
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

3-2023

Multi-modal API recommendation Multi-modal API recommendation

Ivana Clairine IRSAN

Ting ZHANG

Ferdian THUNG

Kisub KIM

David LO
Singapore Management University, davidlo@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
IRSAN, Ivana Clairine; ZHANG, Ting; THUNG, Ferdian; KIM, Kisub; and LO, David. Multi-modal API
recommendation. (2023). Proceedings of the 2023 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), Taipa, Macao, March 21-24. 1-12.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/9269

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9269&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9269&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9269&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9269&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Multi-Modal API Recommendation
Ivana Clairine Irsan, Ting Zhang*, Ferdian Thung, Kisub Kim, and David Lo

School of Computing and Information Systems, Singapore Management University
Email: {ivanairsan, tingzhang.2019, ferdianthung, kisubkim, davidlo}@smu.edu.sg

Abstract—Too many options can be a problem, which is the
case for Application Programming Interfaces (APIs). As there
are many of such APIs, with many more being introduced
periodically, it raises a problem of choosing which API to be
recommended. Furthermore, numerous APIs are commonly used
together with other complementary third-party APIs. It can
be challenging for developers to understand how to use each
API and to remember all the complementary APIs for the API
they want to use. Therefore, an accurate API recommendation
approach can improve developers efficiency in implementing a
certain functionality. Several approaches have been developed
to automatically recommend APIs based on either a natural
language query or source code context. However, none of these
API recommendation approaches have utilized these two sources
of information at the same time (i.e., leveraging natural language
query and source code context together). In this work, we
propose an approach named MULAREC, which leverages the
information from natural language query (annotation) and source
code context. The results confirm that our approach outperforms
state-of-the-art API recommendation approaches which only
leverage a single type of information as the input. Our work
also demonstrates that multi-modal information can boost the
performance of API recommendation approaches by 20%-50%
better in terms of BLEU-score than the baselines.

Index Terms—API Recommendation, Multi-modal, Pre-trained
Models

I. INTRODUCTION

Application Programming Interfaces (APIs) are widely used
by developers as they can improve development efficiency [1]–
[4]. However, appropriate understanding and correct usage
of them is challenging as there exists a number of APIs
in just a single library (e.g., JDK could contain thousands
of them [2]). Consequently, many researchers [2], [3], [5]–
[10] design API recommendation approaches to shorten the
selection time and assist the correct usage of APIs. These
approaches can typically be categorized into two types: (1)
query-based and (2) code-based API recommendation. Query-
based approaches [2], [5], [6] retrieve related APIs and provide
recommendation for users by taking a natural language query
that describes the intended functionality. On the other hand,
code-based approaches [7]–[10] recommend the next API to
use in a code by taking into account the surrounding code as
the context of the recommendation point.

While many of these query-based and code-based API rec-
ommendation approaches have been proposed, they naturally
consider only natural language query and source code infor-
mation, respectively. To the best of our knowledge, none of
the existing approaches consider both natural language query

*Corresponding author.

and source code information for better API recommendation.
As several studies [11]–[13] show that considering multiple
modalities of code can be beneficial for source code analysis,
this may be missed opportunity in API recommendation for
better performance. Such an opportunity may occur when
developers implement a method in an IDE. In such a scenario,
they annotate the functionality of the method in the comment
section (i.e., the natural language query/annotation) and then
write the code implementing the functionality (i.e., the sur-
rounding code context). Both of these sources of information
are of a different modality (i.e., text vs. code) and are typically
used for query-based and code-based API recommendation
approaches, respectively. While previous works on API rec-
ommendation only leverage one modality [2], [5]–[10], we
make use of multiple modalities in an attempt to elevate the
effectiveness of the API sequence generation.

Furthermore, most of the existing query-based and code-
based API recommendation approaches only predict a set of
APIs and do not predict the sequence on which the APIs
must be invoked (with DeepAPI [2] and PAM [3] being the
exceptions). As a consequence, developers need to spend extra
effort to figure out the correct invocation sequence of the given
set of APIs. Therefore, there is a need for more approaches
that can produce API sequences.

In this work, we deal with the aforementioned shortcomings
and propose MULAREC (Multi-modal API Recommendation)
to recommend sequences of APIs based on natural language
annotation and source code context as inputs. These inputs
are made of two different modalities (i.e., text vs. code) and
sources (i.e., method comment and body). MULAREC takes
both the code annotation and part of the source code to
recommend an API sequence. This sequence helps developers
to easily identify which APIs should be invoked to complete
the method implementation, along with the order of invocation.
MULAREC is a deep learning based approach built on top
of CodeBERT [14]. It utilizes CodeBERT to semantically
encode the annotation and the source code. It then fuses the
two generated encodings to produce a single embedding that
embodies the annotation and the source code. The embedding
is then passed to a decoder that learns how to output the correct
API sequence.

Since existing API recommendation approaches are either
query-based or code-based, none of the existing datasets
contains both natural-language annotation and surrounding
source code context as inputs. Hence, we construct a new
benchmark that contains multi-source (i.e., both natural lan-
guage annotation and source code context) as inputs and API

1

sequences as output. Our benchmark is constructed based on
the 50K-C dataset [15] shared by Martins et al., which contains
50,000 compilable Java projects. We start with compilable
Java projects to ensure that we can extract the correct API
sequences (i.e., the API call in the code can be resolved to
the correct API). After extracting the API sequences and data
cleaning process, the benchmark contains 369,514 methods.
Each method has an annotation, a source code context, and an
extracted API sequence.

To evaluate the effectiveness of MULAREC, we select the
other approaches from both query-based and code-based API
recommendations that recommend API sequences as our base-
line approaches and leverage our benchmark. The experimental
results show that MULAREC can outperform the other API
recommendation approaches by reasonable margins, i.e., 50%
for query-based and 20% for code-based, in terms of BLEU-4,
respectively.

Our main contributions can be summarized as follows:
• To the best of our knowledge, we are the first to consider

multi-modal information for API recommendation.
• We built a new API recommendation benchmark that

contains both source code context and annotations.
• We propose a new approach named MULAREC that

takes both the natural language and the code context into
consideration. The proposed MULAREC outperforms the
best-performing query-based, and code-based API recom-
mendation approaches that recommend API sequences.

The remainder of the paper is organized as follows. Sec-
tion II introduces the problem formulation and the benchmark
creation process. We describe our approach in Section III.
Section IV describes our experimental setup, including the
dataset building, baseline approaches comparison, evaluation
metrics, and the research questions investigated in our work.
Experimental results are shown in Section V. We further
discuss and analyze our results in Section VI. Section VII
talks about the most related works. We conclude our work
and show some potential future work in Section VIII.

II. PROBLEM FORMULATION AND BENCHMARK CREATION

In this section, we formulate the problem and describe in
detail how we construct our benchmark.

