the performance of our proposed iterative pattern-

based classification approach on nine datasets. For compar-
ison, we design a baseline method, which uses individual
events in a software trace as features. According to this
definition, a sequence is represented based on a feature vec-
tor of unique single events. The corresponding feature value
is the number of times a particular event occurs in that se-
quence. The baseline method simply measures the frequency
distribution of single events in a sequence, but ignores the
temporal order between them. For fair comparison, we ap-
ply the same feature selection procedure based on Fisher
score to the baseline method as well. We denote the base-
line method as Evt and our iterative pattern-based method
as Pat in the following tables. Minimum support in iter-
ative pattern mining is set to 0.25 unless stated otherwise.
Parameter δ in Algorithm 2 is set to 5.

We use LIBSVM [8] with probability estimates as the
classification model. Classification accuracy, defined as the
percentage of test cases correctly classified, is used as one
measure. Due to the skewed class distribution, the measure
AUC which is the area under a ROC curve is also used.
ROC curve shows the trade-off between true positive rate
and false positive rate. The best possible classifier would
generate an optimal AUC value of 1.0.

For each dataset, we perform 5-fold cross validation. In
each fold, the training set is first rebalanced by duplicat-
ing the rare class if the class distribution is skewed. It is
then used for iterative pattern mining, feature selection and
model learning, while the test set with the original class
distribution, is only used for prediction given a constructed
classifier. Average performance over 5-fold cross validation
is reported. Since both iterative pattern mining and fea-
ture selection are performed for each fold separately (on the
training set in each fold), our evaluation guarantees that
there is no information leak in classification.

5.2 Controlled Experiments
For the controlled experiments, we generated simulated

data, i.e., synthetic program traces, using the simulator
QUARK proposed in [19]. QUARK provides a controlled
environment for experiments. Given an input software com-
ponent model in the form of a probabilistic finite state au-
tomaton, QUARK can generate traces that represent the
model well following some coverage criteria. QUARK is also
able to inject errors to the synthetic traces.

In this sub-section, we describe the models used to gener-
ate traces using our software behavior simulator. We then
describe the generated synthetic datasets and the experi-
mental results. Due to the space limitation, we move the
graphical representation of the software models to a techni-
cal report [2].

CVS Application. The first program we analyze is a
Concurrent Versions System (CVS) application built on top
of FTP library of Jakarta Commons Net [26]. This CVS
functionality can be considered as a client of Jakarta Com-
mons Net with a certain protocol pattern. The application
is originally described in [19, 20].

There are six FTP interaction scenarios in our CVS im-
plementation: initialization, multiple-file upload, download,
and deletion, multiple-directory creation and deletion. All
scenarios begin by connecting and logging in to the FTP
server. They end by logging off and disconnecting from the
FTP server. Each invocation of a method of FTPClient may
generate exceptions, especially FTPConnectionClosedException

and IOException. Hence the code accessing the FTPClient

methods needs to be enclosed in a try...catch...finally

block. Every time such an exception happens, the pro-
gram simply logs out and disconnects from the FTP server.
This is a bug as the corresponding CVS scenarios (e.g., file
upload, deletion, etc.) are not performed atomically and
some method calls are omitted. It has been studied in [28]
that programmers often make mistakes on the exceptional
control flow path, i.e., those involving error handler like
try...catch...finally.

X11 Windowing Protocol. Next, we experimented
with a model describing an XLib and XToolkit intrinsic li-
brary usage protocol for X11 windowing system previously
studied in [5, 20].

A common security concern is intrusion where valuable
system resources are utilized by unauthorized system or
party. An example of valuable system resources is privi-
leged system call [27]. A system call can be “dangerous”
when used inappropriately. We model a potential intrusion
by adding an extra transition corresponding to a misuse of
a privileged system call to the X11 Windowing Protocol
model. The models of X11 windowing protocol with and
without errors are available in the technical report [2].

Three Types of Injected Bugs. In the first program,
we injected omission bugs. Some method calls do not get
called when they should have been, which is a common type
of bug. For the second program, we injected additional
events resulting in failures. This is also a fairly common type
of bug and could correspond to security concerns. The third
type of bug is referred to as ordering bug where the order
of events occurring is wrong. This bug occurs, for example,
in the wrong usage of an Application Programming Inter-
face (API). Furthermore, ordering bug has recently been
reported as one common family of concurrency bug which is
not addressed by existing bug detection algorithms [22]. To



simulate this ordering bug on API, we simply reorder the
traces from our model of CVS application.

