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The Bi-Objective Master Physician Scheduling 

Problem 

Aldy Gunawan • Hoong Chuin Lau 

 

Abstract Physician scheduling is the assignment of physicians to perform different duties in the 

hospital timetable. In this paper, the goals are to satisfy as many physicians’ preferences and duty 

requirements as possible while ensuring optimum usage of available resources. We present a 

mathematical programming model to represent the problem as a bi-objective optimization 

problem. Three different methods based on ε–Constraint Method, Weighted-Sum Method and Hill-

Climbing algorithm are proposed. These methods were tested on a real case from the Surgery 

Department of a large local government hospital, as well as on randomly generated problem 

instances. The strengths and weaknesses of the proposed methods are also discussed. Finally, a 

summary is given together with suggestions for future research. 

Keywords: master physician scheduling problem, preferences, bi-objective optimization, 

mathematical programming. 

1 Introduction 

Personnel scheduling is defined as the process of constructing optimized work schedules for 

staff (Topaloglu, 2009). A literature review of applications, models and algorithms in personnel 

scheduling has been provided by Ernst et al. (2004). The personnel scheduling problem includes a 

wide variety of applications such as airlines, railways, manufacturing and health care systems. In 

this paper, the scheduling of physicians in a hospital is addressed.  

Brandeau et al. (2004) provided a more recent collection of Operations Research applications 

in health care, with particular emphasis on health care delivery. To our knowledge, research on 

physician scheduling focuses primarily on a single type of duty, such as the emergency room (e.g. 

Vassilacopoulos, 1985; Beaulieu et al., 2000; Carter and Lapierre, 2001; Gendreau et al., 2007; 

Puente, et al., 2009), the operating room (e.g. Testi et al., 2007; Burke and Riise, 2008; Beliën et 

al., 2009; Roland et al., 2009), the physiotherapy and rehabilitation services (Ogulata et al., 2008). 

In this paper, our problem, termed the Master Physician Scheduling Problem, is the tactical 

planning problem of assigning physician activities to the time slots over a time horizon 

incorporating a large number of rostering and resource constraints together with complex 
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physician preferences. The main objectives are to satisfy as many physicians’ preferences and duty 

requirements as possible while ensuring optimum usage of available resources such as clinics and 

operating theatres.  

The major contributions/highlights of this paper are as follows: 

(1) We take a physician-centric approach to solving this problem, since physician retention 

is the most critical issue faced by hospital administrations worldwide. 

(2) We formulate the problem as a bi-objective optimization problem and solve the problem 

by different methods: ε–Constraint Method, Weighted-Sum Method and Hill-Climbing 

Algorithm.  

The organization of the paper is as follows. Section 2 gives some literature review. Section 3 

gives a detailed description of the master physician scheduling problem. In Section 4, we propose 

a bi-objective mathematical programming model along with the description of notation and 

variables, constraints and objective functions. Section 5 discusses three different methods used to 

solve the problem. Section 6 makes a computational analysis of the model with a real case from 

the Surgery Department of a large local government hospital, as well as on randomly generated 

problem instances. Finally, we provide some concluding perspectives and directions for future 

research in Section 7. 

2 Literature Review 

There have been a number of review papers in the area of personnel scheduling and rostering 

research, as in the works of Aggarwal (1982), Burke et al. (2004), Ernst et al. (2004).  Much of the 

research on personnel scheduling in health care has been devoted to the case of nurse scheduling 

problem (e.g. Burke et al., 2004; Ernst et al, 2004; Bard and Purnomo, 2005; Beliën and 

Demeulemeester, 2005; Petrovic and Berghe, 2008). On the other hand, little work has been done 

on the physician scheduling problem. Carter and Lapierre (2001) provide the fundamental 

differences between physicians and nurses scheduling problems. Unlike nurse rostering problems, 

in physician scheduling, maximizing satisfaction only matters, as physician retention is the most 

critical issue faced by hospital administrations. In addition, while nurse schedules must adhere to 

collective union agreements or written rules, physician schedules are more driven by personal 

preferences and with no formal scheduling rules.  

Physician and nurse scheduling problems are typically multi-objective by nature. One 

approach for handling multi-objective optimization problem is to formulate the objectives as soft 

constraints and define the global objective function  as the total deviations in the soft constraints 

(Beaulieu, et al., 2000; Topaloglu, 2006, 2009; Burke et al., 2009). Another way to solve a multi-

objective problem is to apply the Weighted-Sum method that combines the objectives into a single 

scalar value (Beaulieu et al., 2000, Carter and Lapierre, 2001; Blöchliger, 2004; Topaloglu, 2006; 

Beliën et al., 2009; Puente et al., 2009; Topaloglu, 2009). Yet another method that has also been 

considered is the sequential method (Topaloglu, 2009). In this method, objectives are sorted in 

descending order of importance and optimized in an iterative procedure. Another most commonly 
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used method is goal programming since it allows simultaneous solution of multiple objectives 

(Ozkarahan, 2000; Ogulata and Erol, 2003; Topaloglu, 2006; White et al., 2006). 