A. Problem Formulation

We formulate the API recommendation problem as a se-
quence generation task. Given the input of natural language
and part of the source code, we aim to generate API sequence
recommendations to be used in the latter part of the code.
To achieve this, we leverage open-source Java projects from
GitHub to build a dataset that is tailored to our experiment.

Each data point in our dataset is built upon a Java method’s
structure, representing the natural language (NL) and program-
ming language (PL) part of the method. We divided every
method into several components, as shown in Fig 1. There are
three items highlighted in this example:

1) Javadoc comment / Annotation. The first sentence of
the Javadoc comment is used as an annotation.

Fig. 1. Motivating example

2) Code context. The method declaration and the first
3 lines of the method’s source code. API sequence
extracted from this code context is called context API.

3) Target. This is the part where we extract the target API
as our reference. The target API will serve as training
target and example’s reference in our experiment.

For the example showed in Figure1, the annotation for this
example is “Flattens the provided list into a single list.”, while
the code context is

int size = 0;
for (final List<V> list : lists) {

size += list.size(); }

Based on the code context, the context API extracted for
this example is List.size and the target API is made of
4 API calls, namely ArrayList.<init>, List.addAll,
ArrayList.<init>, List.addAll.

B. Benchmark Creation

To evaluate our approach, we need a benchmark that con-
sists of annotation, source code, and API sequence extracted
from the source code. Yet, there is no existing dataset that
contains all of this information. Therefore, we decided to
build our own benchmark. Initially, we aimed to start from an
existing dataset from DeepAPI [2], which contains annotations
and API sequences, and add the corresponding source code
contexts. However, the dataset does not provide the source
projects from which the annotations and API sequences were
extracted. Thus, we built the benchmark from scratch.

As described in II-A, one data point in our benchmark
represents a method implementation. The first sentence of the
Javadoc comment is used as annotation, while the source code
in the method’s body is split into 2 parts. Method declaration
and the first 3 lines of the body are used as the input, i.e.,

2

context code and context API, while the later part of the source
code is used to extract the target API. Given the annotation
and context code, our model aims to recommend the target
API sequence.

To ensure the quality of extracted API sequence (i.e., the
API call refers to the correct API), we built our benchmark
based on the 50K-C dataset provided by Martins et al. [15],
which contains 50,000 compilable Java projects. The dataset
building process is broken down as follows. First, we down-
loaded the project source code from the 50K-C website*.
Second, we passed each Java file in the project through the
Eclipse JDT parser† to extract methods in the project. For
each method identified by the parser, we extract the method
declaration, the method body, and the Javadoc annotation.
Method declaration and body are mandatory components,
while Javadoc annotation is an optional component and not
every method is accompanied by a Javadoc annotation. For
such methods, we discard them from our dataset because we
cannot derive the first sentence of the Javadoc annotation to
use as the natural language query.

Note that we only consider English annotation and thus
discard methods that contain non-English annotation. Finally,
we extracted the API sequence from the method body using
the Eclipse JDT parser. For this API sequence extraction,
we utilized the implementation provided by DeepAPI in their
Github repository‡. In total, we collected 624,487 annotation
and source code context pairs.

Further post-processing was conducted to filter out the
methods that are unsuitable for our task, as stated below:

1) Removal of methods with an insufficient number of lines
of code and API calls. We removed methods having less
than 4 lines of code and methods containing only 1 API
call.

2) Removal of methods with no target APIs. After extract-
ing the first 3 lines of the source code as code context
and splitting the API sequence into context API and
target API, we removed methods with no target APIs.
This typically occurs when the method body is short, so
all of the API calls are concentrated on the first 3 lines
of the code.

3) Outlier removal based on the number of API calls,
i.e., length of API sequence in the method body. After
calculating the mean µ and standard deviation σ for the
number of API calls per method in our benchmark, we
removed the outlier methods based on 3-σ rule [16].
Methods that contain smaller than µ− 3σ or larger than
µ − 3σ API calls are considered outliers and removed
from the benchmark.

Following the processing of our benchmark, we removed
254,973 unqualified methods, and ended up with a total of
369,514 methods in our benchmark. We further split the

*https://mondego.ics.uci.edu/projects/jbf/
†https://www.eclipse.org/jdt/
‡https://github.com/guxd/deepAPI/issues/2

benchmark into training, validation, and testing with a ratio
of 8:1:1.

III. APPROACH

In this section, we first introduce the architecture of our
proposed approach. After that, we discuss the details of each
component.

A. Architecture

Figure 2 shows the overall framework of MULAREC. MU-
LAREC follows the typical Encoder-Decoder architecture [17].
It mainly consists of two modules. The first module is an
Encoder, which encodes the source code context and the
annotation into vectors, while the second module is a Decoder,
which maps input and the encoded vector into output tokens
until the end of the sequence token is reached.

The input of our proposed approach MULAREC is com-
posed of two components: annotation and source code context.
The output is an API sequence, which serves as a recommen-
dation of API calls that should be used following the source
code context. We initialize the Encoder with CodeBERT [14],
and encode annotation and source code context separately.
After getting the two encoded vectors from the Encoder,
Normalization Layer normalizes these two vectors and passes
them to the Fusion Layer. Furthermore, the Fusion Layer
combines these two vectors to obtain a feature vector that
encodes the information from the two vectors. Next, the feature
vector is passed to the Decoder Module, which decodes the
vector into an API sequence.

The details of each module and layer are introduced as
follows.

B. Encoder Module

As mentioned earlier, the Encoder maps the input sequence
to a contextualized encoding sequence. We adopt Code-
BERT [14] as our encoding backbone since it is a bimodal
pre-trained model for both of our targets (i.e., source code
and NL). Moreover, its large-scale (2.1M) bimodal data points
across 6 programming languages are known as beneficial [18].
It is specifically designed with a Transformer [19]. It has 12
layers, 768-dimensional hidden states, and 12 attention heads.
CodeBERT has been employed in different tasks [20]–[22]
to encode the source code and natural language tokens, and
it has shown to be more than capable of solving a range of
different types of programming understanding and generation
tasks [23]. We fine-tune CodeBERT as the Encoder on our
API recommendation task and generate two different vectors
(i.e., annotation and code context) as the input of the next
layer.

C. Normalization Layer

After getting the two vectors that represent the annotation
and the code context, i.e., Eant and Ecode, respectively, we
normalize them to ensure they lie in the same scope. Inspired
by the prior works [24], [25], we adopt the L2 normalization
on the annotation vector and the code context vector. The

3

https://mondego.ics.uci.edu/projects/jbf/
https://www.eclipse.org/jdt/

Fig. 2. The architecture of MULAREC

formula to get the normalized vectors
−−→
Vant and

−−−→
Vcode are as

follows.

−−→
Vant =

Eant

∥Eant∥
=

Eant√∑n
i=1 Eant

2
i

(1)

−−−→
Vcode =

Ecode

∥Ecode∥
=

Ecode√∑n
i=1 Ecode

2
i

(2)

where n is the dimension of the vector E.