Experiment Details and Results. We generated three
sets of traces from the X11 and CVS models and attached
labels to them. We compared our iterative pattern-based
method with the single event-based method. The sizes of the
datasets in terms of the number of traces are described in
Table 1. Datasets “X11” and “CVS Omission” contain only
addition and omission bugs respectively; “CVS Ordering”
contains ordering bugs by permuting events in the traces
of a CVS model; and “CVS Mix” contains a mixture of all
three types of bugs. It is obvious that addition/omission
bugs change the frequency distribution of single events in
software traces while ordering bugs do not affect the fre-
quency distribution but only change the order.

Table 1 also shows the classification accuracy, AUC and
standard deviation on synthetic software traces using 5-
fold cross validation. For these four datasets, our iterative
pattern-based method selects 7, 16, 5 and 26 features, re-
spectively. We observe that, by capturing the frequency
distribution of single events, the single event-based method
can effectively detect addition/omission bugs. Therefore, it
achieves very high accuracy on the first two datasets. How-
ever, in the latter two datasets, ordering bugs are injected
by permutation of single events without affecting the fre-
quency distribution, thus the single event-based method fails
in identifying the ordering bugs. As a result, in “CVS Or-
dering”, all test traces are predicted as normal traces with
an accuracy of 50% and AUC of 0.50. On the other hand,
the iterative pattern-based method works well on all three
types of addition, omission and ordering bugs.

5.3 Case Studies – Siemens & MySQL
To further evaluate our classification framework for soft-

ware failure detection, we analyze different programs from
Siemens Test Suite [15]. The test suite was originally used
for research in test coverage adequacy and was developed
by Siemens Corporation Research. We use the variant pro-
vided at www.cc.gatech.edu/aristotle/Tools/subjects/. The
test suite contains several programs. Each program con-
tains many different versions where each version has one
bug. These bugs comprise a wide array of realistic bugs.

We take four largest programs in the test suite. They are
referred to as: replace, schedule, print tokens and tot info.
There are two variants of schedule and print tokens pro-
grams. For this case study, we choose the first variant of
each program. More information of the test suite is avail-
able in [15, 18].

To simulate real life situation where there are many bugs
occurring together, we inject 3 bugs to each program and
add 3 additional simulated ordering bugs to the execution
traces. Running the instrumented program with an input
produces a trace. We collect a set of traces by running a
set of test cases provided by Siemens Test Suite. The test
suite also allows us to compute the actual correct output.
By comparing the output of the program with the correct
actual output we can see if the program runs correctly or
not. We label a trace as 0 if it corresponds to a correct
execution or 1 if it corresponds to a failing execution. We
run the test cases on each of the buggy programs, collect
traces, and label them accordingly.

For replace, schedule, print tokens and tot info programs
we run 5548, 2637, 4092 and 1067 test cases respectively.

Some test cases cause the program to crash, and others pro-
duce the same trace as another test case. We remove the
test cases that cause the program to crash and remove dupli-
cate traces. There is no need to build a classifier for crashes
as the crash itself is a sure evidence of a trace being faulty.
Non-crashing failures are hard to identify and are the focus
of our study. We also add some extra traces containing sim-
ulated ordering errors. The description of the datasets after
the above processing is shown in Table 2.

From the four programs, we find that bug happens in
only a minority of traces. In the first two datasets (tot info
and schedule), we introduce more simulated ordering errors
to get balanced trace datasets. In the last two datasets
(print tokens and replace), we collect unbalanced datasets.
We handle the skewedness issue by duplicating the failing
traces multiple times to get a balanced training set in each
fold, as described in Section 4.3. The numbers in Table 2
correspond to the number of traces before the duplication is
performed.

We also analyze a data race concurrency bug from MySQL
server [1]. A data race bug causes wrong ordering of state-
ment executions. The bug causes a corrupted mysqlbinlog .
Since the log is used to restore databases, inconsistency can
result from the bug. This bug is rated as serious in MySQL
bug database. We collected 102 traces, where 51 correspond
to the case when the bug is manifested (i.e., corrupted binlog
and another 51 correspond to the case when the bug is not
manifested (i.e., binlog is not corrupted).