Burke et al. (2007) and Burke et al. (2009) presented a Pareto-based optimization technique 

based on a Simulated Annealing algorithm to address nurse scheduling problems in the real world. 

One of the latest papers about physician rostering problem is presented by Puente et al. (2009). 

The problem consists in designing timetables for the physicians at the Emergency Department in a 

hospital.      

3 Problem Definition  

This paper focuses on a physician scheduling problem for the Surgery Department of a large 

government hospital in Singapore. The problem (termed the Master Physician Scheduling 

Problem) is to assign different physician duties (or activities) to the defined time slots over a time 

horizon incorporating a large number of constraints and complex physician preferences. For 

simplicity, we assume the time horizon to be one work week (Mon-Fri), further partitioned into 5 

days and 2 shifts (AM and PM).  

The work mode combines shifts and duties. Physicians may specify their respective ideal 

schedule in terms of the duties they like to perform on their preferred days and shifts, as well as 

shifts-off or days off.  An actual schedule is generated by taking the physicians’ preferences 

together with resource capacity and rostering constraints into consideration (Figure 1).  

Due to conflicting constraints, the ideal schedules might not be fully satisfied in the actual 

schedule (see Figure 1 for illustration). That may occur in two possible scenarios: 

 Some duties have to be scheduled on different shifts or days – which we term non-ideal 

scheduled duties (e.g. Physician 2 Tuesday duties). 

 Some duties simply cannot be scheduled due to resource constraints – which we term 

unscheduled duties (e.g. Physician 1 Friday PM duty).  

 

  
Physician 

   
Physician 

  
1 2 … |I| 

   
1 2 … |I| 

Monday AM Duty 1 - … Duty 3 
 

Monday AM Duty 1 - … Duty 5 

 
PM Duty 5 Duty 4 … Duty 1 

  
PM Duty 5 Duty 4 … Duty 1 

Tuesday AM - Duty 1 … Duty 5 
 

Tuesday AM - Duty 5 … Duty 3 

 
PM Duty |L| Duty 5 … Duty 2 

 
PM Duty |L| Duty 1 … - 

 
: : : 

 
: 

 
: : : 

 
: 

 
: : : 

 
: 

 
: : : 

 
: 

Friday AM Duty 4 - … Duty |L| 
 

Friday AM Duty 4 - … Duty |L| 

 
PM Duty 1 Duty |L| … - 

  
PM - Duty |L| … - 

  

Physicians’ Ideal Schedule 

   

Actual Schedule 

Figure 1. Example of the master physician scheduling problem  

The master physician scheduling problem is a highly constrained resource allocation 

problem. The constraints imposed are categorizes into two different types: hard and soft 
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constraints. Our goal is to meet the hard constraints while aiming at a high-quality result with 

respect to soft constraints. The hard constraints in our problem are as follows: 

 H1: No physician can perform more than one duty in any shift. 

 H2: The number of resources (e.g. operating theatres, clinics) needed cannot exceed their 

respective capacities at any time. For simplicity, we assume that each type of activity does not 

share its resources with another type of activities – for example, operating theatres and clinics 

are used to perform surgery and out-patient duties, respectively.  

 H3: The number of activities allocated to each physician cannot exceed his contractual 

commitments, and do not conflict with his external commitments. In this paper, we assume 

external commitments take the form of physicians’ request for shifts-off or days-off, and 

hence no duty should be assigned to these requests.  

The master physician scheduling problem incorporates both physician preferences and 

ergonomic constraints, optimizing on two objectives - maximizing the number of ideal schedules 

and minimizing the number of unscheduled duties. These objectives are related to the following 

soft constraints: 

 S1: Duties should be scheduled with respect to the ideal schedule.  

 S2: For some heavy duties, such as surgery and endoscopy duties, that could not be 

scheduled with respect to the ideal schedule, we try to reschedule these duties with respect to 

the ergonomic constraints:  

o If a physician is assigned to a heavy duty in the morning shift, then he cannot be assigned 

to another type of heavy duty in the afternoon shift on the same day. However, it is 

possible to assign the same type of heavy duties in consecutive shifts on the same day.  

o Similarly, a physician cannot also be assigned to another type of heavy duty in the 

morning shift on a particular day if he has been assigned to a heavy duty in the afternoon 

shift on the previous day.  

4 Mathematical Programming Model 

The following notation is required to formulate the mathematical programming model. 

