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Electricity cannot yet be stored on a large scale, but technological advances leading to cheaper and more

efficient industrial batteries make grid-level storage of electricity surpluses a natural choice. Because elec-

tricity prices can be negative, it is unclear how the presence of negative prices might affect the storage

policy structure known to be optimal when prices are only non-negative, or even how important it is to

consider negative prices when managing an industrial battery. For fast storage (a storage facility that can

both be fully emptied and filled up in one decision period), we show analytically that negative prices can

substantially alter the optimal storage policy structure, e.g., all else being equal, it can be optimal to empty

an almost empty storage facility and fill up an almost full one. For more typical slow grid-level electricity

storage, we numerically establish that ignoring negative prices could result in a considerable loss of value

when negative prices occur more than 5% of the time. Negative prices raise another possibility: rather than

storing surpluses, a merchant might buy negatively priced electricity surpluses and dispose of them, e.g.,

using load banks. We find that the value of such disposal strategy is substantial, e.g., about 118 $/kW-year

when negative prices occur 10% of the time, but smaller than that of the storage strategy, e.g., about 391

$/kW-year using a typical battery. However, devices for disposal are much cheaper than those for storage.

Our results thus have ramifications for merchants as well as policy makers.

Key words : inventory; electricity storage; electricity disposal; Markov decision process; asset pricing

models; negative prices

1. Introduction

In a commodity market, surpluses occur when supply outstrips demand. Because electricity supply

and demand must be matched in real time, dealing with electricity surpluses is particularly critical.

As storing surpluses for future resale is the most common strategy for commodities (Williams and

Wright 1991), it is also a natural one for electricity merchants who trade electricity in a market.

So, even though electricity storage has not yet been deployed on a large scale (only around 2.3% of
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electricity consumed in the U.S. currently is satisfied from storage; Gyuk et al. 2013, p. 4 and EIA

2012), several studies have recognized the potential of this strategy (EPRI 2004, Eyer and Corey

2010, The Economist 2012, Akhil et al. 2013).

In contrast to the prices of other commodities, electricity prices can be negative. Negative prices

have been observed in electricity markets both in the U.S. (Huntowski et al. 2012), including the

New York Independent System Operator (NYISO), PJM, the California ISO, and the Electric

Reliability Council of Texas (ERCOT), and in other countries, such as the Nordic Power Exchange

(Sewalt and de Jong 2003), the European Energy Exchange (Genoese et al. 2010, Nicolosi 2010,

Brandstätt et al. 2011), and the Australian Energy Market Operator (AEMO 2009). In particular,

between 2008 and 2011 negative prices occurred in ERCOT around 10% of the time (Huntowski

et al. 2012).

Negative prices can be caused by a mix of factors: (i) technological limits on adjusting the

generation levels of coal or nuclear power plants, or the high costs of these adjustments, can lead

the managers of such plants to pay others to purchase their excess power when electricity demand

is low, e.g., at night (Sewalt and de Jong 2003, Knittel and Roberts 2005, Genoese et al. 2010,

Nicolosi 2010, Brandstätt et al. 2011, Brown 2012). (ii) Lack of transmission capacity can cause

excess local electricity supply, e.g., in ERCOT, where wind energy in the western zone cannot be

transmitted outside of this region (Brown 2012). (iii) The Production Tax Credit received by wind-

based electricity generators in the U.S., currently valued at 23 $/MWh (megawatt-hour) (DSIRE

2014), can induce wind generators to bid a negative price and still generate a positive revenue from

a sale (Fink et al. 2009, Brown 2012, Huntowski et al. 2012). (iv) Short-term supply gluts can arise

from policies that prioritize wind-based electricity generation, such as the one in Germany, which

disallow curtailing it except for reliability reasons (Genoese et al. 2010, Nicolosi 2010, Brandstätt

et al. 2011). It is widely believed that with the increasing use of wind power, negative prices will

likely become more frequent and larger in magnitude in the future (Genoese et al. 2010, Nicolosi

2010, Brandstätt et al. 2011).

It is unclear whether the presence of negative prices may alter the optimal threshold structure of

the finite-horizon merchant storage policy known to be optimal for the case when prices can only

be non-negative, or even how important it is to consider negative prices in such a storage policy.

We study these questions by modeling the problem of managing electricity storage with potentially

negative prices as a Markov decision process (MDP).

For the case of fast storage (the case when both filling up an empty storage facility and emp-

tying such a full facility take one decision period), we show analytically that negative prices can
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make the optimal storage policy structure significantly different from those available in the litera-

ture (Charnes et al. 1966, Rempala 1994, Secomandi 2010) when prices are always non-negative.

Analogous to these known threshold structures, we show that for every stage and state, the initial

inventory set can be divided into three regions based on the type of optimal action: one region

in which it is optimal to empty the facility, one in which it is optimal to fill up the facility, and

one in which it is optimal to do nothing. But in contrast to these typical structures, our three

regions can be ordered in different sequences, and thus (i) the optimal next-stage inventory level

can fail to increase in the current-stage inventory level; i.e., a high current-stage inventory level

can result in a low next-stage inventory level (and vice versa); and (ii) the optimal action can bring

the current-stage inventory level farther away from a “target” band delineated by two thresholds

if this inventory level is outside of this band. Our optimal policy structure subsumes the optimal

policy structure of Charnes et al. (1966) for managing fast storage, i.e., when prices can only be

non-negative, our policy simplifies to theirs.

For the case of slow storage—such as industrial batteries, which are more typical for grid-level

electricity storage applications (EPRI 2004, Eyer and Corey 2010, Akhil et al. 2013, Gyuk et al.