Table 2 shows the classification accuracy, AUC and stan-
dard deviation on the real software traces. For these five
datasets, our iterative pattern-based method selects 65, 38,
49, 27 and 11 features, respectively. It is very clear that,
according to both accuracy and AUC, the iterative pattern-
based method outperforms the single event-based method
significantly by preserving the important temporal informa-
tion in the software traces. We find that our method works
well on both balanced and unbalanced datasets (by applying
the rebalance technique). For the Siemens dataset, we find
that the lengths of patterns range between 1 and 10 with an
average of 4.29. For the MySQL dataset, the lengths of pat-
terns vary between 4 and 15 with an average of 9.63. The
pattern set provides a rich combination of single features
which contributes to the classification accuracy in classify-
ing correct and failing traces. The results show that our
method outperforms by up to 50% accuracy on the real-life
MySQL bug that involves only wrong ordering of statement
executions.

5.4 Varying min sup and Database Size
In this sub-section, we describe an extended set of ex-

periments to see the effect of varying minimum support on
classification accuracy. We also investigate the scalability
of our iterative pattern mining algorithm (which takes up
the bulk of the time required for classification) on a range
of support values and sizes of the trace databases.

Table 3 shows the classification performance with stan-
dard deviation when min sup is varied in the range of [0.05,
0.50] to mine the iterative patterns on traces of the replace
program. As we increase min sup, we get fewer number of
iterative patterns and may miss some highly discriminative
ones. As a result, the classification performance slightly de-
grades, but still maintains a good performance in general.

Figure 1 (a) shows the iterative pattern mining time on



Table 1: Synthetic Datasets Description and Classification Performance
Dataset Correct Error (|traces|) Accuracy AUC

(|traces|) Add/Omis. Order Evt Pat Evt Pat
X11 125 125 0 96.40± 4.10 97.20± 3.35 0.97± 0.04 1.00± 0.00

CVS Omission 170 170 0 95.29± 1.61 100.00± 0.00 0.96± 0.03 1.00± 0.00
CVS Ordering 180 0 180 50.00± 0.00 85.28± 2.71 0.50± 0.00 0.82± 0.08

CVS Mix 180 90 90 66.39± 15.63 93.89± 5.94 0.65± 0.17 0.95± 0.06

Table 2: Siemens & MySQL Trace Datasets Description and Classification Performance
Dataset Correct Error (|traces|) Accuracy AUC

(|traces|) Add/Omis Order Evt Pat Evt Pat
tot info 302 208 94 77.33± 2.31 90.67± 5.82 0.90± 0.03 0.94± 0.03
schedule 2140 289 1851 52.83± 19.27 86.26± 14.90 0.57± 0.25 0.88± 0.16

print tokens 3108 187 187 72.60± 26.33 99.94± 0.08 0.64± 0.17 1.00± 0.00
replace 1259 269 269 61.12± 9.25 90.84± 2.54 0.63± 0.15 0.93± 0.05
MySQL 51 0 51 50.00± 0.00 100.00± 0.00 0.50± 0.00 1.00± 0.00

Table 3: Classification Performance vs. min sup
min sup Accuracy AUC

0.05 90.9497± 2.9203 0.9344± 0.0454
0.10 90.9497± 2.9203 0.9344± 0.0454
0.15 90.9004± 2.5949 0.9323± 0.0509
0.20 90.8939± 2.5949 0.9321± 0.0499
0.25 90.8380± 2.5402 0.9318± 0.0506
0.30 90.7263± 2.5555 0.9310± 0.0501
0.35 90.2794± 2.8650 0.9261± 0.0545
0.40 90.2794± 2.8650 0.9261± 0.0545
0.45 90.2794± 2.8650 0.9261± 0.0545
0.50 90.2794± 2.8650 0.9261± 0.0545
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Figure 1: Efficiency and Scalability Tests

traces of the replace program as we vary min sup2. We can
observe from the figure that the run time of iterative pat-
tern mining does not increase significantly as we lower down
min sup. One important factor that helps in ensuring scala-
bility of our mining technique is our new definition of closed
unique patterns. With the new definition, the number of
mined patterns is less and the occurrences of “noise” events
in the data do not cause the number of patterns to explode.
Still with this reduced pattern set, the patterns are pow-
erful enough to serve as classification features resulting in
good classification accuracy. For comparison, we also tried
mining closed iterative patterns which are allowed to have
non-unique constituent events. Unfortunately, closed pat-
tern mining throws an out-of-memory exception after run-
ning for more than 4 hours and consumes more than 1.7GB
of memory even on a support level of 100%2,3. This shows
the need for and scalability of mining closed unique patterns.