D. Fusion Layer

There exists a wide range of use-case scenarios where
unifying the obtained embeddings would be inevitable. We
define the unification of embeddings to include concatena-
tion, combination, and fusion. Although generated embeddings
already represent software elements, these embeddings tend
to contain inadequate information. For example, multi-modal
analysis tasks that encode each unimodal data to get different
embeddings, or a task that requires sub-embeddings, such as
embedding of each method to represent a class, etc [26]–[28].
To decode them, embedding unification is generally necessary
to represent the multi-modality or a high-dimensional embed-
ding. Towards this issue, multiple studies [29], [30] focus on
the automation of this unification process.

To obtain a comprehensive understanding of different
(multi-modal) vectors without losing the necessary informa-
tion, we apply a fusion layer. Yang et al. [31] discovered that
the similarities and differences between multi-modal vectors
affect the representation learning performance. Following the
prior works [25], [31], we fuse both (i.e., the annotation and
code context) vectors following the formula below:

−→
O1 = F1

([−−→
Vant;

−−−→
Vcode

])
(3)

−→
O2 = F2

([−−→
Vant;

−−→
Vant −

−−−→
Vcode

])
(4)

−→
O3 = F3

([−−→
Vant;

−−→
Vant ◦

−−−→
Vcode

])
(5)

−→
O = F

([−→
O1;

−→
O2;

−→
O3

])
(6)

where
−−→
Vant and

−−−→
Vcode represent the annotation and code

context vectors, respectively. ◦ denotes element-wise multi-
plication. Each of F1, F2, F3, and F consists of single-
layer feedforward networks with independent parameters. The
concatenation process generates three embeddings first consid-
ering the similarities and differences between the individual
vectors. Finally, we concatenate these three vectors into a
feature vector such that it can represent both the annotation
and the source code context without losing information.

E. Decoder Module

The Decoder is used to generate API sequences from the
feature vector. Following the setting used by Lu et al. [20],
we use the randomly initialized Transformer [19] with 6
layers, 768-dimensional hidden states, and 12 attention heads.
Each layer contains three sublayers: decoder self-attention,
encoder-decoder attention, and position-wise feed-forward net-
works [32]. These sublayers employ a residual connection
around them followed by a layer normalization to generate
one word at a time, from left to right. They attend to both
the previously generated APIs and the final representations
generated by the Encoder.

IV. EXPERIMENTAL SETUP

In this section, we elaborate on our experiment setup,
including the dataset building, description of the baseline ap-
proaches, and evaluation metrics. Finally, we raise the research
questions that are investigated in this work. Our replication
package is publicly available.§

A. Baseline Approaches

We selected the following three API recommendation ap-
proaches.

PAM [3] (Probabilistic API Miner) is a near parameter-free
probabilistic algorithm that is used to mine the most interesting
API sequence patterns. It leverages a probabilistic model of
sequences based on generating a sequence by interleaving
a group of sub-sequences. PAM is a context-insensitive ap-
proach, which means that PAM does not take into account any

§https://github.com/soarsmu/MulaRec

4

https://github.com/soarsmu/MulaRec

input from the test data to provide a recommendation. Instead,
it directly utilizes the top-N highest probability sequence
mined from the training data as a recommendation for each
of the test data. Compared to other pattern miner algorithms
such as MAPO or UPMiner, PAM evidently provides a better
pattern to supplement developer-written API sequence as it
generates more diverse and less redundant API in the result.

In our task, we leverage context API in the test data to
choose the best sequence patterns from mined patterns from
PAM. First, we filter out any mined patterns that do not
overlap with the context API. The remaining patterns are then
sorted by the probability of them appearing in the training
set. After removing the irrelevant patterns, we then pick the
first pattern that begins with the context API. In the event
that there are no patterns that start with the context API, we
choose the pattern with the highest probability score to be used
as the recommendation. The recommendation is generated by
excluding the context API from the chosen pattern.

DeepAPI [2] is the best performing query-based API se-
quence recommendation approach, as evaluated by Peng at
al. [1]. It is a query-based API recommendation approach
proposed by Gu et al., and it is the first deep learning-
based approach that generates API sequence recommenda-
tion for a given natural language query. They formulate the
API sequence generation as a machine translation problem,
where the aim of the model is to translate natural language
description, i.e., annotation into an API sequence. It adapts the
neural language model called RNN Encoder-decoder in their
approach. DeepAPI shows dominance over the traditional bag
of words approach because of the usage of word embedding
that helps the model to recognize semantically similar words.
To generate the API sequence, DeepAPI employs the beam
search strategy.

In this experiment, we modified the beam search strategy
to incorporate context API into the API sequence generation.
Further details about the beam search and how we incorporated
the context API are explained in Section IV-C1. As DeepAPI
is trained to predict a full sequence of API given an annotation,
it raises an issue of unfairness when the model is expected to
predict only target API in the evaluation. For the sake of the
fair evaluation, instead of predicting the full API sequence
for a given annotation, we provide the context API at the
beginning of the beam search to compensate for the absence
of the code context information. We reckon this will enable a
fair evaluation when we compare the generated API sequence
with target API.

CodeBERT [14]. Recently, Martin and Guo have shown
that CodeBERT is more capable of recommending API se-
quence than DeepAPI [33]. Their study first reproduced the
results of DeepAPI. Other than the original Java dataset, they
also curated a Python dataset. They evaluated DeepAPI and
CodeBERT on these two datasets. The experimental results
show that CodeBERT outperforms DeepAPI to a large extent.
Note that both datasets belong to the query-based API rec-
ommendation: generating the API sequence given a natural
language description. In our work, we treat annotation and

Fig. 3. Illustration of beam search, beam width=2

context code as the query separately and run CodeBERT
as our baseline. Thus, we have two variants of CodeBERT.
The first is CodeBERT-annotation, a baseline for query-based
approach, which accepts the annotation as input. The second
is CodeBERT-code, a baseline for code-based approach, which
accepts the code context as input.

B. Hyperparameter Setting

We used the default hyperparameters as mentioned in the
replication package for DeepAPI¶ and PAM||. As for Code-
BERT and our proposed method MULAREC, we set the
maximum token length of both the source sequence and the
target sequence to 256. All the models were trained for 30
epochs.

C. Evaluation

1) Beam Search: To conduct a fair evaluation of models
that only use annotation as input, i.e., CodeBERT-annotation
and DeepAPI, we incorporate the context API information via
beam search [34].