2013)—we numerically quantify the importance of considering negative prices using an existing

electricity price model calibrated to NYISO historical price data by Zhou et al. (2014). We find

that ignoring negative prices when determining a storage policy could result in a considerable loss

of value when negative prices occur more than 5% of the time, as they already do in some markets,

e.g., ERCOT in 2008-2011 (Huntowski et al. 2012).

The presence of negative prices enables a merchant strategy different from storing electricity

surpluses in an efficient battery: a merchant might buy negatively priced electricity surpluses and

dispose of them, e.g., using specialized load banks, which are designed to mimic real load applied

to power sources and can be used to consume electricity for general purposes (Emerson 2014). As

Huntowski et al. (2012) point out, “negative prices could incent developers to build high electricity

consuming elements to use negative-price hours in wind-rich regions, for the sole purpose of being

paid to waste electricity.” It is unclear how valuable this “wasteful” strategy is, or how its value

might compare with that of the storage strategy. Using the same calibrated price model as in our

analysis of the storage strategy, we demonstrate that when negative prices occur 10% of the time

the value of the disposal strategy is substantial—around 118 $/kW-year—but less than that of

the storage strategy, e.g., around 391 $/kW-year using a battery with a typical 80% round-trip

efficiency (the ratio of electricity withdrawn to that injected; Eyer and Corey 2010). However,

because devices for disposing electricity (e.g., load banks) are much cheaper than efficient batteries
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(Emerson 2014, Coffman Electrical Equipment Co 2014, Akhil et al. 2013), a merchant might find

the disposal strategy more profitable than the storage strategy. Our findings also highlight for

policy makers the relative values of the storage and disposal strategies, suggesting the need for

additional research on assessing the potential impact of these strategies on social welfare.

We review the extant literature in §2. We model the storage strategy and derive the fast-storage

optimal policy structure in §3. We model the disposal strategy in §4. Our numerical analysis is

carried out in §5. We conclude in §6. Appendix A includes the proofs of the results presented in

§3.2.

2. Literature review

Our work is related to the commodity and energy storage literature. A classical problem studied in

this literature is the warehouse problem introduced by Cahn (1948): given a warehouse with limited

space, what is the optimal inventory trading policy under seasonal (deterministic) variability in

the commodity price? Dreyfus (1957) shows that if the commodity price is positive the optimal

inventory trading decisions for a given time and price are of the same type for every inventory

level: either fill up the warehouse, empty it, or do nothing. Charnes et al. (1966) extend this result

to stochastic, but still positive, prices. The warehouse in our paper is an electricity storage facility.

Rempala (1994) imposes a limit on the rate at which the inventory can be increased, and shows

the optimality of a threshold-type policy. Secomandi (2010) extends the model of Charnes et al.

(1966) to include both upward and downward inventory adjustment limits and establishes that

a double-threshold policy is optimal. Threshold-type policies continue to be optimal in Kaminski

et al. (2008) for a continuous time version of the problem, and Devalkar et al. (2011) for the case

of a commodity processor that faces procurement and processing capacity constraints and can

convert a single input commodity into multiple output commodities. Other related work can be

found in the commodity and energy real options literature (see, e.g., Smith and McCardle 1999,

Geman 2005, and Secomandi and Seppi 2014), including Chen and Forsyth (2007), Boogert and

de Jong (2008), Thompson et al. (2009), Lai et al. (2010a,b), and Wu et al. (2012). All of these

papers assume that the commodity price is positive. As discussed in §1, the optimal storage policy

structure that we establish for the fast storage case differs considerably from those of Charnes et al.

(1966), Rempala (1994), and Secomandi (2010).

Several electricity storage papers assume perfect information on future electricity prices, includ-

ing Graves et al. (1999), Figueiredo et al. (2006), Walawalkar et al. (2007), Sioshansi et al. (2009),

and Hittinger et al. (2012). This assumption yields a linear program, the optimal solution of which
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gives the optimal storage decisions for a given price path. In contrast, we model price as a stochas-

tic process, and derive the optimal fast storage policy. Two papers on electricity storage that also

model price uncertainty are Mokrian and Stephen (2006) and Xi et al. (2014): Mokrian and Stephen

(2006) assess the value of different electricity storage facilities in an electricity market; Xi et al.

(2014) co-optimize multiple usages of storage, including energy usage and backup service. However,

neither of these papers considers the case when prices can be negative, nor do they derive any

optimal policy structure.

Zhou et al. (2014) consider the possibility of negative electricity prices when jointly optimizing

wind-based electricity generation and storage. In contrast, we focus on examining the trading of

electricity surpluses using the storage and disposal strategies in the presence of negative prices.

3. Model for the storage strategy and its analysis

We model the storage strategy in §3.1. We analyze the optimal policy structure for the case of fast

storage in §3.2.

3.1. Model

We consider a merchant using a storage strategy to manage electricity surpluses in an electricity

wholesale market. Consistent with the literature, e.g., Walawalkar et al. (2007), Sioshansi et al.

(2009), and Hittinger et al. (2012), we do not consider bidding in a forward market. The merchant

trades electricity during a finite horizon in each period t∈ T : = {1, · · · , T}; in the terminal period

T +1, any electricity left in the storage facility is worthless.

Let p⃗t := (ξt, Jt) be a two-dimensional price-component vector, where p⃗t ∈ P ⊆ ℜ2, ξt is a

mean-reverting component, and Jt is a spike component. The two price components evolve over

time according to exogenous and mutually independent stochastic processes. The electricity price

($/MWh) in period t given p⃗t, is the known function Pt(p⃗t) : T × P → ℜ. We defer to §5.1 the

specific discussion of this price function and the price-component processes; their specifications do

not affect our structural analysis in §3.2 as long as they satisfy the assumption that the merchant

is a price taker whose trading decisions do not affect market prices, which holds throughout our

paper.

