
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

9-2006 

Rights Protection for Data Cubes Rights Protection for Data Cubes 

Jie GUO 
Shanghai Jiaotong University 

Yingjiu LI 
Singapore Management University, yjli@smu.edu.sg 

Robert H. DENG 
Singapore Management University, robertdeng@smu.edu.sg 

Kefei CHEN 
Shanghai Jiaotong University 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Information Security Commons 

Citation Citation 
GUO, Jie; LI, Yingjiu; DENG, Robert H.; and CHEN, Kefei. Rights Protection for Data Cubes. (2006). 
Information Security: 9th International Conference, ISC 2006, Samos Island, Greece, August 30 - 
September 2: Proceedings. 4176, 359-372. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/320 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F320&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F320&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Rights Protection for Data Cubes
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{yjli, robertdeng}@smu.edu.sg

2 School of Information Security Engineering, Shanghai Jiaotong University, 200030, China
{guojie, kfchen}@sjtu.edu.cn

Abstract. We propose a rights protection scheme for data cubes. The scheme
embeds ownership information by modifying a set of selected cell values. The
embedded message will not affect the usefulness of data cubes in the sense that
the sum queries at any aggregation level are not affected. At the same time, the
errors introduced to individual cell values are under control. The embedded mes-
sage can be detected with a high probability even in the presence of typical data
cube attacks. The proposed scheme can thus be used for protecting data cubes
from piracy in an open, distributed environment.

1 Introduction

Data cube is a common data model that supports exploration of a large amount of elec-
tronic data from many different perspectives, in a multi-dimensional and multi-level
manner. In many applications, valuable data cubes are provided to multiple users or
customers. For example, business and government organizations often outsource valu-
able data cubes, such as sales patterns data, financial data, or customer information,
to certain parties that are specialized in analyzing the data. For another example, data
cubes of online interactions (e.g., airline reservation and scheduling portals) are usu-
ally provided for direct and interactive uses by many customers across the internet. In
these applications, it is critical to protect the owner’s rights so as to thwart any illegal
use of data. Without appropriate rights protection, some dishonest users may copy and
redistribute the data without its owner’s permission.

Watermarking techniques have been frequently used for protecting data ownership.
The ownership information is embedded into the target data in a way that it has no
significant impact on the usefulness of the data and that a malicious user cannot de-
stroy it without making the data less useful. When a pirated copy of data is discovered
somewhere, the owner of the data can assert its ownership with a high probability by ex-
tracting the embedded information from the watermarked data. Watermarking has been
extensively studied in the context of multimedia data (text, image, sound or video) [9]
[5] [14] [15] [10] [18]. Since multimedia objects are ultimately watched or listened by
human beings, it is critical that the embedded watermark has no significant impact on
human perceptual systems. Recently, there have been growing interests in watermark-
ing non-media data [3] such as relational databases [1], softwares [8], natural language
texts [4], and sensor network streams [19]. The challenges posed in these new domains
are quite different from those posed in the multimedia domain. As pointed out in [1][3],
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non-media data have characteristics and operations very different from multimedia data,
thus requiring different watermark algorithms to be designed.

Agrawal et al. first proposed a watermarking scheme for relational databases [2].
A private key, known only to the owner of the data, was used to determine where to
embed a watermark and how to detect it. Li at el. extended Agrawal’s watermarking
scheme to embed user-specific information, called fingerprint, into relational databases
[17]. The fingerprint can be used to identify or track whom the traitor is from a pirated
copy of data. For numerical data, Sion et al. introduced a multi-bit distribution encoding
scheme that can survive the linear transformation of data among other types of attacks
[20]. For categorical data, Sion proposed another watermarking technique that swaps
certain categorical values so as to embed watermark information [21]. Other works in-
clude Gross-Amblard’s watermark framework [12], in which a set of parametric queries
can be preserved within a certain level of distortion, and Bertino’s hierarchical water-
marking scheme [7] for preserving the privacy and ownership of outsourced medical
data against generalization attacks. All these works are targeted on watermarking rela-
tional databases.