Beam search is a heuristic search strategy that produces
API sequences with the least cost value (i.e., the highest
probability) given by the language model. At each time step,
it takes top-n API branch with the least cost value to continue
the search, with n is the size of the beam width. It then
prunes the other branches that are not chosen and continue the
search from the selected branches. We illustrate our modified
beam search with an example in Figure3. In this example, the
input annotation is “Flattens the provided list into a single
list.”. There is a context API introduced in the search process,
which is List.size. For the context API, we disregard
the cost value and directly choose the context API as the
start of the sequence. The time step starts after all of the
context API(s) have been selected in the search pipeline. The
search continues from the last context API to calculate the
cost of all tokens appearing after the context API. In the
example, at the first time step, ArrayList.<init> and
ArrayList.add are chosen because these APIs have the

¶https://github.com/guxd/deepAPI
||https://github.com/mast-group/api-mining

5

https://github.com/guxd/deepAPI
https://github.com/mast-group/api-mining

least cost value of 2 and 5, respectively. The search process
ignores other branches and only expand the search for these
two branches in the next time step. The branch expansion
continues until the end-of-sequence symbol is reached or the
maximum length of sequence has been generated. In total,
beam search will generates n sequences that we can consider
to use. Even though we aim to provide only one result for each
test data, we use n>1 for the search process in order to expand
more branches. This will prevent the branch to get stuck in
the local minima situation. Finally, we the API sequence with
the least cost value is selected as the recommended sequence.

2) Metrics: As we are aiming to generate API sequence,
BLEU score [35] is adopted to evaluate the performance of our
approach. This metric measures the ability to generate accurate
sequence by comparing the recommended sequence with the
target sequence mined from the method source code (i.e.,
ground truth). Though it is commonly used in the machine
translation problem, we regard BLEU score as a suitable
metric to gauge how close the generated sequence compared
to the human-written API sequence. This metric has also been
used in past work that generate API sequence [2], [33]. BLEU
score is expressed mathematically as below:

BLEU = BP ∗ exp

(
N∑

n=1

wnlog (Pn)

)
(7)

BP =

{
1 c ⩾ r

exp
(
1− r

c

)
c < r

(8)

In the above equation, BP is the brevity penalty, which aims
to penalize the generated sequence that is shorter than the
reference. r and c refer to the number of words in ground
truth and candidate respectively. wn refers to weights given at
n-gram point, and Pn is the number of precision of n-gram.

BLEU score ranges from 0-1. BLEU score of 1 means
that the generated API sequence matches perfectly with the
ground truth. We measure the performance of the approach
on each pair of annotation and code with cumulative n-gram
BLEU score with n=1,2,3,4. The cumulative scores refer to the
calculation of individual n-gram scores at all orders from 1 to
n and weighting them by calculating the weighted geometric
mean. For 2-gram BLEU score, i.e., BLEU-2, we set the
weight to [1/2, 1/2], while for the BLUE-3 the weight should
be set to [1/3, 1/3, 1/3]. Finally, we set the weight to be [1/4,
1/4, 1/4, 1/4] while calculating the BLEU-4 score.

D. Research Questions

In this work, we aim to answer three Research Questions
(RQs) as follows:

• RQ1: How effective and efficient is our proposed ap-
proach MULAREC compared to other API sequence
recommendation approaches?
We compare the effectiveness of MULAREC with
baseline approaches (i.e., DeepAPI, PAM, CodeBERT-
annotation, and CodeBERT-code) in terms of BLEU
score. For MULAREC, DeepAPI, CodeBERT-annotation,

and CodeBERT-code, we use training set to train their
models and the validation set to estimate the effectiveness
of the learned models. For PAM, we use the training
set to mine the sequence patterns. We then evaluate
the effectiveness of the approaches in the testing data.
Moreover, we also compare their efficiency by measuring
their evaluation time.

• RQ2: What is the contribution of each modality to the
effectiveness of MULAREC?
In this research question, we investigate the contribution
of each modality to the effectiveness of MULAREC. We
aim to show that each modality is important. To do so,
we report the effectiveness of MULAREC when any of
the two modalities do not exist. We omit the modality
from the MULAREC inputs. We run MULAREC with
the input having only a single source of information, i.e.,
annotation only and code only. For the input with only
annotation, we set the code part as empty; similarly, for
the input with only code, we set the annotation part as
empty.

• RQ3: What is the effect of different concatenation strate-
gies to the effectiveness of MULAREC?
Since we have two types of sequences (i.e., the natural
language and the source code context), we need to com-
bine these two types of inputs. The first strategy we exper-
iment with is following the CONCODE dataset [36]. The
CONCODE dataset is used for text-to-code generation
task, specifically, generating class member functions from
natural language queries and a class environment. In our
API recommendation setting, we have a natural language
annotation and a source code context. Considering the
similarity between the text-to-code generation task and
our task, we combine the annotation and the code context
together as the input, where the two are separated by
a special token. We refer to this concatenation strategy
as concatenating sequences. Other than concatenating
the two sequences before feeding them into the model,
another strategy that we experiment with is feeding the
sequences into the model separately and then combining
the generated vectors. We refer to this concatenation
strategy as concatenating vectors. This strategy is the
one employed by the Fusion Layer of MULAREC. We
investigate how these concatenation strategies perform
and analyze why one concatenation strategy may be better
than the other.

V. RESULTS

In this section, we show the experimental results and answer
the RQs.

A. Effectiveness and Efficiency of MULAREC

In this research question, we aim to understand how MU-
LAREC compares with other API sequence recommendation
approaches. Table I shows that MULAREC consistently out-
performs the baseline approaches, with CodeBERT-code as the

6

TABLE I
BLEU SCORES OF DIFFERENT API SEQUENCE RECOMMENDATION

APPROACHES

Approach BLEU-1 BLEU-2 BLEU-3 BLEU-4
PAM 0.17 0.06 0.02 0.01
DeepAPI 0.30 0.23 0.19 0.12
CodeBERT-annotation 0.52 0.47 0.42 0.24
CodeBERT-code 0.59 0.56 0.53 0.30

MULAREC 0.66 0.62 0.58 0.36

TABLE II
BLEU SCORES OF MULAREC UNDER WITH DIFFERENT SOURCES OF

INFORMATION

Source BLEU-1 BLEU-2 BLEU-3 BLEU-4
annotation 0.21 0.10 0.06 0.02
code 0.57 0.52 0.47 0.27
annotation + code 0.66 0.62 0.58 0.36

best-performing baseline. In terms of BLEU-4, MULAREC
outperforms CodeBERT-code by 20%.

Moreover, MULAREC can perform the recommendation
reasonably fast in an average time of 380ms. DeepAPI,
CodeBERT-annotation, and CodeBERT-code also take the sim-
ilar amount of time to generate a recommendation with subpar
performance compared to MULAREC. PAM is the fastest and
on average, it generates a recommendation within 150ms.
However, this does not come without a cost in accuracy. As
shown by the experiment result in Table I, PAM is more than
30x less effective compared to MULAREC, with only 25%
improvement in terms of recommendation time. The reason
that PAM could give a recommendation quickly is that it is
context-insensitive and it stops searching once it has found a
pattern that begins with the context API.

Answer to RQ1: MULAREC achieves the highest
BLEU-4 score of 0.36, which outperforms the second
best performer, i.e., CodeBERT-code by 20%. PAM
performs the worst with the BLEU-4 of 0.01.