We assume the merchant carries out the storage strategy with an industrial battery or a flywheel

(a device used to store rotational energy), two common types of electricity storage (EPRI 2004,

Akhil et al. 2013, Gyuk et al. 2013). However, our model can be easily modified to represent other

storage facilities, such as compressed-air energy storage and pumped-hydro storage (EPRI 2004,

The Economist 2012, Akhil et al. 2013). The merchant’s storage facility is finite in energy capacity
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(“the maximum amount of energy that the system can deliver to the load without being recharged,”

Eyer and Corey, 2010); without loss of generality, we normalize the energy capacity to 1 (energy

unit). We let X be the set of feasible energy (inventory) levels in each period and define this set

as the interval [0,1].

A fraction 1− η of energy inventoried in the storage facility dissipates during one period (1− η

is the self-discharging rate of the storage facility when on stand by; equivalently, η, in (0,1], is the

storing efficiency). We assume that this inventory loss occurs at the end of each period; this is

a reasonable assumption as the storing efficiency is close to 1 for many types of storage facilities

(EPRI 2004), including all those listed above.

We denote as C (energy units/period) the maximum amount of energy that can be purchased

from or sold to the market in one period, due to battery-architecture or flow constraints. This

quantity is also referred to as the charging/discharging power capacity if one ignores the energy

lost when charging or discharging the storage facility. We let α and β (both in (0,1]) represent

the fraction of energy lost when charging and discharging the storage facility, respectively, that is,

the charging and discharging efficiencies. The quantities α ·C and C/β are thus the net charging

power capacity and the gross discharging power capacity, respectively, and are analogous to the

inventory adjustment capacity in the commodity storage literature. The round-trip efficiency (the

ratio of the quantity of electricity withdrawn to that injected) is denoted as r and is the product

α ·β.

For a given period length, different types of storage facilities can be modeled by varying the

value of the power capacity C. The case α ·C < 1 represents slow storage and the case α ·C ≥ 1

corresponds to fast storage. With a period length of five minutes—the period length of the real-

time market in NYISO (NYISO 2011) used in our numerical study in §5—examples of slow storage

include industrial batteries, which usually take a few hours to fully charge/discharge (EPRI 2004,

Akhil et al. 2013); examples of fast storage include flywheels that can be charged/discharged fully

within minutes or even seconds (EPRI 2004, Akhil et al. 2013).

The action (decision) for each period t is denoted by at and represents the inventory change

between periods t and t+1 before accounting for the inventory loss: at < 0 is the inventory decrease

due to selling, so the quantity sold to the market is −at ·β; at ≥ 0 is the inventory increase due to

buying, so the quantity bought from the market is at/α. The immediate payoff function R(at, p⃗t) :

ℜ×P →ℜ from performing action at when the price-component vector is p⃗t is defined as follows:

R(at, p⃗t) :=

{
−Pt(p⃗t) · at ·β, if at < 0,

−Pt(p⃗t) · at/α, if at ≥ 0.
(1)
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This definition relies on the assumption of a price taking merchant whose trading activity has no

effect on the market price.

We denote by xt the inventory (electricity, in energy units) in the merchant’s storage facility

at the beginning of period t. For simplicity and without loss of generality, we consider values of

xt in set X , even though, due to the inventory loss, the inventory level at the start of periods 2

through T cannot exceed η before the action at is performed (but xt + at can equal 1). We define

the feasible action set for inventory level xt ∈X as

Ψ(xt) := {at ∈ℜ : at ≥−xt, at ≤ 1−xt, at ≥−C/β,at ≤ α ·C} ,

where the first two constraints that define this set stipulate that the inventory change cannot exceed

the available energy in the storage facility and the remaining space of this facility, respectively,

and the third and fourth constraints in this definition enforce the flow capacity limits.

In each period t∈ T , the sequence of events is as follows:

(i) At the beginning of period t, the merchant observes the inventory level xt and the price-

component vector p⃗t, decides the amount of electricity at/α or −β · at to buy from or sell to the

market, and incurs the trading cash flow R(at, p⃗t).

(ii) Electricity flows from the market to the storage facility in the case of buying or vice versa

in the case of selling and the charging or discharging loss (1−α)at/α or −(1− β)at, respectively,

occurs: the inventory level xt changes to xt + at.

(iii) At the end of period t, the inventory loss takes place, so that the inventory level at the start

of period t+1 equals η(xt + at).

We formulate the merchant’s storage model as a finite-horizon MDP. Each stage of this MDP

corresponds to a time period in set T . The state variables in each stage t are xt and p⃗t. Denote by

Π the set of feasible policies and by Aπ
t (xt, p⃗t) the decision rule of feasible policy π in stage t and

state (xt, p⃗t). The objective is to find a feasible policy that maximizes the stage 1 market value of

the merchant’s cash flows incurred during the finite horizon:

max
π∈Π

∑
t∈T

δt−1E [R(Aπ
t (x

π
t , p⃗t), Pt(p⃗t))|x1, p⃗1] , (2)

where δ ∈ (0,1] is the risk-free discount factor; E is expectation with respect to p⃗t and xπ
t , the latter

of which is the inventory level achieved in stage t by policy π (we use a risk-neutral probability

measure for p⃗t, Seppi 2002, which then induces a joint distribution for xπ
t and p⃗t); and x1 and p⃗1

are the given initial (stage 1) inventory level and price-component vector.
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Let Vt(xt, p⃗t) denote the value function in stage t ∈ T and state (xt, p⃗t) ∈ X ×P. This function

satisfies the Bellman equation

Vt(xt, p⃗t) = max
at∈Ψ(xt)

R(at, Pt(p⃗t))+ δEt [Vt+1 (η(xt + at), p⃗t+1)] , (3)

where Et[·] is shorthand notation for E[·|p⃗t] and we define VT+1(xT+1, p⃗T+1) := 0 for all (xT+1, p⃗t+1)∈

X ×P. Solving the optimization on the right hand side of (3) yields an optimal action in stage t and

state (xt, p⃗t). However, doing so is in general difficult, because for our continuous-state model the

continuation function δEt [Vt+1 (·, p⃗t+1)] is difficult to characterize and compute exactly. Specifically,

when storage is slow, in general this function is neither (quasi-) concave nor (quasi-) convex, and

even characterizing the structure of an optimal policy, let alone computing such policy, is difficult.