The watermarking techniques customized for relational databases cannot be directly
applied to data cubes. One reason is that the structure of data cubes is different from that
of databases. While most schemes for watermarking databases depend on the existence
of a primary key attribute, there is no such concept in data cubes. Another reason is that
data cubes are primarily used for answering sum queries regarding the aggregations
of cell values at different levels. A watermarking scheme should have as less impact as
possible, better no impact, on the data cube queries. In comparison, no special treatment
has been made in watermarking relational databases for reducing or eliminating the
errors in sum queries.

The contribution of this paper is multi-fold. Firstly, we propose the first watermark-
ing scheme for protecting the ownership of data cubes. A data cube owner can use
his private key to control all watermarking parameters. Neither original data cube nor
the watermark is required in watermark detection. Secondly, we devise the concept of
mini-cube and apply it in the process of watermarking. As a result, all sum queries in
a watermarked data cube can be answered without any error, yet the robustness of the
embedded watermark is not affected by the use of mini-cubes. Thirdly, we extend our
basic scheme to improve watermarking efficiency for very large data cubes. Detailed
analysis and extensive experiments are conducted for the proposed schemes in terms of
watermark detectability, robustness, imperceptibility, and efficiency. Our results show
that the scheme perform well in actual applications.

The rest of this paper is organized as follows. Section 2 revisits the basic model
of data cubes. Section 3 presents our watermarking algorithms. Section 4 analyzes the
properties of the proposed algorithms. Section 5 evaluates our watermarking technique
using real data. Section 6 concludes this paper.

2 The Basic Model of Data Cubes

We follow the data cube model proposed in paper [11]. Conceptually, a cube consists
of a base cuboid, surrounded by a collection of aggregation cuboids that represent the
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Fig. 1. An example data cube

aggregation of the base cuboid along one or more dimensions. We refer to the attribute
to be aggregated as the measure attribute, while the other dimensions are seen as the
feature attributes. Figure 1 gives an example of data cube from the automotive industry.
The data cube is in 3 dimensions, where each cell (m, c, t) represents a combination of
three feature attributes make, color, and time, and where a single measure attribute of
the cell is sale. The measure attribute value of cell (m, c, t) indicates the sale of the car
model m in color c on day d.

The base unit of each dimension may be aggregated to higher level units in “roll-up”
operations. For example, the time dimension can be aggregated from the basic unit day
to higher level units month, year, and all. Consequently, the cell values (i.e., car sales)
are aggregated in terms of the new units in roll-up operations. If the 3-D based cuboid
is rolled-up from day to all along time dimension, then it becomes a 2-D plane, which
is labelled as “by make and color” in figure 1. The 2-D plane can be further rolled-up
to a 1-D line and to a 0-D point (the 0-D point represents the grand total of the car
sales for all make, all color, at all time). From higher level aggregations, one may also
“drill-down” to lower level aggregations or individual cells.

Roll-up and drill-down are basic OLAP functions which can be used for knowledge
discovery in decision support systems. By rolling up from the base cuboid, one can ag-
gregate the measure attribute at various levels, thus discovering general trends of the un-
derlying data. By drilling down to lower level aggregations or individual cells, one may
discover outliers or exceptions. The interactive exploration of rolling-up and drilling
down may repeat until a satisfactory understanding of the underlying data is reached.
Based on the data cube model, we can design our watermarking scheme for data cubes.

3 Embedding and Detecting Watermarks

In this section, we introduce our watermarking scheme in detail. We assume that all
watermarkable values in a data cube are numeric, and that small changes in a small por-
tion of these values are acceptable. Note that the same assumption has been commonly
used in watermarking relational data. It has been argued that such an assumption is sup-
ported by many applications for various types of data (e.g., parametric specifications in
manufacturing industry, geological and climatic surveys, and life science data) [1].
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Table 1. Notations and parameters

Xi, Yj , Zk Three feature attributes of a cell
Nx, Ny , Nz Sizes of three feature attributes in the base cuboid

η Total number of cells in the data cube
ξ Number of least significant bits available for watermarking in each cell

1/γ Fraction of cells selected for embedding a watermark
ω Number of cells selected for embedding a watermark
α Significance level of the test for detecting a watermark
τ Minimum number of correctly detected cells for ownership claim