 

Parameters 

I  = Set of physicians,  Ii ,,2,1   

J  = Set of days,  Jj ,,2,1   

K  = Set of shifts per day,  Kk ,,2,1   

L  = Set of duties,  Ll ,,2,1   

HL   = { Ll  : l = heavy duty}  

PRA  = {   KJIkj,i,  :  kj,i,  = physician i requests not being assigned on day j  shift k} 

lR  = number of resources required to perform duty l  Ll    

jklC   = number of resources available for duty l on day j shift k  LlK,kJ,j    
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  (i.e. resource capacity) 

ilA  = number of duty l requested by physician i in a weekly schedule  LlI,i   

ijklF  = 1 if physician i requests duty l on day j shift k (ideal schedule), 0 otherwise 

 LlK,kJ,jIi  ,  

 

Decision and auxiliary variables 

ijklX  = 1 if physician i is assigned to duty l on day j shift k with respect to the ideal schedule, 0 

otherwise 

ijklY  = 1 if physician i is assigned to duty l on day j shift k with respect to the ergonomic 

constraints, 0 otherwise 

iU  = number of unscheduled duties of physician i  

iN  = number of non-ideal scheduled duties of physician i  

iS  = number of ideal scheduled duties of physician i  

  We consider the problem that optimizes physician ideal schedules on one hand, and on the 

other, improves the quality of duty transition on non-ideal scheduled slots through ergonomic 

constraints.  More precisely, we are concerned with the bi-objective problem of maximizing the 

number of ideal scheduled duties (1) and minimizing the number of unscheduled duties under 

ergonomic constraints (2).   

 

Maximize   Ii iSZ1   (1) 

Minimize   Ii iUZ2   
(2) 

 

subject to: 

jklIi ijklijkll CY(XR   )  LlK,kJ,j   (3) 

1 ijklijkl YX  LlK,kJ,jI,i   (4) 

ilJj ijklKk ijkl A)Y(X     LlI,i    (5) 

1 Ll ijklijkl )Y(X  KkJ,jI,i              (6) 

 Ll ijklijkl )Y(X 0    PRAkj,i,    (7) 

ijklijkl FX     LlK,kJ,jI,i   (8) 

       Jj Kk Ll ijklijklLl ili YXAU )(  Ii   (9) 

     Jj Kk Ll ijkli XS  Ii   (10) 

     Jj Kk Ll ijkli YN  Ii   (11) 

    1
221 11   lkijlkijijkl YXY

    
   212112,1 llLl&l,K,,kJ,jI,i H    (12) 

    1
221

1111   ljiljilKij
YXY

 
   212112,1 llLl&l,J,,jI,i H    (13) 
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1
221

11  lijlijlKij
YXY

           
 2121 llLl&lJ,jI,i H 

 
(14)

 

    1
221 111 

 lKjilKjilij YXY
             

   21213,2 llLl&l,J,...,jI,i H   (15) 

 1,0, ijklijkl YX    LlK,kJ,jI,i   (16) 

ZS,NU iii ,   Ii   (17) 

Constraint (3) ensures that the total number of resources required does not exceed total 

number of available resources per shift (the resource capacity constraint). Note that lR is set to zero 

for activities without limited number of resources available. (4) ensures that a duty is scheduled as 

either an ideal or a non-ideal duty. (5) represents the number of duties allocated to each physician 

cannot exceed his contractual commitments. (6) ensures that each physician cannot be assigned 

more than one duty in any shift, while (7) ensures that no duty would be assigned to a physician 

during any shifts-off or days-off requested. Duties represented by ijklX
 
have to be scheduled with 

respect to the ideal schedule (constraint (8)). Constraints (9), (10) and (11) calculate the number of 

unscheduled duties, ideal scheduled duties and non-ideal scheduled duties, respectively. The 

details of ergonomic constraints are represented by (12) – (16). Finally, (16) imposes the 0-1 

restrictions for the decision variables ijklX and ijklY while (17) is the nonnegative integrality 

constraint for the decision variables iU , iN and iS . 

In the following section, three different approaches are proposed to solve the bi-objective 

physician scheduling problem: one based on ε–Constraint approach that obtains a single solution, 

and the others based on Weighted-Sum Method and Hill-Climbing Algorithm that obtains non-

dominated  or Pareto-optimal solutions.  