B. Contribution of Each Modality

Table II shows the effectiveness of MULAREC when con-
sidering different types of information. When both modalities
are considered, the effectiveness of MULAREC is the best.
We find that the source code context plays a more profound
role than the annotation. When the annotation is absent, the
value of BLEU-4 drops by 25%, while in the absence of
code context, the value of BLEU-4 drops by 94% instead.
However, when combined, the performance of bimodal input
outperforms the performance of annotation and code if used
individually. This implies that each modality has its own char-
acteristics and the benefit of leveraging both modalities would
be multiplied as compared of leveraging only one of them.
These results also present the capability of MULAREC to learn

TABLE III
COMPARISON OF DIFFERENT STRATEGIES IN MULAREC

Strategy BLEU-1 BLEU-2 BLEU-3 BLEU-4
Concatenating sequences 0.55 0.51 0.47 0.27
Concatenating vectors 0.66 0.62 0.58 0.36

the information carried by the bimodal input and leverage the
joined information to provide better recommendations.

Answer to RQ2: When both modalities are utilized,
MULAREC performs the best. When only a single
modality is leveraged, the code context contributes
more than the annotation.

C. Effect of Different Concatenation Strategies

Table III shows the performance of MULAREC when con-
sidering different concatenation strategies. We find that when
simply concatenating the two types of input (i.e., concatenating
sequences), the performance is worse than the performance
of concatenating vectors. There are two potential causes. The
first potential cause is the model cannot fully distinguish the
annotation and the source code context. Following prior work
on text-to-code generation task [36], to create the input, we
also directly combine the annotation and the code context
together as the input. The other potential cause is the length
limitation. When concatenating sequence, the maximum se-
quence length of CodeBERT is shared among the two types
of input. On the other hand, when concatenating vectors, the
maximum sequence length can be fully utilized for each type
of input. Thus, more information can be encoded when using
concatenating vectors strategy.

Answer to RQ3: Concatenating the annotation and
code vectors can achieve better performance than di-
rectly concatenating the annotation and code sequences
as the input.

VI. DISCUSSION

A. Failure Analysis

Although our proposed method MULAREC outperforms
three API sequence recommendation approaches, it still has
limitations. To understand why MULAREC fails, we conduct
a qualitative analysis of the failure cases as follows.

Correct domain but wrong target API. Consider the
following example:

annotation: “updates the frame with the attributes
from the given PLP image”

code context:

PLPFrame.updateFrameState() {
Insets insets=getInsets();
int w=im.getWidth();
w=w + insets.left + insets.right; }

7

The API sequence generated by MULAREC
for the above annotation and code context is
BufferedImage.getHeight. This generated
API differs from the target API, which should be
ImageIcon.setImage. However, we can see that
the model could infer the intent of this query, which is to use
API that is related to image domain.

Recommending more APIs than necessary. While most of
the result of combining the annotation and context code, i.e.,
bimodal input, improves the overall sequence generation up to
33.3% compared to unimodal input, there is a case where the
result is further than the target API, as shown in the example
below:

annotation: “This method First build the Query and
pass to SQLUTIL for execution”

code context:

SQLMaker.executeDelete(String
tableName, String whereClause) {

StringBuffer fullQuery=new
StringBuffer();
fullQuery.append(
DatabaseOperationConstant.DELETE_FROM
+);
fullQuery.append(tableName + WHERE +
whereClause+ ;);

MULAREC that is based on either annotation or source
code context only predicted the correct API, which is
StringBuffer.toString, as the recommended API se-
quence. However, MULAREC outputs String.isEmpty,
StringBuffer.append, StringBuffer.toString.
Even though MULAREC has StringBuffer.toString
in the recommended API sequence, its BLEU score is smaller.
This suggests that further research in leveraging multimodal
input may be needed to explore the best way to combine
different modality for better understanding. The understanding
should also consider how many APIs should be recommended.

Semantic gap in translation. Although MULAREC shows
a significant improvement over the baselines, there exist some
cases where the MULAREC’s prediction is far from the target
API both lexically and semantically. Consider the following
example:

annotation: “Updates all of the positions of the
carousel does not do a repaint just does the math ready
for the next one”

code context:

CaroselLayout.recalculateCarosel() {
numberOfItems=recalculateVisibleItems();
try { boolean animate=false;

For the above example, the result given by MULAREC
is Label.setText, while the correct API sequence
is Component.isVisible, Timer.start. In

comparison, this test data yield even worse result
when passed to the DeepAPI. It gave a longer but
repetitive sequence, such as map<object>.values,
map<object>.values, map<object>.entryset,
entry<object>.getvalue,
entry<object>.getkey,
entry<object>.getvalue as the API sequence
recommendation. This example shows that there is still a
gap in translating the annotation and context code to API
sequence. Even though DeepAPI and MULAREC used
language model that enables them to leverage semantic
information of the input data, it is clear that more attention
is needed to be given to the representation model, possibly
by incorporating more semantic knowledge. Some possible
directions is to experiment with other models to represent the
input data. This is motivated from the fact that DeepAPI is
able to generate a better API sequence due to the usage of
word embeddings, and our approach MULAREC that leverage
pre-trained model CodeBERT yields even better result than
deepAPI, even on its variant that only use annotation as
input. Each step incorporates more semantic knowledge
that contributes to the effectiveness improvement. Another
possibility to incorporate more semantic knowledge is to
obtain knowledge from other sources such as Stack Overflow.

B. Lessons Learned

Multi-modal information can improve effectiveness.
Based on the results of our experiments, multi-modal input
improves the effectiveness of MULAREC as compared to using
only uni-modal input. Even though using the natural language
annotation yields lower performance compared to using source
code context alone, they produce the best results when used
together. This indicates that, in the case of API sequence
recommendation, multi-modality brings more advantages than
using only one modal of input. It may suggest that, while
both the annotation and the source code context express what
the code is doing, they may express different parts of it, and
listening to both would improve the performance. It may also
be possible that some parts are easier to understand from the
annotation and some other parts are easier to understand from
the source code context.

Another lesson that can be taken from our results is that,
when CodeBERT is used for a single input, i.e., annotation
or code context only, it yields better results than MULAREC
using only a single input. This may happen because MULA-
REC is designed to handle bimodal input. Nevertheless, this
emphasizes the fact that we could improve the performance by
enriching the code with natural language information. Future
work can potentially further enrich the information from other
resources, such as API documentation and Stack Overflow.

Strategy to leverage multi-modal information matters.
Directly concatenating sequences of natural language annota-
tion and source code context only bring little improvement
compared to the concatenating vectors of their encoding. This
shows that the natural language annotation and the source code
content are best treated using a separate encoding layer. While

8

both strategies are plausible, they lead to a significant perfor-
mance difference. It highlights the importance of selecting the
correct strategy when leveraging multi-modal information.

Our findings suggest that future work should explore differ-
ent ways to leverage multi-modal information. In this work, we
explore different concatenation strategies, focusing on whether
concatenating the raw sequences or encoded vectors would
bring more performance gain. However, another possible di-
rection is to combine the API sequence recommendations
output with a model built on a unimodal input. The sequences
generated from the two models (i.e., one for each modality)
can be strategically merged to achieve better performance.