Algorithm 1. Watermark embedding
1: for i = 1 to Nx, j = 1 to Ny , k = 1 to Nz do
2: HMAC(i, j, k) = H(K ⊕ opad,H(K ⊕ ipad, Xi ◦ Yj ◦ Zk))
3: mark(i, j, k) = HMAC(i, j, k) mod γ
4: end for
5:
6: for i = 1 to Nx, j = 1 to Ny , k = 1 to Nz do
7: if (mark(i, j, k) = 0) then // This cell is selected for marking
8: bp = HMAC(i, j, k) mod ξ // Mark position at this cell is bpth bit
9: wm = HMAC(i, j, k) mod 2 // Watermark allocated to this cell is wm

10: bm = (d(i, j, k) >> bp)&1 // The bpth LSB of the cell value is bm
11: if (bm �= wm) then // The cell value should be changed for marking
12: set the bpth least significant bit of the cell value to wm
13: df = the difference between marked cell value and original cell value
14: minicube(i, j, k, df, D, mark) // Construct a minicube for the modified cell
15: end if
16: end if
17: end for

Without loss of generality, we present our scheme for a 3-dimensional data cube D,
where each cell has three feature attributes (X, Y, Z) and one measure attribute M . The
sizes of three feature attributes (i.e., the numbers of base units) are Nx, Ny, Nz , respec-
tively. The total number of cells η is Nx ×Ny ×Nz . We use d(Xi, Yj , Zk) to denote the
cell value at the position (Xi, Yj , Zk). For each watermarkable cell, we assume that any
change in one of its ξ least significant bits is imperceptible, where ξ is a parameter in
our scheme. Another parameter γ determines the number ω of watermarkable cells that
are used to embed a watermark. Approximately one out of every γ values is used in wa-
termarking (i.e., ω ≈ η/γ). A significance level α is used to determine how amenable
the watermarking system is to the false detection of a watermark from non-watermarked
data. A parameter τ is used to denote the minimum number of correctly detected cells
for ownership claim. The two parameters will be further explained in Section 3.2. For
ease of reference, Table 1 gives the notations that will be used in this paper.

3.1 Watermark Embedding

The procedure of watermark embedding is shown in Algorithm 1. Let HMAC be a MAC
function seeded with a private key [6][16]. For each cell in a 3-D data cube, the owner
of the data computes a HMAC value from the cell’s feature attributes (Xi, Yj , Zk) us-
ing his private key K. The HMAC value will be used to determine whether the cell is
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Fig. 2. An example mini-cube

selected to embed a watermark (see lines 3 and 7 in algorithm 1). On average, one out
of every γ cells is selected. Because of the use of the HMAC function and the private
key, only the owner of the data can determine which cells are actually selected. For each
selected cell, line 8 in algorithm 1 determines a bit position among ξ least significant
bits, and line 9 computes a watermark bit value which is assigned to the bit position.
The watermark bit has a probability of 1/2 to be the same as the original bit in the bit
position, in which case the selected cell does not change. Otherwise (see line 11), the
original bit is flipped, in which case the selected cell is modified so as to embed the
watermark bit.

According to our assumptions, the change made in watermarked cells is acceptable
for individual values; however, it can be potentially significant to some aggregations of
the cell values. In order to reduce or eliminate the accumulative errors that are intro-
duced in watermark insertion, a mini-cube is constructed for each cell that is modified
in watermarking (see line 14 in algorithm 1). Figure 2 illustrates a simple example for
constructing a mini-cube. Suppose that the value of cell d(Xi, Yj , Zk) is decremented
by 1 in watermark insertion. Based on the position of d(Xi, Yj , Zk), three other cell
values d(Xxc, Yj , Zk), d(Xi, Yyc, Zk), and d(Xi, Yj , Zzc) are selected. The values of
these cells are incremented by one so as to balance the deviation in any 1-D aggregation
(i.e., aggregation along one feature dimension) that involves cell (Xi, Yj , Zk). Simi-
larly, three more cell values d(Xxc, Yj , Zzc), d(Xi, Yyc, Zzc), and d(Xxc, Yyc, Zk) are
decremented by one, and one last cell value d(Xxc, Yyc, Zzc) is incremented by one.
These seven cells, which we call balance cells, form a mini-cube together with the wa-
termarked cell (Xi, Yj , Zk). With a mini-cube constructed, any data cube aggregation
that involves at least two cells in the mini-cube remains unchanged after watermark
insertion. Algorithm 2 gives the procedure for constructing a mini-cube.