5 Proposed Methods 

5.1 ε–Constraint Method 

The ε–Constraint Method was suggested by Haimes et al. (1971). In this method, the bi-

objective problem is reformulated by just keeping one of the objective functions and restricting the 

other objective function within user-specified value. Here, we decide to restrict the number of 

unscheduled duties to be less than or equal to the values obtained by solving another model 

proposed by Gunawan and Lau (2009) (denote by
*
iU ). Therefore, the model only focused on 

minimizing the number of unscheduled duties with respect to ergonomic constraints. The modified 

problem is as follows: 

 

 [ε–Constraint Model] 

Maximize   Ii iSZ1   (18) 
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subject to:  

constraints (3) – (17) 

*
ii UU    Ii  (19) 

5.2 Weighted-Sum Method 

The Weighted-Sum Method is the simplest approach and commonly used to solve the 

multiple-objective optimization problem. It formulates the problem as a classical multi-objective 

weighted-sum model that combines two objectives into a single objective by multiplying each 

objective with a user-defined weight. The weight of each objective is usually chosen in proportion 

to the objective’s relative importance in the problem.  

 

[Weighted-Sum Model] 

Minimize       Ii iIi i UWSWZ 21   (20) 

subject to: constraints (3) – (17) 

Note that in Weighted-Sum Model, the original objective function 1Z  is transformed into a 

minimization objective function. The advantage of the Weighted-Sum method is that it guarantees 

finding Pareto-optimal solutions for convex optimization problems, which can be inferred from 

Deb (2003) Theorem 3.1.1:  

 

Corollary: The solution to the Weighted-Sum Model is not Pareto-optimal iff either W1 or W2 is 

set to zero. 

 

Algorithm 
(1) Set W1 = 1 

(2) Repeat 

(3)   Set W2 = 1 - W1 

(4)   Solve the Weighted-Sum Model optimally (using mathematical programming)  

(5)   W1 = W1 – 0.1 

(6) Until W1 < 0 

(7) For all solutions generated by the above, let M denote the subset of Pareto-optimal solutions  

(8) For a pre-set number of iterations do the following 

(9) Let M1 and M2 (M) with the lowest and the second lowest total number of unscheduled duties, 

respectively 

(10)   Set W′1 =  W1 of solution M1 and W′2 =  W2 of solution M1 

(11)   Set W′′1 =  W1 of solution M2 and W′′2 =  W2 of solution M2 

(12)   Calculate new weight values, denoted as W*1 and W*2, as follows: 

   W*1 = (W′1 + W′′1)/2 

   W*2 = 1 - W*1 

(13)   Solve the Weighted-Sum Model with W1 = W*1 and W2 = W*2 

(14)   If the solution obtained is a new Pareto-optimal solution  

(15)     Then update M 

(16)   Else if the solution obtained and M1 are the same 

(17)    Set the solution obtained as M1 and Update M 

(18)   Else if the solution obtained and M2 are the same 

(19)    Set the solution obtained as M2 and Update M 

Figure 2. Algorithm to obtain Pareto-optimal solutions 

 

In this paper, instead of using a single set of weight values, several different sets of weight 

values would be used to efficiently generate a set of Pareto-optimal solutions. First, a constant k 
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number of solutions with different values of W1 uniformly distributed between [0, 1] are generated. 

Since not all Pareto-optimal solutions may be discovered by the initial set of weight values, we 

introduce an adaptive exploration on the neighborhood of weight values using linear interpolation, 

i.e. we examine two different Pareto-optimal solutions to derive weight values for obtaining other 

possible optimal solutions. The detail of the algorithm is presented in Figure 2. 

5.3 Hill-Climbing Algorithm 

In this section, we turn to a Hill Climbing Algorithm to generate a set of non-dominated 

solutions. The initial solution is generated by setting one of the weight values to 1. Next, a set M of 

potentially non-dominated solutions would be generated. This set is updated whenever a new non-

dominated solution x′ is generated. This updating process consists of two possible actions: 

(1) Adding x′ to M if there is no other solution vM such that v dominates x′ 

(2) Removing all solutions from set M which are dominated by x′ 

The Hill-Climbing Algorithm will terminate when either there is no unscheduled duties or it 

reaches a pre-set number of iterations. The algorithm is given as follows. 

 

Hill-Climbing Algorithm 

(1) Generate a starting solution xD, where D is the set of feasible solutions 

(2) M := Ø 

(3) Update M of potentially efficient solutions with x 

(4) Repeat 

(5)    Select one solution xM 

(6)    Construct a new solution x′V(x), where V(x) D is the neighborhood of solution x 

(7)    If a new solution x′ exists 

(8)      If x′ is a non-dominated solution then 

(9)        Update M 

(10) Until the stop conditions are satisfied 

Figure 3. Hill-Climbing Algorithm 

 

Our proposed neighborhood structure is in essence a kind of ejection chain move involving 

either one or two physicians and the pool of hitherto unscheduled duties.  From the initial solution 

generated, the Unscheduled_Pool contains the list of physicians with the respective number of 

unscheduled duties.  A physician (say physician i) and one of his unscheduled duty (say Duty1) is 

selected randomly from the Unscheduled_Pool and the aim is to insert it into the schedule, thereby 

decreasing the total number of unscheduled duties by 1. To do so, one of his scheduled duties (say 

Duty2) at say slot2 needs to be reallocated to another timeslot say slot1.   