Figure 1 (b) shows the scalability test on iterative pattern
mining when we increase the size of input trace database

2Performed on a 2.33 GHz Core 2 Duo desktop with 3.25 GB of
RAM running Windows XP. Algorithm is written in C#.
3For iterative patterns, since a pattern can repeat multiple times
in a sequence, a pattern can have a support value higher than
100% of the number of sequences in the dataset.

TDB2. We increase the number of traces of the replace
program and run the mining algorithm. As shown in the
figure, the mining algorithm scales linearly with the size of
the sequence database.

6. RELATED WORK
Dickinson et al. detected program failures by performing

hierarchical clustering on program traces [11]. They first
obtain a set of profiles of interesting events (e.g., branch
decision, method calls) in program traces. The traces are
then grouped into a pre-defined set of clusters in a hier-
archical agglomerative fashion. The process stops when a
desired number of clusters are found. Several distance met-
rics are used to measure similarity between two program
traces. They found that small clusters are candidates of
failures. Their approach considers only frequency of single
events but not the ordering information of event executions.
It also remains a question whether the generated clusters
can cleanly separate correct behaviors from incorrect ones.

Bowring et al. proposed an active learning approach to
build a classifier of program behaviors [7]. The input to
their approach is a frequency profile of single events in the
trace. They learn two sets of first-order Markov models,
where each set characterizes correct and incorrect behaviors
separately. A first-order Markov model (c.f., [17]) is a state-
based transition system, where the probability of the next
state at time t+1 is determined by the current state at time
t. Different from this work, our iterative patterns capture
more than “first order” relationship, i.e., it can relate that
a state frequently leads to another state which is k distance
away, where k can be arbitrarily large.

Studies on fault localization (e.g., [18]) are also related
to fault detection in programs. They usually work in two
phases. In the first phase, a set of labeled traces needs to be
provided. Each input trace is labeled to indicate whether
it is correct or erroneous. In the second phase, possible
error locations are computed. Since it is expensive to assign
labels to execution traces manually [11], our classification
approach can complement studies in fault localization – a
classifier constructed from a small set of labeled traces can
be used to label a much larger set of unlabeled traces which,
after being labeled, are then used for fault localization.

There are several recent studies on frequent pattern-based
classification which use frequent itemsets [9] and frequent
connected subgraphs [10, 29] for classifying transaction and
graph data. In this work, we enrich the past studies by
proposing a pattern-based classification utilizing iterative
patterns. A program trace can alternatively be “coiled” to



form a behavior graph [18]. In this work, we prefer to use
iterative patterns as features as they capture repetitions of
patterns within a trace. This information is lost when a trace
is “coiled” to form a behavior graph. Also, different from
nodes in a connected subgraph, adjacent events in an itera-
tive pattern not necessarily occur directly after another in a
sequence since gaps are allowed in mining iterative patterns.
This permits a degree of flexibility in capturing discrimina-
tive patterns that appear in several variants with unrelated
events appearing in between.

As to iterative pattern mining, there are many related
work including sequential pattern mining [4] and episode
mining [23]. Different from those studies, iterative pat-
terns are patterns that repeat a substantial number of times
both within a sequence and across multiple sequences. Con-
stituent events of an iterative pattern can be separated by
an arbitrary number of unrelated events in its instances in
the execution traces – a pattern is not necessarily an episode
occurring close together. A detailed discussion is available
in [21]. There are other studies mining repetitive series of
events, however since they are not used for pattern based
classification, we omit references to them.

7. CONCLUSIONS
In this paper, we proposed a novel approach to mine

closed unique iterative patterns for classifying sequential
data, through an example of software trace analysis for fail-
ure detection. We address the issue of automating testing
process by training a classifier based on discriminative itera-
tive patterns and using it to find failures in program traces.
A three-step framework is employed including feature gener-
ation using closed unique iterative pattern mining, feature
selection based on Fisher score, and pattern-based model
learning.

Experimental study has been performed on synthetic and
real datasets. For the synthetic datasets, we generate traces
from various models of existing systems and inject various
types of errors: addition, omission and ordering. We also in-
vestigate standard programs from the Siemens benchmark
and a real-life data race concurrency bug from MySQL.
The iterative pattern-based classifier outperforms the single
event-based method on all the datasets. On average, classi-
fication accuracy is improved by 24.68%. Furthermore, we
are able to classify the real-life data race failures accurately
while the baseline approach is not.

As a future work, we are looking into the possibility of
direct mining of discriminative iterative patterns, applica-
tions of the classifier to other domains, and pipelining the
proposed approach to existing fault localization techniques
to enable both failure detection and fault localization.
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