A mini-cube is not constructed without a constraint. Firstly, the balance cells should
not be selected from any cell that has been selected in watermark insertion so as to avoid
interfering the watermark insertion and detection. Secondly, a mini-cube should be con-
structed in a way that most, if not all, aggregation queries would involve at least two
cells in the mini-cube. To achieve this, (i) the balance cells should be selected as close to
the watermarked cell as possible, and (ii) any two cells in the mini-cube should have the
same attribute values in terms of the smallest aggregation units above the base unit (e.g.,
“brand” for attribute model and “month” for attribute day are such aggregation units in



364 J. Guo et al.

Algorithm 2. Tow functions: mini-cube embedding and choosing cells for mini-cube
1: mini-cube(X-index i, Y-index j, Z-index k, value-difference df , data cube D, embedding position mark)
2: xc = 0; yc = 0; zc = 0; // Parameters used for deciding cell positions for mini-cube
3: (xc, yc, zc) = CellPosition(i, j, k, D, mark) // Choose cell positions for mini-cube
4: if (xc �= i) then // Construct mini-cube
5: d(xc, j, k) = d(xc, j, k) − df
6: d(i, yc, k) = d(i, yc, k) − df
7: d(i, j, zc) = d(i, j, zc) − df
8: d(xc, yc, k) = d(xc, yc, k) + df
9: d(xc, j, zc) = d(xc, j, zc) + df
10: d(i, yc, zc) = d(i, yc, zc) + df
11: d(xc, yc, zc) = d(xc, yc, zc) − df
12: end if
13:
14: CellPosition(X-index i, Y-index j, Z-index k, data cube D, embedding position mark)

return (X-position xc, Y-position yc, Z-position zc)
15: lx = round(i/λx) ∗ λx // Round real value to integer
16: my = round(j/λy) ∗ λy

17: nz = round(k/λz) ∗ λz

18: xc = i; yc = j; zc = k; // Parameters used for deciding cell positions for mini-cube
19: SumThresh = 0 // Value used for finding optimal mini-cube
20: for l = lx to lx + λx − 1, m = my to my + λy − 1, n = nz to nz + λz − 1 do
21: // Balance cells are not selected from the cells that are selected in watermark insertion
22: if ((mark(l, j, k) �= 0) and (mark(i, m, k) �= 0) and (mark(i, j, n) �= 0) and (mark(l, m, k) �= 0)

and (mark(l, j, n) �= 0) and (mark(i, m, n) �= 0) and (mark(l, m, n) �= 0)) then
23: sum = |d(l, j, k)|+|d(i, m, k)|+|d(i, j, n)|+|d(l, m, k)|+|d(l, j, n)|+|d(i, m, n)|+|d(l, m, n)|
24: if (sum > SumThresh) then
25: SumThresh = sum; xc = l; yc = m; zc = n;
26: end if
27: end if
28: end for
29: return (xc, yc, zc)

Figure 1). We use three parameters λx, λy , and λz to decide how far away along each
dimension to search the balance cells from a watermarked cell. These parameters can be
fixed or floating for different watermarked cells. The last requirement for constructing
a mini-cube is that the modification to the balance cells should be minimum. The cells
with larger values are better to be selected to be balance cells, for smaller values are
more sensitive to the modification that are introduced to the individuals cells during the
construction of a mini-cube. In our scheme, we sum up the absolute values of candidate
balance cells and select those with maximal sum value.

Note that in watermark insertion, a small portion of the cells, the bit positions of the
selected cells, and the bit values assigned to the selected bit positions are all algorith-
mically determined under the control of a private key. The bit pattern constitutes the
watermark. Without knowing the private key, an attacker is not able to know where ex-
actly the watermark is embedded. We also note that the same HMAC function is used
to determine the cells, the bit positions and the bit values in our scheme. To further
increase the randomness of this process, different HMAC functions can be employed
instead of single HMAC function.