Note that each time as a duty is moved to another timeslot, it must satisfy either one of the 

two following conditions: 

Condition1: the duty is allocated to a timeslot that follows the physician’s ideal schedule. The net 

effect is that the total number of ideal scheduled duties either remains the same or increases by 1.  

Condition2: the duty is allocated to a timeslot that does not follow the physician ideal schedule. In 

this case, we need to ensure that the ergonomic constraint is not violated. The net effect is that the 

total number of ideal scheduled duties either remains the same or decreases by 1.  

In considering the relocation of Duty1 to slot2, two possible scenarios are possible: 
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(1) Scenario 1: If there is resource available at slot2 to perform Duty1 (Figure 4), the move can 

be performed.  

(2) Scenario 2: If no resource is available slot2 for Duty1 (Figure 5), then another physician j, 

who is performing the same duty (i.e. Duty1) at slot2 will be selected (if any) and we apply 

an ejection chain strategy to swap out the Duty1 of physician j so as to free up the resource 

needed. 

 

 

 

 

 

 

                                

 

 

 

 

 

 

 

 

Figure 4. Illustration of Scenario 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Illustration of Scenario 2 
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The pseudo-code for generating moves for this neighborhood is as shown in Figure 6. 

 

(1) Select physician i from Unscheduled_Pool randomly 

(2) Find an empty timeslot randomly, slot1 

(3) By considering all scheduled duties of physician i, find one possible time slot2 such that the duty 

allocated at slot2 can be reassigned to slot1   

(4) If
 
it can be rescheduled at slot1, 

(5) Find an unscheduled duty of physician i, Duty1 

(6) If the resource capacity at slot2 for Duty1 is greater than 0  

(7) Evaluate whether Duty1 can be allocated to slot2  

(8) If there is no constraint violation, generate a new possible solution x′ 

(9) Else if the resource capacity at slot2 for Duty1 is equal to 0 

(10) Evaluate whether Duty1 can be allocated to slot2   

(11) If there is no conflict, 

(12)     Find a physician j who has the same duty scheduled, Duty1, at slot2 

(13)     Apply an ejection chain strategy to physician j, by ensuring that all constraints are satisfied 

(14)     If there is no constraint violation, generate a new possible solution x′ 

 

 

Figure 6. Neighborhood Move 

6 Computational Results 

To evaluate the performance of the proposed methods, computational experiments were done 

on 6 different random problem sets and a real case from the Surgery Department of a large local 

government hospital. The 6 sets problem sets were generated with varying values of the parameter 

– total percentage of heavy duties assigned to physicians (last column of Table 1). For each 

problem set, we also generate several problem instances with different values of number of 

resources available in every shift (Table 2). The details about how problem instances were 

generated are summarized in Gunawan and Lau (2009). 

 

Table 1. Characteristics of problem instances 

Problem Set 
Number of 
physicians 

Number of 

shifts per 

day 

Number of 
days 

Number of 
duties 

Number of 
heavy duties 

Number of 

duties with 
limited 

capacity 

Total 

percentage 
of heavy 

duties* 

Case study 15 2 5 9 3 3 73% 

Random 1 20 2 5 7 3 3 20% 
Random 2 20 2 5 7 3 3 30% 

Random 3 20 2 5 7 3 3 40% 

Random 4 20 2 5 7 3 3 50% 
Random 5 20 2 5 7 3 3 60% 

Random 6 20 2 5 7 3 3 70% 

  %|K||J||I|/A* Ii Ll ilH 100     

 

In the following sub-sections, we report a suite of computational results and analysis 

obtained from the proposed methods. The mathematical programming models (ε–Constraint and 

Weighted-Sum Models) were implemented using ILOG OPL Studio 5.5 and the proposed 

algorithm (Hill Climbing Algorithm) was coded in C++. All codes are executed on a Intel (R) Core 

(TM)
2
 Duo CPU 2.33GHz with 1.96GB RAM that runs Microsoft Windows XP. 
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Table 2. Examples of varying values of Cjkl (Random 1 and Random 2 instances) 

Problem Set Instances 
L 

Duty 1 Duty 2 Duty 3 

Random 1 

 15 28 22 

Random 1a 3 6 4 

Random 1b 3 5 4 

Random 1c 3 4 4 

Random 1d 3 3 4 

Random 1e 3 3 3 

Random 1f 2 3 3 

Random 1g 1 2 2 

Random 2 

 21 46 32 

Random 2a 4 10 5 

Random 2b 4 9 5 

Random 2c 4 8 5 

Random 2d 4 7 5 

Random 2e 4 6 5 

Random 2f 4 5 5 

Random 2g 4 5 4 

Random 2h 3 5 4 

Random 2i 2 4 3 

6.1 Results from ε–Constraint Method 

As described in Section 5.1, the physician scheduling problem is reformulated by keeping 

one objective and restricting the other one within a specified value. In this paper, we restrict the 

number of unscheduled duties within the number of unscheduled duties generated by another 

model proposed by Gunawan and Lau (2009).  