C. Threats to Validity

Threats to internal validity relate to several aspects in our
experiment, such as baseline implementation and evaluation
strategy. We implemented DeepAPI and PAM with our dataset
by utilizing the replication package made available by the
authors of both papers. Thus, the risk of incorrect baseline
implementation should be mitigated. Moreover, since DeepAPI
outputs the full API sequence based on the given annotation,
there is a risk of unfairness if we directly compare the
generated API sequence with the target API. To mitigate this,
we modified its beam search to introduce the information from
context API when generating the API sequence. The same
modification is also applied to CodeBERT-annotation. Hence,
we believe the threats to internal validity should be minimal.

Threats to external validity relate to the generalizability
of our results. In this study, we only experiment with the
API sequence generation task on Java programming language,
raising a concern of whether the result of this study could be
generalized towards other programming languages. However,
we believe the impact of the programming language should
not be significant because Java is one of the most used
programming languages and the same setting has been used
in the past API recommendation work [2], [3], [33]. Yet,
the results of our experiment motivate us to evaluate our
API recommendation system on other popular programming
languages such as Python.

VII. RELATED WORK

In this section, we review three lines of research: (1) API
recommendation, (2) API-related empirical studies, and (3)
software artifact generation.

A. API Recommendation

There are mainly two types of API recommendation ap-
proaches, namely code-based and query-based. These two
types are categorized based on the input of the API recom-
mendation model.
Query-Based Approaches: Aside from DeepAPI, many other
query-based approaches have been proposed. Most of them
work on an API call recommendation instead of an API
sequence recommendation. We selected DeepAPI and Code-
BERT as our query-based API recommendation baselines
based on the recent study conducted by Martin and Guo [33].

Other than proposing different models for query-based API
recommendation, query reformulation, which changes the
query instead, also draws research interest [1]. Peng et al. [1]
show that, query reformulation methods such as query expan-
sion and query modification are helpful in API recommenda-
tion. Query expansion aims to introduce relevant tokens that
are not included in the original query, while query modification
aims to mitigate both the lexical and knowledge gap between
the natural language query and the target sequence. Further-
more, domain-specific knowledge representation techniques
usually play a role in representing the query better. One
such example is Post2Vec [37]. Xu et al. show that better
representation of information from external resources such as
Stack Overflow could improve the performance of the API
recommendation technique such as BIKER [5]. In the future,
we also plan to incorporate the query-reformulation techniques
or domain-specific representation techniques in MULAREC
to better represent queries, which may further boost the API
sequence recommendation performance.
Code-Based Approaches: In the realm of code-based API
recommendation, there are two types of approaches to handle
the problem [1]: i.e., pattern-based and learning-based. We
compare MULAREC with pattern-based approaches because
the learning-based approaches typically treat the API rec-
ommendation as a next-token prediction problem. Learning-
based approaches such as GraLan [38] leverage the statistical
language model to obtain the next token prediction. GraLan
is a graph-based statistical language model that can generate
an API call recommendation given a code context. API calls
in the training data are modeled into a graph where the
nodes represent actions (i.e., classes, method calls) while the
edges represent control and data flow dependency between the
nodes. It leverages Bayesian statistical inference to calculate
the probability that an API would be used given a subgraph
as input. Differing from our works, GraLan also utilizes the
information obtained from the AST, such as while loops and
branches in their graph. In the API generation process, the
recommendation algorithm extracts the code context to be used
as input. Then, GraLan is used to compute the probabilities
of the children graphs given the context graph. Each child has
a probability value, which is used to compute the scores for
ranking the API suggestion. In this study, we choose PAM
as one of the baseline for code-based recommendation along
with CodeBERT because it generates API sequence instead of
API call. Moreover, a sequence is preferred for encoding API
usage compared to a graph due to its simplicity, and it is easy
to understand [39].
Other Approaches: Aside from the above families, other
approaches have been proposed. We briefly discuss the two
recent works; one works on the cross-library API recommen-
dation, while the other utilizes Stack Overflow posts.

APIRecX [40] is the first approach that focuses on handling
the Out-Of-Vocabulary (OOV) issue on the task of cross-
library API recommendation. APIRecX is able to recommend
API calls for new libraries. To relieve the OOV problem at
the API level, it first splits each API call into a sequence

9

of subwords. Then, a GPT-based sub-word language model
was pre-trained on a large number of API usage data. In the
fine-tuning stage, APIRecX first predicts subwords and then
incorporates beam search to compose an API call.

CLEAR [41] is an API recommendation approach that
leverages Stack Overflow posts. CLEAR leverages BERT
sentence embedding to preserve the semantic information
in queries and Stack Overflow posts. Furthermore, CLEAR
utilizes contrastive learning to distinguish further the queries
which are semantically dissimilar while lexically similar.

MULAREC has a different type of input from these two
approaches. In the future, we also plan to consider leveraging
Stack Overflow to boost the performance of MULAREC
further.

B. Empirical Study on APIs

Several empirical studies have been performed to understand
API usages [42], [43] and API usability [39].

Zhong and Mei [42] conducted an empirical study on API
usage, providing nine important findings. The most relevant
findings with our approach are related to (1) the best format to
define API usage and (2) how developers use APIs from differ-
ent libraries. To accurately define the API usage, extracting the
API graphs from the source code is recommended. However,
the sequence is more popular for encoding API usage because
of its simplicity which supports our motivation.

To benefit from a deeper understanding of developer be-
haviors/activities, Xu et al. [43] investigated the reuse and re-
implementation of libraries/APIs. They conducted two types
of surveys (i.e., individual survey to corresponding developers
of the validated instances and another open survey). They
received 36/139 and 13/71 responses for library reuse and re-
implementation, respectively, from the contacted developers,
as well as 56 responses from the open survey. The results
demonstrated that library reuse mainly occurs due to the lack
of initial knowledge of their existence, and re-implementation
occurs due to the complexity of the library dependencies,
deprecation, or lack the partial implementations.

Another empirical study [39] has been conducted inves-
tigating API usability. They collected and interpreted the
responses from the developers regarding the cognitive dimen-
sions. Specifically, they studied usability tokens, an original
classification of the developers’ reactions such as “surprise”
or “incorrect choice” as they try to understand and use API
functionalities to perform specific tasks. The overall results
revealed that accurate and complete documentation is a crucial
issue for API usability; most usability defects discovered in
our study trace back to unsatisfactory documentation.

C. Software Artifact Generation

Our work can be considered as one type of generating
software artifacts, specifically, API sequence. Recently, pre-
trained Transformer models have been applied to generating
many different types of software artifacts, except for an API
sequence in our work. Generating other artifacts has also been
investigated, such as pull request titles [44], code snippets

based on the natural language description, and repair of the
buggy code [23].