3.2 Watermark Detection

The watermark detection algorithm is blind. It neither requires the knowledge of the
original data cube nor the watermark in detection. Since the mini-cubes do not interfere
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Algorithm 3. Watermark detection
1: for i = 1 to Nx, j = 1 to Ny , k = 1 to Nz do
2: HMAC = H(K⊕ opad,H(K ⊕ ipad, Xi ◦ Yj ◦ Zk))
3: if (HMAC mod γ equals 0) then // This cell was marked
4: bp = HMAC mod ξ // bpth bit was marked
5: totalcount=totalcount+1
6: matchcount=matchcount+match(HMAC, b(Xi, Yj , Zk), bp)
7: end if
8: end for
9:
10: τ = threshold(totalcount, α) // See section 4.1
11: if (matchcount≥ τ ) then
12: suspect piracy
13: end if
14:
15: match(MAC value HMAC, cell value v, bit-index j) return int
16: if (HMAC is even) then
17: return 1 if the jth least significant bit of v is 0 else return 0
18: else
19: return 1 if the jth least significant bit of v is 1 else return 0
20: end if

with any cells that have been selected in watermark insertion, there is no need to con-
sider the mini-cubes in watermark detection.

The watermark detection is shown in Algorithm 3. Line 3 determines whether a cell
has been watermarked. Line 4 determines the bit position that have been watermarked.
The function match compares the observed bit value at the bit position with the correct
watermark bit that should be allocated at the position if the data is correctly water-
marked. To claim the ownership over the detected data, one must know how many cells
were tested (total count) and how many of them contained the expected watermark bit
values (match count). In a probabilistic framework, only if a certain minimum number
τ of cells contain the expected bit values, the ownership is claimed(see Line 10). The
match count is compared with the minimum number, τ , which is returned by a threshold
function (see Line 11).

A significance level α is used in the threshold function to determine the minimum
match count τ (see Line 10). The significance level is the upper bound of the probability
that the ownership is falsely claimed for a non-watermarked data cube. If the signifi-
cance level is α = 10−9, for example, the probability of falsely detecting a watermark
is less than 10−9. A formal analysis on the detection probability and the threshold func-
tion is given in Section 4.1.

3.3 Extensions

The computational cost of our scheme is mainly determined by the amount of HMAC
computation in the watermark insertion and detection. In our original scheme, an HMAC
value is computed for each cell. The computation cost is O(Nx ×Ny ×Nz) in terms of
HMAC operations, where Nx, Ny, and Nz are the sizes of the feature attributes (Nx ×
Ny × Nz is the total number of cells). We can extend the scheme such that an HMAC
value is computed for each feature attribute value, rather than each cell. The HMAC
value decides whether the feature attribute value is selected for embedding a watermark.
An attribute value is selected if its HMAC modular 3

√
γ yields zero. On average, one
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Fig. 3. Proportion of correctly detected marks required for claiming ownership in watermark
detection with a significance level α

out of every 3
√

γ attribute values is selected in each dimension. A cell is selected for
embedding a watermark if all its feature attributes are selected. Overall, one out of every
3
√

γ × 3
√

γ × 3
√

γ = γ cells is selected. This number is again the same as in our original
scheme. For each selected cell, a bit position and a bit value can be determined based on
the sum of the HMAC values that have been computed for the cell’s feature attributes. It
is easy to know that the computational cost of this extended scheme is O(Nx+Ny+Nz)
in terms of HMAC operations. Compared with the original scheme, the extended scheme
is more efficient for watermarking large data cubes.

4 Analysis

In the above section, we have designed a watermarking scheme for numeric data cubes
and the scheme satisfies some particular requirements on aggregation, localization, non-
watermarkable values, and computational cost. We now analyze the properties of the
proposed scheme.