Thus, in our numerical investigation in §5, where we focus on slow storage, we numerically solve a

discrete-state version of model (3) by standard backward dynamic programming.

3.2. Structural analysis for the case of fast storage

In contrast to the difficulty of characterizing the structure of an optimal slow-storage policy, in

§3.2.1 we are able to establish the optimal policy structure of model (2) for the fast storage case,

which we illustrate in §3.2.2 using examples. Despite its limitation to the fast storage case, our

analysis brings to light the impact of negative prices on the structure of the optimal storage policy

of Charnes et al. (1966), who also consider fast storage but only for prices that are non-negative.

It also allows us to further contrast the resulting structure against the optimal slow-storage policy

structures of Rempala (1994) and Secomandi (2010), who, like Charnes et al. (1966), also assume

non-negative prices.

3.2.1. Optimal policy structure We first split the optimization in (3) into two optimiza-

tions: one allows only selling and the other allows only buying. We then find the optimal solution

to each of these two optimizations. For the selling optimization, the optimal decision is to sell

to empty the storage facility for all the inventory levels below a threshold that depends on the

stage and price components, and to do nothing for all the inventory levels above it. For the buying

optimization, the optimal decision is to buy to fill up the storage facility for all the inventory levels

above a threshold that depends on the stage and price components, and to do nothing for all the

inventory levels below it. Finally, we combine the optimal solutions of these two optimizations to

derive the optimal solution for (3).

We define by yt the inventory level at the end of period t, after both performing the feasible

action at given the inventory level at the start of period t, xt, and incurring the inventory loss:
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yt := η(xt+at); yt thus belongs to the set [0, η] since at takes values in set Ψ(xt), which reduces to

[−xt,1−xt] when storage is fast. Substituting at ≡ yt/η−xt into the objective function of (3) and

maximizing over yt ∈ [0, η] rather than over at ∈Ψ(xt), we obtain

Vt(xt, p⃗t) = max
yt∈[0,η]

R(yt/η−xt, p⃗t)+ δEt [Vt+1 (yt, p⃗t+1)] . (4)

The function Vt(xt, p⃗t) can be equivalently expressed as

Vt(xt, p⃗t) =max
{
V S
t (xt, p⃗t), V

B
t (xt, p⃗t)

}
, (5)

where V S
t (xt, p⃗t) and V B

t (xt, p⃗t) are the value functions attainable by optimally selling and buying,

respectively, in stage t and state (xt, p⃗t):

V S
t (xt, p⃗t) := max

yt∈[0,ηxt]
−yt ·Pt(p⃗t) ·β/η+ δEt [Vt+1 (yt, p⃗t+1)]+xt ·Pt(p⃗t) ·β, (6)

V B
t (xt, p⃗t) := max

yt∈[ηxt,η]
−yt ·Pt(p⃗t)/(αη)+ δEt [Vt+1 (yt, p⃗t+1)]+xt ·Pt(p⃗t)/α. (7)

We can solve the maximization in (3) by solving the two maximizations in (6) and (7) and picking

the best of their solutions. After removing their respective constant terms (given xt and p⃗t), the

optimizations in (6) and (7) reduce to

max
yt∈[0,ηxt]

−yt ·Pt(p⃗t) ·β/η+ δEt [Vt+1 (yt, p⃗t+1)] , (8)

max
yt∈[ηxt,η]

−yt ·Pt(p⃗t)/(αη)+ δEt [Vt+1 (yt, p⃗t+1)] . (9)

To avoid trivial cases, we make a standard assumption about the expected future electricity

price, which holds throughout this paper.

Assumption 1. For every t∈ T \ {T}, E[|Pτ (p⃗τ )| | p⃗t]<∞ for all τ ∈ T and τ > t and p⃗t ∈P.

Lemma 1 states the convexity of the value functions of model (3) when storage is fast.

Lemma 1. For every t ∈ T , for the fast storage case it holds that |Vt(xt, p⃗t)|<∞ and Vt(xt, p⃗t)

is convex in xt ∈X given any p⃗t ∈P.

We denote the optimal solutions to (8) and (9) by yS
t (xt, p⃗t) and yB

t (xt, p⃗t), respectively (taking

them to be the smallest and largest optimal solutions to these optimizations when these models

admit multiple optimal solutions, respectively). Lemma 1 enables us to characterize the quantities

yS
t (xt, p⃗t) and yB

t (xt, p⃗t) in Lemma 2, which states that the optimal action for the selling optimiza-

tion (8) is either to sell to empty the storage facility or to do nothing, and the one for the buying

optimization (9) is either to buy to fill up the storage facility or to do nothing.
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Lemma 2. Given t ∈ T , xt ∈ X , and p⃗t ∈ P, the value of yS
t (xt, p⃗t) can be either 0 or ηxt and

the value taken by yB
t (xt, p⃗t) can be either ηxt or η.