Zhang et al. [44] proposed the task of automatic pull request
title generation. Their experimental results show that BART,
a type of pre-trained Transformer model, can achieve the best
performance in both automatic and manual evaluation. In a
recent extensive study conducted by Zeng et al. [23], they
evaluated the effectiveness of different types of pre-trained
Transformer models in several program understanding and
generation tasks. Among the generation tasks investigated in
their work, code generation [36] the closest to our setting.
Instead of generating an API sequence, the code generation
task would generate code based on the given natural language
description. In other words, code generation would generate
all types of code tokens. Since our work only focuses on
generating API sequence, generating other types of code
tokens is outside of the scope of our work. In this sense, it
would not be fair to compare our approach with theirs as they
would have to generate more tokens.

VIII. CONCLUSION AND FUTURE WORK

There exist too many APIs that we can leverage. This causes
issues in the selection of appropriate APIs for specific tasks,
and the eco-system of APIs becomes more complex. Despite
several recommendation approaches being proposed for APIs,
they still lack the performance for practical usage. Inspired
by recent studies that leveraged multi-modality to boost the
recommendation performance, we proposed an approach by
leveraging multi-modal information, i.e., source code as code
context and natural languages as annotation, to generate API
sequences. We performed a comparative study against several
state-of-the-art API recommendation approaches with a new
benchmark that contains multiple modalities. The results show
that our approach outperformed the baseline API recommen-
dation techniques by 20% - 50% in terms of the BLEU score.
It indicated that multi-modal information affects in positive
ways, and an appropriate strategy is needed to optimize the
performance of the technique with multi-modality.

In the future, we plan to utilize more types of data, such
as Stack Overflow posts, to further improve the performance
of MULAREC. We also plan to work on different methods
of combining different modalities, such as beam search cost
value modification, to provide better API sequence genera-
tion. Moreover, we plan to also investigate effectiveness of
similar multi-modal approaches for other automated software
engineering tasks, e.g., bug report management [45], [46].

Replication Package. We released our replication package
at: https://github.com/soarsmu/MulaRec.

ACKNOWLEDGEMENT

This research/project is supported by the Ministry of Ed-
ucation, Singapore, under its Academic Research Fund Tier
2 (Award No.: MOE2019-T2-1-193). Any opinions, findings,
and conclusions or recommendations expressed in this material
are those of the author(s) and do not reflect the view of
Ministry of Education, Singapore.

10

https://github.com/soarsmu/MulaRec

REFERENCES

[1] Y. Peng, S. Li, W. Gu, Y. Li, W. Wang, C. Gao, and M. Lyu, “Revisiting,
benchmarking and exploring api recommendation: How far are we?”
IEEE Transactions on Software Engineering, 2022.

[2] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,” in
Proceedings of the 2016 24th ACM SIGSOFT international symposium
on foundations of software engineering, 2016, pp. 631–642.

[3] J. Fowkes and C. Sutton, “Parameter-free probabilistic api mining across
github,” in Proceedings of the 2016 24th ACM SIGSOFT international
symposium on foundations of software engineering, 2016, pp. 254–265.

[4] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang, “Mining
succinct and high-coverage api usage patterns from source code,” in
2013 10th Working Conference on Mining Software Repositories (MSR).
IEEE, 2013, pp. 319–328.

[5] Q. Huang, X. Xia, Z. Xing, D. Lo, and X. Wang, “Api method
recommendation without worrying about the task-api knowledge gap,” in
2018 33rd IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2018, pp. 293–304.

[6] M. M. Rahman, C. K. Roy, and D. Lo, “Rack: Automatic api recom-
mendation using crowdsourced knowledge,” in 2016 IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER), vol. 1. IEEE, 2016, pp. 349–359.

[7] R. Xie, X. Kong, L. Wang, Y. Zhou, and B. Li, “Hirec: Api recom-
mendation using hierarchical context,” in 2019 IEEE 30th International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 2019,
pp. 369–379.

[8] J. Fowkes and C. Sutton, “Parameter-free probabilistic api mining across
github,” in Proceedings of the 2016 24th ACM SIGSOFT international
symposium on foundations of software engineering, 2016, pp. 254–265.

[9] X. He, L. Xu, X. Zhang, R. Hao, Y. Feng, and B. Xu, “Pyart: Python api
recommendation in real-time,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 2021, pp. 1634–
1645.

[10] P. T. Nguyen, J. Di Rocco, D. Di Ruscio, L. Ochoa, T. Degueule,
and M. Di Penta, “Focus: A recommender system for mining api
function calls and usage patterns,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 2019, pp. 1050–
1060.

[11] X. Wang, Y. Wang, F. Mi, P. Zhou, Y. Wan, X. Liu, L. Li, H. Wu,
J. Liu, and X. Jiang, “Syncobert: Syntax-guided multi-modal contrastive
pre-training for code representation,” arXiv preprint arXiv:2108.04556,
2021.

[12] Z. Yang, J. Keung, X. Yu, X. Gu, Z. Wei, X. Ma, and M. Zhang,
“A multi-modal transformer-based code summarization approach for
smart contracts,” in 2021 IEEE/ACM 29th International Conference on
Program Comprehension (ICPC). IEEE, 2021, pp. 1–12.

[13] S. Chakraborty and B. Ray, “On multi-modal learning of editing source
code,” in 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2021, pp. 443–455.

[14] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” arXiv preprint arXiv:2002.08155, 2020.

[15] P. Martins, R. Achar, and C. V. Lopes, “50k-c: A dataset of compilable,
and compiled, java projects,” in 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR). IEEE, 2018, pp.
1–5.

[16] M. Van Selst and P. Jolicoeur, “A solution to the effect of sample size on
outlier elimination,” The Quarterly Journal of Experimental Psychology
Section A, vol. 47, no. 3, pp. 631–650, 1994.

[17] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn
encoder-decoder for statistical machine translation,” in EMNLP, 2014.

[18] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“Codesearchnet challenge: Evaluating the state of semantic code search,”
arXiv preprint arXiv:1909.09436, 2019.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[20] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco,
C. Clement, D. Drain, D. Jiang, D. Tang et al., “Codexglue: A machine
learning benchmark dataset for code understanding and generation,”
in Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1), 2021.

[21] F. Zhang, X. Yu, J. Keung, F. Li, Z. Xie, Z. Yang, C. Ma, and Z. Zhang,
“Improving stack overflow question title generation with copying en-
hanced codebert model and bi-modal information,” Information and
Software Technology, vol. 148, p. 106922, 2022.

[22] E. Mashhadi and H. Hemmati, “Applying codebert for automated pro-
gram repair of java simple bugs,” in 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR). IEEE, 2021, pp.
505–509.

[23] Z. Zeng, H. Tan, H. Zhang, J. Li, Y. Zhang, and L. Zhang, “An
extensive study on pre-trained models for program understanding and
generation,” in Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2022. New
York, NY, USA: Association for Computing Machinery, 2022, p.
39–51. [Online]. Available: https://doi.org/10.1145/3533767.3534390

[24] A. Henry, P. R. Dachapally, S. S. Pawar, and Y. Chen, “Query-key
normalization for transformers,” in Findings of the Association for
Computational Linguistics: EMNLP 2020, 2020, pp. 4246–4253.