4.1 Detectability

To make our watermark detection reliable, the probability of falsely detecting a wa-
termark from non-watermarked data must be low. This probability is controlled in our
scheme by adjusting the significance level α and the number ω of watermarked cells.
Bernoulli trials are employed for analyzing the probability of detecting each watermark
bit from non-watermarked data. Since each watermark bit is determined by a HMAC
pseudo-randomly, it has a probability of 1/2 to match the corresponding bit in non-
watermarked data. Let b(i; n, p) be the probability that n Bernoulli trials result in i
successes and n − i failures, where p is the probability of success and q = 1 − p the
probability of failure. The probability of having at least k successes in n trials (i.e., the
cumulative binomial probability) can be written as

B(k; n, p) =
n∑

i=k

b(i; n, p) =
n∑

i=k

n!
i!(n − i)!

piqn−i (1)

We now specify the threshold function that is used in Line 10 of Algorithm 3. Sup-
posing totalcount = ω, the watermark detection would examine ω “watermark bits”
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from non-watermarked data. The probability of falsely detecting a watermark (i.e., at
least τ out of ω “watermark bits” match their expected values by sheer chance) is
B(τ ; ω, 1/2). Given the significance level α, the threshold function threshold(ω, α)
returns the minimum value τ such that B(τ ; ω, 1/2) < α.

The significance level α determines how amenable the watermarking system is to
the false detection of a watermark. By choosing a lower value of α, the confidence
level in the detection can be raised up if the detection algorithm discovers the owner’s
watermark in a suspicious data cube. Figure 3 plots the required proportion (i.e., τ/ω =
τγ/η) of the correctly detected marks for different values of α and γ. Clearly, we need
to proportionately increase the number of the correctly detected marks as the value of α
decreases. The figure also shows that the required proportion of the correctly detected
marks decrease as the percentage of the watermarked cells increases. This illustrates
that for larger data cubes, a smaller percentage of the total number of cells can be
watermarked without increasing the significance level α.

4.2 Robustness

We now analyze the robustness of our watermarking technique against several malicious
attacks including value modification, value selection, additive attack, and invertibility
attack.

Value Modification. In a value modification attack, an attacker tries to destroy the
owner’s watermark by modifying some cell values. There are various forms of value
modification attack including bit-flipping, zero-out, and randomization. In all value
modification attacks, the exact positions where a watermark is embedded are hidden
from an attacker who does not know the private key. What an attacker can do is to apply
the attacks to all cell values (or bits), or a portion of them in a random manner. The
effect of these attacks is reflected in the portion Vm of the watermarked bits that have
been changed/flipped. For example, if 30% of the least significant bits of all cell values
are flipped in a bit-flipping attack, then the portion Vm is 30%. In a zero-out attack,
we have Vm = min(ν/(2ξ), 1/2) if ν least significant bits of each cell value are set
to zero. In a randomization attack, one has Vm = 1/(2r) if one out of every r cells
is modified in a random manner. Given the portion Vm of the watermarked bits that
have been changed, the sufficient and necessary condition that the embedded water-
mark can still be detected with a significance level α is Vm ≤ 1 − τ/ω, or equivalently,
Vm ≤ 1 − τγ/η. Taking Figure 3 as an example, the portion Vm can be as large as
1 − 52% = 48% for γ = 1000, α = 10−5 and η = 256 × 256 × 256.

Value Selection. In a value selection attack, a subset of cells are selected from the
original data cube with an intension that the embedded watermark cannot be detected
from this subset of cells with a high probability. Typical value selection attacks in a
data cube include data cube slicing, iceberg-cube, and random value selection. For all
types of the value selection attack, the number ω′ of the watermarked cells that are
included in the value selection is proportional (i.e., 1/γ) to the total number η′ of the
watermarkable cells that are included in this selection. By a value selection attack only,
no errors are introduced to the watermarked values. Therefore, the watermark detection
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will claim ownership for any non-zero significance level as long as ω′ is greater than
zero. The probability of ω′ = 0 is (1 − 1/γ)η′

, which can be made extremely low for
a reasonably large η. For example, let η = 256 × 256 × 256 and assume that only
one thousandth of the cells are selected in a value selection attack (i.e., η′ = η/1000).
Then the probability that no watermarked cells are included in the selection is about
5.9 × 10−74 for γ = 100, and about 5.1 × 10−8 for γ = 1000.