In Gunawan and Lau (2009), the ergonomic constraints are imposed to all scheduled duties. 

On the other hand, in this paper, duties are scheduled with respect to either of two criteria: the 

number of scheduled duties with respect to the physicians’ ideal schedules has to be satisfied as 

many as possible, while non-ideal scheduled duties cannot violate ergonomic constraints. 

 

Table 3. Computational results of ε–Constraint Model  

Problem 
Instances 

Number of 

unscheduled 

duties 

Number of scheduled 

duties 
Percentage of 

unscheduled 

duties 

Percentage of scheduled duties 

Ideal Non-ideal Ideal Non-ideal 

Case study 8 135 7 5.3 90.0 4.7 

Random 1a 0 196 4 0.0 98.0 2.0 
Random 1b 0 192 8 0.0 96.0 4.0 

Random 1c 0 192 8 0.0 96.0 4.0 

Random 1d 4 186 10 2.0 93.0 5.0 
Random 1e 5 181 14 2.5 90.5 7.0 

Random 1f 5 180 15 2.5 90.0 7.5 
Random 1g 10 173 17 5.0 86.5 8.5 

Random 2a 0 196 4 0.0 98.0 2.0 

Random 2b 0 196 4 0.0 98.0 2.0 

Random 2c 0 196 4 0.0 98.0 2.0 
Random 2d 0 194 6 0.0 97.0 3.0 

Random 2e 0 194 6 0.0 97.0 3.0 

Random 2f 3 186 11 1.5 93.0 5.5 
Random 2g 3 186 11 1.5 93.0 5.5 

Random 2h 3 183 14 1.5 91.5 7.0 

Random 2i 10 174 16 5.0 87.0 8.0 

 

Table 3 summarizes the results obtained for the real case study, as well as Random 1 and 2 

instances. In general, we found that the number of unscheduled duties is relative small compared 

with the number of ideal scheduled duties (less than or equal to 5.3%). By using this method, 
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different optimal solutions can be found by setting different 
*
iU values. Take note however that it 

is possible that infeasible solutions would be obtained. 

The following table summarizes the average percentages of all our problem sets. It can be 

observed that the average percentage of ideal scheduled duties is at least 86%, and only Random 5 

has the average percentage of non-ideal scheduled duties which is more than 10%. 

 

Table 4. Summary of computational results of ε–Constraint Model 

Problem Set 
Number of 

instances 

Average percentage of 

unscheduled duties 

Average percentage of scheduled duties 

Ideal Non-ideal 

Case study 1 5.3 90.0 4.7 

Random 1 7 1.7 92.9 5.4 
Random 2 9 1.1 94.7 4.2 

Random 3 9 1.8 91.2 6.9 

Random 4 11 1.1 89.6 9.2 
Random 5 13 1.1 86.7 12.2 

Random 6 15 2.6 89.5 7.9 

6.2 Results from Weighted-Sum Method 

In Section 5.2, we proposed an algorithm to generate several possible sets of weight values in 

order to obtain set of Pareto-optimal solutions. It is started by generating 10 different sets of 

weight values that uniformly distributed within [0, 1].  

In the next step, we set the number of iterations to 5 iterations. This step is applied for further 

finding of other possible Pareto-optimal solutions. By using linear interpolation, we focus on 

exploring neighborhoods of the solutions with the lowest values of the total number of 

unscheduled duties since we view that unscheduled duties as bad compared to non-ideal scheduled 

duties.  

In general, the value of W1 should be less than 0.5 in order to obtain the lowest number of 

unscheduled duties. We also found that the higher the percentage of heavy duties, the lower the 

value of W1 should be set. It could be due to the difficulty to assign unscheduled heavy duties with 

respect to ergonomic constraints. That’s why we need to give higher importance/value for W2. 

Table 5 represents the results obtained by the proposed algorithm. Here, we only present two 

representative instances 1g and 6l for illustration purposes. Figure 7 represents the Pareto-optimal 

solutions obtained for Random 1 and 2 instances.  