[25] C. Yu, G. Yang, X. Chen, K. Liu, and Y. Zhou, “Bashexplainer:
Retrieval-augmented bash code comment generation based on fine-
tuned codebert,” 2022 IEEE 38th International Conference on Software
Maintenance and Evolution (ICSME), 2022.

[26] R. Sun, X. Cao, Y. Zhao, J. Wan, K. Zhou, F. Zhang, Z. Wang, and
K. Zheng, “Multi-modal knowledge graphs for recommender systems,”
in Proceedings of the 29th ACM international conference on information
& knowledge management, 2020, pp. 1405–1414.

[27] D. Francis, P. Anh Nguyen, B. Huet, and C.-W. Ngo, “Fusion of
multimodal embeddings for ad-hoc video search,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision Workshops,
2019, pp. 0–0.

[28] N. Shvetsova, B. Chen, A. Rouditchenko, S. Thomas, B. Kingsbury,
R. S. Feris, D. Harwath, J. Glass, and H. Kuehne, “Everything at once-
multi-modal fusion transformer for video retrieval,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 20 020–20 029.

[29] X. Wang, Y. Jiang, N. Bach, T. Wang, Z. Huang, F. Huang, and K. Tu,
“Automated concatenation of embeddings for structured prediction,”
arXiv preprint arXiv:2010.05006, 2020.

[30] X. Wang, Z. Jia, Y. Jiang, and K. Tu, “Enhanced universal dependency
parsing with automated concatenation of embeddings,” arXiv preprint
arXiv:2107.02416, 2021.

[31] R. Yang, J. Zhang, X. Gao, F. Ji, and H. Chen, “Simple and effective
text matching with richer alignment features,” in Association for Com-
putational Linguistics (ACL), 2019.

[32] “11.7. the transformer architecture — dive into deep learn-
ing 1.0.0-alpha1.post0 documentation,” https://d2l.ai/chapter attention-
mechanisms-and-transformers/transformer.html#model, (Accessed on
10/23/2022).

[33] J. Martin and J. C. Guo, “Deep api learning revisited,” in 2022
IEEE/ACM 30th International Conference on Program Comprehension
(ICPC). Los Alamitos, CA, USA: IEEE Computer Society, may 2022,
pp. 321–330. [Online]. Available: https://doi.ieeecomputersociety.org/
10.1145/3524610.3527872

[34] P. Koehn, “Pharaoh: a beam search decoder for phrase-based statistical
machine translation models,” in Conference of the Association for
Machine Translation in the Americas. Springer, 2004, pp. 115–124.

[35] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, 2002,
pp. 311–318.

[36] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Mapping
language to code in programmatic context,” in Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing,
Brussels, Belgium, October 31 - November 4, 2018, E. Riloff,
D. Chiang, J. Hockenmaier, and J. Tsujii, Eds. Association for
Computational Linguistics, 2018, pp. 1643–1652. [Online]. Available:
https://doi.org/10.18653/v1/d18-1192

[37] B. Xu, T. Hoang, A. Sharma, C. Yang, X. Xia, and D. Lo, “Post2vec:
Learning distributed representations of stack overflow posts,” IEEE
Transactions on Software Engineering, 2021.

[38] A. T. Nguyen and T. N. Nguyen, “Graph-based statistical language
model for code,” in 2015 IEEE/ACM 37th IEEE International Confer-
ence on Software Engineering, vol. 1. IEEE, 2015, pp. 858–868.

[39] M. Piccioni, C. A. Furia, and B. Meyer, “An empirical study of api
usability,” in 2013 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. IEEE, 2013, pp. 5–14.

11

https://doi.org/10.1145/3533767.3534390
https://d2l.ai/chapter_attention-mechanisms-and-transformers/transformer.html#model
https://d2l.ai/chapter_attention-mechanisms-and-transformers/transformer.html#model
https://doi.ieeecomputersociety.org/10.1145/3524610.3527872
https://doi.ieeecomputersociety.org/10.1145/3524610.3527872
https://doi.org/10.18653/v1/d18-1192

[40] Y. Kang, Z. Wang, H. Zhang, J. Chen, and H. You, “Apirecx: Cross-
library api recommendation via pre-trained language model,” in Proceed-
ings of the 2021 Conference on Empirical Methods in Natural Language
Processing, 2021, pp. 3425–3436.

[41] M. Wei, N. S. Harzevili, Y. Huang, J. Wang, and S. Wang, “Clear:
contrastive learning for api recommendation,” in Proceedings of the 44th
International Conference on Software Engineering, 2022, pp. 376–387.

[42] H. Zhong and H. Mei, “An empirical study on api usages,” IEEE
Transactions on Software Engineering, vol. 45, no. 4, p. 319–334, Apr
2019.

[43] B. Xu, L. An, F. Thung, F. Khomh, and D. Lo, “Why reinventing the
wheels? an empirical study on library reuse and re-implementation,”
Empirical Software Engineering, vol. 25, no. 1, pp. 755–789, 2020.

[44] T. Zhang, I. C. Irsan, F. Thung, D. Han, D. Lo, and L. Jiang, “Auto-

matic pull request title generation,” in 2022 IEEE 38th International
Conference on Software Maintenance and Evolution (ICSME), 2022, p.
Research Track.

[45] C. Sun, D. Lo, S. Khoo, and J. Jiang, “Towards more accurate retrieval
of duplicate bug reports,” in 26th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2011), Lawrence, KS, USA,
November 6-10, 2011, P. Alexander, C. S. Pasareanu, and J. G. Hosking,
Eds. IEEE Computer Society, 2011, pp. 253–262.

[46] S. Wang and D. Lo, “Version history, similar report, and structure:
putting them together for improved bug localization,” in 22nd Interna-
tional Conference on Program Comprehension, ICPC 2014, Hyderabad,
India, June 2-3, 2014, C. K. Roy, A. Begel, and L. Moonen, Eds. ACM,
2014, pp. 53–63.

12

	Multi-modal API recommendation
	Citation

	Introduction
	Problem Formulation and Benchmark Creation
	Problem Formulation
	Benchmark Creation

	Approach
	Architecture
	Encoder Module
	Normalization Layer
	Fusion Layer
	Decoder Module

	Experimental Setup
	Baseline Approaches
	Hyperparameter Setting
	Evaluation
	Beam Search
	Metrics

	Research Questions

	Results
	Effectiveness and Efficiency of MulARec
	Contribution of Each Modality
	Effect of Different Concatenation Strategies

	Discussion
	Failure Analysis
	Lessons Learned
	Threats to Validity

	Related Work
	API Recommendation
	Empirical Study on APIs
	Software Artifact Generation

	Conclusion and Future Work
	References