Additive Attack. In an additive attack, an attacker simply inserts his watermark into
a data cube that has already been watermarked by its owner. If both watermarks are
detected, then the ownership of the data is in dispute. To thwart this type of attack,
Agrawal et al. [1] suggested to locate the overlapping regions of the two watermarks in
which the bit values conflict. However, this may not be always possible if there is a value
modification attack. To reach a decision with certain significance level, a enough num-
ber of watermarked cells that collide must be detected. This may not be realistic since
the probability that the bit values of two watermarks conflict in any given cell is 1

2(γξ)2 ,
which is extremely low for reasonably large γ (e.g., γ = 100). To solve this problem,
one may consider using public watermark schemes (i.e., asymmetric watermarking, see
[13]) that involve public key primitives such as trusted registration authorities and veri-
fiable certificates to resolve any ownership dispute.

Invertibility Attack. An invertibility attack has also been identified in [1] for falsely
claiming ownership using counterfeit watermarks. This attack discovers a key, which
may or may not be the same as the original private key, to detect a satisfactory wa-
termark from watermarked data for certain significance level α. This attack can be
thwarted by imposing two additional requirements on watermarking schemes by con-
vention. First, the private key should be long enough to thwart brute force search. Sec-
ond, the significance level α should be low enough (e.g., 10−10) such that the probabil-
ity of accidently finding a key that yields a satisfactory watermark is negligible.

5 Real Data Experiments

We now report experimental results that complement the analysis presented in Section
4. The experiments are performed using a real 3-D data cube, the LCDM (Lambda-
dominated Cold Dark Matter) cluster simulations in astronomy, available from the De-
partment of Astronomy and Astrophysics at the University of Chicago (http://astro.
uchicago.edu/d̃aisuke/Research/simdata.html#threed).

The data cube has 16,777,216 cells, and each cell value can be converted to an integer
of 32 bits. In experiments, we vary γ from 1 to 10000, and fix ξ, λx, λy , and λz to 8. Our
watermarking scheme is implemented in Visual C++ Version 6 using HMAC-SHA1 1

as the HMAC function. All the experiments are run on a HP Compaq computer with
a Pentium(R) 4 CPU of clock rate 3.00GHz, 1.0 GB of RAM, and 40 GB hard-disk
running Microsoft Windows XP.

1 SHA-1 was recently found not as secure as it was believed to be [22]. Any one-way hash
function can be used in our scheme. The reason for using SHA1 in our experiment is simply
because of the availability of the HMAC-SHA1 code.
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Table 2. Computational cost of watermark insertion and detection

γ = 1 γ = 10 γ = 100 γ = 1000 γ = 10000
Number of cells selected for watermarking 16,777,216 1,676,954 167,124 16,764 1,703
Number of cells modified for watermarking 8,387,424 803,837 80,185 8,094 825
Time for embedding a watermark without mini-cubes (sec.) 299 158 144 142 141
Time for embedding a watermark with mini-cubes (sec.) 340 221 160 154 153
Percentage of watermarked cells for which mini-cubes 0 100% 100% 100% 100%
can be constructed
Time for detecting a watermark (sec.) 254 158 143 141 140

5.1 Computational Cost

The first set of experiments evaluate the computational cost of the watermark insertion
and detection. The experimental result is summarized in Table 2. The performance of
our algorithms is measured in elapsed time. For the watermark insertion, the computa-
tional cost for constructing mini-cubes can be assessed by comparing the running time
with mini-cubes and without mini-cubes.

In the watermark insertion, the computational cost can be broken down into three
components: 1) The computation of a HMAC value for each cell, determining whether
the cell is selected for embedding a watermark; 2) The modular computation for each
cell that is selected, determining which bit position is selected, what the watermark
bit value is, and whether the original cell value is to be modified for embedding the
watermark bit; and 3) The computation of modifying a bit value and constructing a
mini-cube for each cell that is modified.