In general, we observe that the more we increase the weight value of the first objective (W1), 

the less we get the number of non-ideal scheduled duties (see Table 5 for illustration). At the same 

time, the number of unscheduled duties would also be increased since the number of unscheduled 

duties becomes less important with the decreased weight value of the second objective (W2). This 

method could guarantee finding solutions on the Pareto-optimal set. However, we also found that 

different weight values need not necessarily lead to Pareto-optimal solutions and some sets of 

weight values might lead to the same solution. 
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Table 5. Computational results of instances 1g and 6l 

Random 1g Random 6l 

Weight 
Number of 

Scheduled duties 
Number of 

Unscheduled 
duties 

Weight 
Number of 

Scheduled duties 
Number of 

Unscheduled 
duties W1 W2 Ideal 

Non-

Ideal 
W1 W2 Ideal 

Non-

Ideal 

1.0 0.0 183 0 17 1.0 0.0 181 0 19 
0.9 0.1 183 3 14 0.9 0.1 181 9 10 

0.8 0.2 183 3 14 0.8 0.2 181 9 10 

0.7 0.3 183 3 14 0.7 0.3 181 9 10 
0.6 0.4 183 3 14 0.6 0.4 181 9 10 

0.5 0.5 181 7 12 0.5 0.5 181 9 10 

0.4 0.6 179 11 10 0.4 0.6 179 13 8 
0.3 0.7 179 11 10 0.3 0.7 173 22 5 

0.2 0.8 179 11 10 0.2 0.8 169 27 4 

0.1 0.9 179 11 10 0.1 0.9 160 38 2 

0.0* 1.0 31 51 139 0.0* 1.0 113 85 2 

0.45 0.55 179 11 10 0.15 0.85 160 38 2 

0.475 0.525 179 11 10 0.175 0.825 165 32 3 
0.4875 0.5125 179 11 10 0.1625 0.8375 160 38 2 

0.49375 0.50625 179 11 10 016875 0.83125 165 32 3 

0.496875 0.503125 179 11 10 0.165625 0.834375 160 38 2 

* Non Pareto-optimal solution 

 

      

  Figure 7. Pareto-optimal solutions of Random 1 and 2 problem sets 

 

The proposed algorithm is also tested to the real case study (Table 6).The value of W1 should 

be within [0.9, 1.0] in order to obtain the lowest number of unscheduled duties. The result of the 

real case study problem by the ε–Constraint and the Weighted-Sum Methods and the actual 

allocation generated manually by the hospital are also compared.  

The number of ideal scheduled duties obtained by the Weighted-Sum Model is significantly 

higher than that of the manual allocation. Although the number of unscheduled duties obtained by 

both ε–Constraint Model and Weighted-Sum Model are slightly worse than the number of 

unscheduled duties via manual allocation, the number of non-ideal scheduled duties is better than 

that of the manual allocation. One of possible reason is in the manual allocation, the administrator 

allocates non-ideal scheduled duties to any time slots/shifts without considering the ergonomic 

constraints.  In the manual allocation, there are also two physicians who have to cancel their days-

off or shifts-off for other duties. This outcome is very undesirable since they might have external 

commitments that cannot be delayed or cancelled.    

 

 

0

5

10

15

20

0 5 10 15

# 
U

n
sc

h
e

d
u

le
d

 d
u

ti
e

s

# Non-ideal scheduled duties

Random 1a Random 1b
Random 1c Random 1d
Random 1e Random 1f
Random 1g

0

10

20

0 5 10 15

# 
U

n
sc

h
e

d
u

le
d

 d
u

ti
e

s

# Non-ideal scheduled duties

Random 2a Random 2b

Random 2c Random 2d

Random 2e Random 2f

253



 

Table 6. Comparison between the manual allocation and model solutions on a real case 

 Manual 
allocation 

ε–Constraint 
Model 

Weighted-Sum 
Model 

Number of unscheduled duties 5 8 8 

Number of non-ideal scheduled duties 10 7 2 

Number of ideal scheduled duties 135 135 140 

6.3 Results from Hill-Climbing Algorithm 

In this experiment, the number of iterations for Hill Climbing is set to 200 for each test 

instance. Note that the number of Pareto-optimal solutions obtained by the Weighted-Sum Method 

is small. For instance, for problem instances Random 1 (i.e. 1a to 1g), the number of Pareto-

optimal solutions generated is between 3 and 4, compared with the Hill-Climbing Algorithm which 

provides up to 10 non-dominated solutions (see Table 7). Figure 8 represents results obtained by 

the Hill-Climbing Algorithm for some of the representative instances. 