Lemma 2 suggests that the quantities yS
t (xt, p⃗t) and yB

t (xt, p⃗t) have a threshold structure in the

inventory xt given the stage t and price-component vector p⃗t. Lemma 3 states the existence of

such structures with inventory threshold functions XS
t (p⃗t) and XB

t (p⃗t) of the stage t and the price-

component vector p⃗t, and characterizes the value taken by these functions using the possible values

of yS
t (1, p⃗t) and yB

t (0, p⃗t), both of which, by Lemma 2, are 0 or η. To facilitate our analysis, we

define the objective functions of optimizations (8) and (9) as wS
t (yt, p⃗t) and wB

t (yt, p⃗t), respectively:

wS
t (yt, p⃗t) := −yt ·Pt(p⃗t) ·β/η+ δEt [Vt+1 (yt, p⃗t+1)] ,

wB
t (yt, p⃗t) := −yt ·Pt(p⃗t)/(αη)+ δEt [Vt+1 (yt, p⃗t+1)] .

Lemma 3. For the fast storage case there exist inventory threshold functions XS
t (p⃗t) and XB

t (p⃗t) :

T ×P →X such that for every t∈ T , xt ∈X , and p⃗t ∈P it holds that

yS
t (xt, p⃗t) =

{
0, ∀xt ∈ [0,XS

t (p⃗t)],

ηxt, ∀xt ∈ (XS
t (p⃗t),1],

yB
t (xt, p⃗t) =

{
ηxt, ∀xt ∈ [0,XB

t (p⃗t)),

η, ∀xt ∈ [XB
t (p⃗t),1].

The values taken by the functions XS
t (p⃗t) and XB

t (p⃗t) for t and p⃗t depend on the two corresponding

possible values of yS
t (1, p⃗t) and yB

t (0, p⃗t), as follows:

XS
t (p⃗t) =

{
1, if yS

t (1, p⃗t) = 0,

maxy/η ∈X such that wS
t (yt, p⃗t) =wS

t (0, p⃗t), if yS
t (1, p⃗t) = η,

(10)

XB
t (p⃗t) =

{
0, if yB

t (0, p⃗t) = η,

miny/η ∈X such that wB
t (yt, p⃗t) =wB

t (η, p⃗t), if yB
t (0, p⃗t) = 0.

(11)

Given a stage t and a price-component vector p⃗t, Lemma 3 states that when restricting the type

of feasible actions to selling or doing nothing the value taken by the threshold function XS
t (p⃗t)

splits the feasible inventory level X into two regions: a sell-to-empty region on its left, and a do-

nothing region on its right; likewise, when restricting the type of feasible actions to buying or doing

nothing, the value taken by the threshold function XB
t (p⃗t) splits the feasible inventory level X

into two regions: a do-nothing region on its left, and a buy-to-fill-up region on its right. The value

taken by the function XS
t (p⃗t) can be smaller than, equal to, or larger than the value taken by the

function XB
t (p⃗t), as illustrated in §3.2.2.

The inventory threshold functions XS
t (p⃗t) and XB

t (p⃗t) are useful in characterizing the optimal

policy structure stated in Proposition 1, under the realistic assumption that the round-trip effi-

ciency r is strictly less than 1, i.e., α ̸= 1 or β ̸= 1. (We consider the case r= 1 in our discussion of
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this proposition below its statement, and further when discussing Example 1 in §3.2.2.) When the

value of XS
t (p⃗t) is equal to or larger than the value of XB

t (p⃗t), this structure can also depend on

one of the two additional inventory threshold functions Z
(1)
t (p⃗t) and Z

(2)
t (p⃗t), which we specify in

this proposition. We denote as a∗
t (xt, p⃗t) the optimal action in stage t and state (xt, p⃗t) for model

(3).

Proposition 1. Suppose that the round-trip efficiency r is strictly less than 1 and storage is

fast. For every stage t ∈ T and price component vector p⃗t ∈ P the feasible inventory set X can be

partitioned into no more than three regions where it is respectively optimal to sell to empty the

storage facility, buy to fill up the storage facility, and do nothing, as specified in Cases 1-3 below.

Case 1: 0≤XS
t (p⃗t)<XB

t (p⃗t)≤ 1. It holds that

a∗
t (xt, p⃗t) =


−xt, ∀xt ∈ [0,XS

t (p⃗t)],

0, ∀xt ∈ (XS
t (p⃗t),X

B
t (p⃗t)),

1−xt, ∀xt ∈ [XB
t (p⃗t),1].

Case 2: XS
t (p⃗t) = 1 and XB

t (p⃗t) = 0.

2(i) If V S
t (xt, p⃗t)≥ V B

t (xt, p⃗t) for all xt ∈X then

a∗
t (xt, p⃗t) =−xt, ∀xt ∈X ;

2(ii) if V S
t (xt, p⃗t)≤ V B

t (xt, p⃗t) for all xt ∈ X and V S
t (xt, p⃗t)< V B

t (xt, p⃗t) for at least one xt ∈X

then

a∗
t (xt, p⃗t) = 1−xt, ∀xt ∈X ;

2(iii) otherwise there exists an inventory threshold function Z
(1)
t (p⃗t) defined on T ×P that returns

a value in the interior of the feasible inventory set X where V S
t (·, p⃗t) and V B

t (·, p⃗t) cross and

a∗
t (xt, p⃗t) =

{
1−xt, ∀xt ∈ [0,Z

(1)
t (p⃗t)],

−xt, ∀xt ∈ (Z
(1)
t (p⃗t),1].

Case 3: 0<XB
t (p⃗t)≤XS

t (p⃗t)≤ 1 or 0≤XB
t (p⃗t)≤XS

t (p⃗t)< 1.