The experimental results show that the computational cost increases as the percent-
age of the watermarked cells increases. In the extreme case where γ = 1, the number
of the watermarked cells reaches its maximum. In this case, however, no mini-cube can
be constructed, for every cell is selected for watermarking. Nonetheless, it takes longer
for embedding a watermark with mini-cubes than without mini-cubes because of the
time taken to attempt to construct mini-cubes. When γ is set to 10, the time required for
mini-cube construction is 221−158 = 63 seconds. When γ increases to 10000, the time
used for mini-cube construction is down to 12 seconds because much less mini-cubes
need to be constructed. In all of the experiments, the computation of HMAC values is
the major component of the cost for watermark insertion.

Table 2 also gives the running time for watermark detection. The cost of watermark
detection is similar to that of watermark insertion except that there is no need of mini-
cube construction. Again, the major component of the cost is the computation of HMAC
values. Note that the watermark insertion or detection can be done within five minutes in
our experiments for a data cube with 2563 cells. This result indicates that our algorithms
have adequate performance to allow for their use in real world applications.

5.2 Imperceptibility

Since a data cube is a generalization of aggregation functions, the main service provided
by a data cube (e.g., in OLAP) is to answer aggregation queries at various aggregation
levels. To maintain the usefulness of data, the embedded watermark must be impercep-
tible; that is, it does not introduce intolerable errors to any aggregation queries that can
be answered by a data cube. Consider the data cube shown in Figure 1. An example of
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Fig. 4. Comparison of imperceptibility between two watermarking schemes

the aggregation queries asks for the total sale of red Ford GT cars. To answer this query,
a row is localized in the data cube according to the color attribute “red” and the make
attribute “Ford GT.” Then, all the cell values in the row are summed up to get the whole
sale. To measure the effect to the aggregation queries of the watermark insertion, we
calculate the differences between the sums of the original cell values and those of the
watermarked cell values.

In our real data experiments, we evaluate typical aggregation queries that sum the
cell values in each row in a randomly chosen slice, where a slice is a 2-D plane in the
data cube. Let X, Y and Z denote the three feature attributes of the data cube, each
of which has 256 values (i.e., from X0 to X255). A 2-D slice w.r.t. X235, for example,
denotes the 2-D plane in which the cells have the same attribute value X = X235. For
watermarking the data cube, we use γ = 9 and ξ = 8 in our experiments.

Figure 4 illustrates the differences in the sums of rows for three randomly chosen
slices w.r.t. X235, Y130, and Z51 respectively. The differences in the sums are measured
between the original and watermarked cell values. The differences indicate the errors
that are introduced by the watermark insertion to the sum queries. We compare two
types of watermark insertion, with mini-cubes and without mini-cubes. In Figure 4, the
scattered points ‘*’ indicate the errors introduced by watermark insertion without mini-
cubes. The points ‘.’, which are lined-up horizontally at zero value, indicate zero error
that watermark insertion with mini-cubes always introduces. In comparison, the errors
that are introduced by the watermark insertion without mini-cubes are notably large.

6 Conclusion

With the wide spread applications of data cube models in on-line analytical processing,
security techniques for data cube ownership protection is becoming increasingly im-
portant. However, to our knowledge, little research work has been done to assert rights
over distributed or sold data cubes.

In this paper, we proposed the first robust watermarking scheme for protecting the
ownership of numerical data cubes. In our watermarking scheme, a data cube owner
uses his private key to control watermark embedding parameters, including cell po-
sitions, bit positions, and specific bit values. Our blind detection algorithm requires
neither the original data cube nor the watermark during watermark detection. The most
prevalent data cube operations are aggregation queries. To eliminate errors introduced
by watermark to aggregation queries, we invented a novel concept called mini-cubes.
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Based on clearly defined optimization rules, a mini-cube is constructed for each cell that
is modified in watermarking such that all sum queries in the watermarked data cube can
be answered error-free, while without introducing any degradation on the robustness of
the embedded watermark. In addition, we presented an extension of our basic scheme
to improve watermarking efficiency when dealing with very large data cubes. We con-
ducted extensive analysis as well as empirical evaluation for the proposed schemes in
terms of watermark detectability, robustness, imperceptibility, and efficiency. Our re-
sults indicate that the schemes perform extremely well in real world applications.

Our future research efforts include development of public watermark (in which own-
ership can be publicly proved) and fragile watermark (by which value modification can
be detected and localized) schemes for data cubes.
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