Table 7. The number of solutions generated 

Problem Set The range of the number of solutions generated 

Weighted-Sum Method Hill-Climbing Algorithm 

Case Study 1 2 

Random 1 [3,4] [3,10] 
Random 2 [2,4] [3,11] 

Random 3 [3,5] [2,12] 

Random 4 [4,5] [4,12] 
Random 5 [4,5] [4,16] 

Random 6 [4,7] [4,11] 

 

          

        

Figure 8. Non-dominated solutions of Hill-Climbing Method 
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As observed by Burke et al., 2009, one issue in comparing the algorithms in multi-objective 

problems is that there is no systematic criterion to measure the performance of each algorithm. In 

Burke et al. (2009), a number of objective functions were considered, and their approach was 

convert these objectives into goals, and the aim was to minimize the deviations (i.e. the percentage 

of total number of violations in the solution with respect to the total number of constraints).  

In this paper, we choose to measure the deviation of our heuristic approach from Pareto 

optimality directly. Let the results obtained by the Hill-Climbing and Weighted-Sum Methods be 

denoted as Sets H and W with sizes of nH and nW, respectively. In order to compare and measure 

the closeness between a solution Hx and a solution Wy , we propose the following formula: 

 
   

 

   

 
2

2

22
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
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
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y

xy

y

xy
yx

Z

ZZ

Z

ZZ
,dist      (21) 

For a particular solution x, we calculate nW different values of dist(x,y) and choose the 

solution y which yields the minimum dist(x,y) value (ties broken arbitrarily). The fitness value of a 

solution x is calculated as follows: 

 
1),(

1




yx
x

dist
Fitness         (22) 

Note that this is a normalized value that falls between 0 and 1, where a value 1 means perfect fit, 

and tends to 0 as the distance increases.  

        For each problem instance, we will have nH different values of dist(x,y). For example, for 

Random 1g (see Figure 8), six different non-dominated solutions were obtained by the Hill-

Climbing Algorithm. The average fitness value associated with a given problem instance is then 

calculated as follows: 

H

H

n

Fitness
FitnessAverage

  x )(x

       
(23) 

Table 8 lists the distances obtained for representative instances Random 1g, 3i, 4k and 5k. 

We observe that the Hill-Climbing Algorithm produces non-dominated solutions with the fitness 

values greater than 0.93. Although the results obtained by the Hill-Climbing Method might not be 

Pareto-optimal solutions, we found that the number of non-dominated solutions generated is more 

than that of the Weighted-Sum Method. For future research, these non-dominated solutions can be 

considered as starting points/initial solutions that would be further improved in order to obtain 

Pareto-optimal solutions. 

Table 8. Comparison between the Hill-Climbing Algorithm and the Weighted-Sum Method 

Problem Instances 
Number of solutions generated 

by Weighted-Sum Method 

Number of solutions generated 

by Hill Climbing Algorithm 
Average Fitness 

Random 1g 4 6 0.974 

Random 2i 4 11 0.962 
Random 4k 4 12 0.954 

Random 5k 5 16 0.937 
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Table 9 summarizes the statistical descriptions of the entire results for all problem sets. The 

grand mean of average fitness values is above 0.9 which is considered high. Some instances in 

Random 2 and 3 have the values of 1. The Grand Mean column refers to the means of the average 

fitness values of the respective problem sets.  

 

Table 9. Summary of average fitness values 

Problem Set 
Number of 
instances 

Grand Mean Std dev Minimum Maximum 

Case Study 1 0.96 0.04 0.93 0.99 

Random 1 7 0.94 0.03 0.90 0.97 
Random 2 9 0.95 0.03 0.92 1.00 

Random 3 9 0.96 0.03 0.92 1.00 

Random 4 11 0.94 0.01 0.92 0.96 
Random 5 13 0.96 0.02 0.93 1.00 

Random 6 15 0.94 0.02 0.92 0.97 

7 Conclusion   

In this paper, we introduce the master physician scheduling problem considering two 

different objectives simultaneously. Three different multi-objective methods have been proposed. 

These approaches were tested on a real case from the Surgery Department of a large local 

government hospital, as well as on randomly generated problem instances. We observe that the 

objectives were better satisfied compared against the manual allocation.  

In terms of future research, there are several potential areas for investigation. An interesting 

research direction would be to apply other methods, such as Multi-Objective Simulated Annealing, 

Multi-Objective Tabu Search, and to develop other neighborhood structures in an attempt to 

improve the solutions. In the same way, we can also consider other constraints, such as fairness 

constraints, which commonly seen in other hospitals (Gendreau et al., 2007). Another systematic 

criterion to measure the performance of an algorithm can be considered as future work. We notice 

that some distance values of the Hill-Climbing Method’s solutions might be large. It is probably 

due to the limitation of the Weighted-Sum Method in generating all possible Pareto-optimal 

solutions. The application of the ε–Constraint Method is rather limited in this paper; for example, 

we can consider applying this method to retrieve the complete Pareto-optimal solutions. The main 

idea is to construct a sequence of ε-Constraint Model based on a progressive modification of *
iU  

values (equation (19)) (Deb, 2003; Bérubé et al., 2009).  
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