3(i) If XS
t (p⃗t) = 1 and V S

t (xt, p⃗t)≥ V B
t (xt, p⃗t) for all xt ∈X then

a∗
t (xt, p⃗t) =−xt, ∀xt ∈X ;

3(ii) if XB
t (p⃗t) = 0 and V S

t (xt, p⃗t)≤ V B
t (xt, p⃗t) for all xt ∈X then

a∗
t (xt, p⃗t) = 1−xt, ∀xt ∈X ;
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Figure 1 Fast storage optimal policy structure for Cases 1, 2(iii), and 3(iii) in Proposition 1

3(iii) otherwise there exists an inventory threshold function Z
(2)
t (p⃗t) defined on T ×P that returns

a value in one of the sets 3(iiia): [XB
t (p⃗t),1 =XS

t (p⃗t)), or 3(iiib): (0 =XB
t (p⃗t),X

S
t (p⃗t)], or 3(iiic):

[XB
t (p⃗t) ̸= 0,XS

t (p⃗t) ̸= 1] where V S
t (·, p⃗t) and V B

t (·, p⃗t) cross or meet and

a∗
t (xt, p⃗t) =

{
−xt, ∀xt ∈ [0,Z

(2)
t (p⃗t)],

1−xt, ∀xt ∈ (Z
(2)
t (p⃗t),1].

If Pt(p⃗t)< 0 then Cases 1 and 3(iii) are impossible. If Pt(p⃗t) = 0 then Cases 1, 2(ii), 2(iii), and

3(iii) are impossible. If Pt(p⃗t)> 0 then Case 2 is impossible.

Panel (a) of Figure 1 illustrates the optimal policy structure for Case 1 in Proposition 1: the

feasible inventory set X is partitioned into three ordered regions where it is respectively optimal

to sell to empty the storage facility, do nothing, and buy to fill up the storage facility. However,

some of these regions can be empty—for instance, it is possible that XS
t (p⃗t) equals 0 and XB

t (p⃗t)

equals 1, in which case the optimal decision is to do nothing for all feasible inventory levels, i.e.,

the entire feasible inventory set X is a do-nothing region and the other two regions are empty.

Panels (b) and (c) of Figure 1, respectively, illustrate the optimal policy structure for Cases 2(iii)

and 3(iii) in Proposition 1: the feasible inventory set X is partitioned into two ordered regions

where it is respectively optimal to buy to fill up the storage facility and sell to empty the storage

facility, with the former region preceding the latter region in Case 2(iii) and vice versa in Case 3(iii),

and these regions are separated by the value taken by the inventory threshold function Z
(1)
t (p⃗t) in

Case 2(iii) and the inventory threshold function Z
(2)
t (p⃗t) in Case 3(iii).

The fast storage optimal policy structure stated in Proposition 1 generalizes the optimal structure

established by Charnes et al. (1966) when storage is fast, the commodity price cannot be negative,

and the buying and selling prices are linear functions (through the origin) of the electricity price

in each stage. In this case the type of optimal action in a given stage and state is of the same type
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Figure 2 Optimal policy structure of Charnes et al. (1966), when prices cannot be negative

for all the feasible inventory levels, i.e., either do nothing, buy to fill up the storage facility, or sell

to empty it, as illustrated in panels (a), (b), and (c), respectively, of Figure 2.

In the optimal policy structure of Charnes et al. (1966), for fast storage, and in the optimal

policy structures of Rempala (1994) and Secomandi (2010), for slow storage, the inventory level

that results from performing an optimal action is a non-decreasing function of the feasible inventory

level, which is not true in Case 2(iii) of the optimal policy structure stated in Proposition 1 (see

panel (b) of Figure 1). Moreover, the optimal policy structure given in Proposition 1 may bring

the feasible inventory level farther away from the interval [XS
t (p⃗t),X

B
t (p⃗t)] in Case 1 (see panel

(a) of Figure 1). Specifically, this situation occurs if the feasible inventory level falls outside of this

interval. The optimal policy structures of Rempala (1994) and Secomandi (2010) bring the feasible

inventory level as close as possible to an interval delineated by the values of two base-stock target

functions of the stage and price (components).

Mathematically, these differences are due to the linearity in inventory of the value functions in

the model of Charnes et al. (1966) and the concavity of these functions in the models of Rempala

(1994) and Secomandi (2010), which contrast the convexity in inventory of the value functions of

model (3) when storage is fast. Negative prices and a round-trip efficiency strictly less than 1 are

necessary for the strict convexity in inventory of these value functions: if prices cannot be negative

then the conditions that lead to the optimal policy structure of Charnes et al. (1966) are satisfied,

and these value functions are linear in inventory; if the round-trip efficiency is equal to 1 then a

simple induction argument shows that these value functions are linear in inventory with slope equal

to the electricity price given a stage and price-component vector in this stage, and the optimal

policy structure of these authors emerges in this case as well (see the discussion following Example

1 in §3.2.2).



14

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

x1

$

 

 

V S
1 (x1)

V B
1 (x1)

V1(x1)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1
+

a
∗ 1
(x

1
)

x1
Z

(1)
1 = 0.5

Figure 3 The stage 1 value function and inventory level after performing the optimal action for Example 1

3.2.2. Examples Examples 1-3 illustrate how negative prices together with a round-trip effi-

ciency strictly smaller than 1 give rise to the policy structures displayed in Figure 1. Specifically,

Example 1 corresponds to panel (b) of Figure 1 (Case 2(iii) in Proposition 1), Example 2 to panel

(a) of Figure 1 (Case 1 in Proposition 1), and Example 3 to panel (c) of Figure 1 (Case 3(iii) in

Proposition 1).

Example 1 (Case 2(iii)). The time horizon consists of three periods (T = 3). The prices in

periods 1, 2, and 3, respectively, are deterministic and equal to −4, −3, and 0 (their units of

measurement are suppressed to ease the exposition both here and in the remainder of this section).

For simplicity, we assume no time discounting (δ= 1) and no loss in charging or storing (α= η= 1).

However, half of the electricity is lost in discharging (β = 0.5). The value function for period 3

is equal to 0, because the price in this period is 0. The negative price in period 2 and the zero

value function in period 3 imply that the optimal decision rule in period 2 is to buy to fill up the

storage facility at all inventory levels. Omitting the price-component vector argument throughout

this example (because the price evolves deterministically), the value function for period 2 is thus

equal to the buying value function in this period: V2(x2) = 3(1−x2). The value function for period

1 is
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V1(x1) = max
{
V S
1 (x1), V

B
1 (x1)

}
= max

{
max

y1∈[0,x1]
2y1 +3(1− y1)− 2x1, max

y1∈[x1,1]
4y1 +3(1− y1)− 4x1

}
= max{3− 2x1,4− 4x1}

= (4− 4x1) · 1{x1 ∈ [0,0.5]}+(3− 2x1) · 1{x1 ∈ [0.5,1]},

where 1{·} is the indicator function, which equals 1 if its argument is true, and 0 otherwise. The

value function V1(·) is the maximum of the linear functions V S
1 (·) and V B

1 (·), and is thus convex,

as displayed in the left panel of Figure 3. Because yS
1 (1) = 0 and yB

1 (0) = 1, it follows from (10)

and (11) in Lemma 3 that XS
1 = 1 and XB

1 = 0, which corresponds to Case 2(iii) in Proposition 1

with Z
(1)
1 = 0.5, since the functions V S

1 (·) and V B
1 (·) cross once at 0.5. Hence, the optimal period 1

decision rule is to buy to fill up the storage facility when the storage facility is less than half full,

and sell to empty the storage facility otherwise. The right panel of Figure 3 illustrates the period

1 inventory level after performing the action corresponding to this decision rule, which exemplifies

the structure in panel (b) of Figure 1. �

The intuition for Example 1 is as follows: since the price trajectory is −4, −3, and 0 in periods

1, 2, and 3, buying to fill up the storage facility in period 1 is always better than buying to fill it

up in period 2, and in period 2 selling to empty it is never optimal. The only issue is whether it

may be optimal to sell to empty the storage facility in period 1 and, once empty, to buy to fill it

up in period 2, rather than buying to fill it up in period 1 and, once full, doing nothing in period 2.

The payoff of the first policy is 3− 2x1; the payoff of the second policy is 4− 4x1. The first policy

is better than the second policy if and only if 3− 2x1 > 4− 4x1, i.e., x1 > 0.5, which means that in

period 1 it is optimal to sell to empty the storage facility when the inventory level exceeds 0.5, and

it is optimal to buy to fill it up when the inventory level is less than or equal to 0.5. This example

illustrates how an efficiency loss (in this example 50% for discharging) combined with negative

prices can induce a nontrivial relationship between the inventory level and an optimal decision

rule; i.e., selling to empty the storage facility at high inventory levels (above 0.5) and buying to

fill it up at low inventory levels (at or below 0.5) in period 1.

Expressing the threshold functions in period 1 as depending on the period 1 price P1 rather than

the price-component vector in this period, which we do not model here, we can change this price

in Example 1 to obtain different values for the inventory threshold function Z
(1)
1 (P1) while keeping

the values of the inventory threshold functions XS
1 (P1) and XB

1 (P1) fixed at 1 and 0, respectively.

For instance, if the period 1 price P1 varies in the interval (−6,−3) then Z
(1)
1 (P1) is the function

2 + 6/P1, which strictly decreases on this interval, approaching 1 from below and 0 from above
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when P1 tends to −6 from above and to −3 from below, respectively; Z
(1)
1 (−4) = 0.5 as shown in

Example 1.

As stated at the end of §3.2.1, negative prices and a round-trip efficiency strictly less than 1

are necessary for the optimal policy structure in Proposition 1 to differ from the one of Charnes

et al. (1966). To illustrate, suppose that in Example 1 everything else is the same but there is no

discharging loss (β = 1). Then the optimal policy changes to buy to fill up the storage facility at

all inventory levels in both the first and second periods, and to do nothing at all inventory levels

in the third period, which is consistent with the optimal policy structure of Charnes et al. (1966),

because the value function is linear in inventory in each period. (In particular, when the round-trip

efficiency is equal to 1, it can be shown that it is optimal to sell to empty the storage facility when

the spot price in the current stage is more than or equal to the discounted expected next-stage

spot price divided by the storing efficiency, and buy to fill up the storage facility otherwise.) On

the other hand, everything else being the same as in Example 1, if we increase the prices of all

the periods by 4, i.e., the price path is 0, 1, and 4 in periods 1 through 3, then the optimal policy

structure of Charnes et al. (1966) ensues, again, because the value function is linear in inventory

in each period: specifically, the optimal policy changes to buy to fill up the storage facility at all

inventory levels in both the first and second periods, and sell to empty the storage facility at all

inventory levels in the third period.

Example 2 (Case 1). This example has the same values for the charging, discharging, and

storing efficiencies and the discount factor as Example 1, but it has four periods. The price in

the first period is 4; the prices of the the last three periods are the following equally likely paths:

(−12,−10.8,0), (−12,−7.2,0), and (54,0,0). Proceeding as in Example 1, we can analytically

determine—for each of the three price paths—the value function for period 2. Averaging these

value functions yields the continuation function for period 1, from which we obtain the period 1

optimal decision rule: sell to empty the storage facility at low inventory levels, i.e., those smaller

than 0.4, buy to fill it up at high inventory levels, i.e., those larger than 0.6, and do nothing for

moderate inventory levels, i.e., those between 0.4 and 0.6. The left panel of Figure 4 presents the

period 1 inventory level after performing the optimal action versus the feasible inventory level.

This chart illustrates the optimal policy structure in panel (a) of Figure 1 and corresponds to Case

1 in Proposition 1 with the values of the threshold functions XS
1 and XB

1 equal to 0.4 and 0.6,

respectively. �
Example 3 (Case 3(iii)). This example modifies Example 2 by taking the period 1 price to be

3.2. The optimal decision rule in period 1 yields only two types of actions: sell to empty the storage
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Figure 4 The stage 1 inventory level after performing the optimal action for Example 2 (left panel) and Example

3 (right panel)

facility if the inventory level is below 1/8, and otherwise buy to fill it up. The right panel of Figure

4 plots the inventory level after performing the optimal action in period 1 as a function of the

feasible inventory level. This plot exemplifies the optimal policy structure in panel (c) of Figure 1

and corresponds to Case 3(iii), more specifically Case 3(iiic), in Proposition 1 with the values of the

threshold functions XS
1 , X

B
1 , and Z

(2)
1 equal to 2/7, 1/11, and 1/8, respectively (1/11< 1/8< 2/7).

In Example 3 varying the price in period 1 yields different values for the inventory threshold

functions XS
1 (P1), X

B
1 (P1), and Z

(2)
1 (P1), again expressed as functions of the period 1 price P1

rather than the, unmodeled here, period 1 price-component vector. For instance, if the period

1 price P1 changes in the interval (3,3.6] then we have XS
1 (P1) = 0.8/(6 − P1), X

B
1 (P1) = [(3 −

P1)/(1−P1)] ·1{P1 ∈ (3,3.5]}+[(3.4−P1)/(3−P1)] ·1{P1 ∈ (3.5,3.6]}, and Z
(2)
1 (P1) = 2(P1−3)/P1.

These functions increase without crossing on the interval (3,3.6] for P1, coincide and are equal to

1/3 when P1 = 3.6, and XS
1 (P1) tends to 0.8/3 and both XB

1 (P1) and Z
(2)
1 (P1) tend to 0 (all from

above) when P1 approaches 3 from above.

4. Model for the disposal strategy

In this section we model the merchant disposal strategy for managing electricity surpluses in a

wholesale electricity market. Consistent with the storage strategy, the merchant does not bid in a

forward market and trades electricity in each period t from set T . The price evolution satisfies the
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same assumptions as in §3.1. The merchant carries out the disposal strategy using a device—e.g.,

a load bank—that in each period can consume an amount of electricity equal to C, which for

consistency we take to be the same as the gross charging power capacity of the storage facility.

Because the disposal strategy can either do nothing or buy up to C per period, the optimal disposal

strategy is trivial: buy C when the price is negative and do nothing otherwise. Therefore, the period

1 market value of this strategy is

∑
t∈T

δt−1E [−Pt(p⃗t) ·C · 1{Pt(p⃗t)< 0} |p⃗1] . (12)

5. Numerical analysis

In this section we discuss our numerical results, which we obtain using the calibrated electricity

price model of Zhou et al. (2014). We present this price model in §5.1, introduce the setup of our

numerical analysis in §5.2, examine the values of the storage and disposal strategies in §5.3, and

investigate the importance of considering negative prices when devising a storage policy in §5.4.

5.1. Calibrated price model

We summarize the price model and the calibration results from Zhou et al. (2014). As discussed in

Zhou et al. (2014), and references therein, a model of electricity price evolution should capture four

salient features: negative prices; mean reversion, a tendency to revert back to the mean price level;

spikes, price jumps that quickly disappear; and seasonality, any repeated price pattern at any time

scale. To capture these features, Zhou et al. (2014) combine an inverse hyperbolic transformation

to accommodate negative prices as in Schneider (2011/12), a mean reverting model as in Lucia

and Schwartz (2002), a spike component (a jump that lasts for only one period) as in Seifert and

Uhrig-Homburg (2007), and a seasonality function similar to one of the functions in Lucia and

Schwartz (2002). Specifically, the period t electricity price function Pt(ξt, Jt) is the sum of the

period t spike component Jt and the period t despiked-price function P ′
t (ξt), where ξt is the period

t mean-reverting component:

Pt(ξt, Jt) = Jt +P ′
t (ξt).

The spike component Jt is a compound Bernoulli process in which a spike occurs in period t with

probability λ and with size distributed according to an empirical distribution. The despiked-price

function P ′
t (ξt) satisfies

sinh−1

(
P ′

t (ξt)

ℓ

)
= ξt + f(t),
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Table 1 Estimated parameters κ̂ and σ̂ of the AR(1) model and scale parameter ℓ̂ (Source: Zhou et al. 2014)

AR(1) model estimated parameters Estimated scale parameter

κ̂ σ̂ ℓ̂
0.1176 0.1770 30

Table 2 Estimated parameters γ̂0, γ̂1i’s, γ̂2j ’s, and γ̂3h’s of the seasonality function f(·) (Source: Zhou et al.

2014)

γ̂0 1.3778
i

1 2 3 4 5 6 7 8 9 10 11
γ̂1i(·10−3) 9 25.9 40.1 57 −28.9 83.5 214.6 177.4 6.4 −5.3 −72.1

j
1 2 3 4 5 6

γ̂2j(·10−3) −40.2 −97.6 −5.6 14 20.9 33
h

1 2 3 4 5 6 7 8 9 10 11 12
γ̂3h(·10−3) −73.5 −118.8 −177.6 −194 −153.8 −79.2 36.6 90.6 186.1 265.7 302.6 324.8

h
13 14 15 16 17 18 19 20 21 22 23

γ̂3h(·10−3) 320.7 317.1 302.7 295.5 310.1 356 337.7 339.9 313.1 243.7 145.7

where sinh−1(·) is the inverse hyperbolic function; ℓ is a scaling parameter; and f(t) is the season-

ality function for period t. Zhou et al. (2014) assume that ξt is an auto-regressive model of order

1, AR(1):

ξt = (1−κ)ξt−1 +σϵt,

where κ is the mean-reverting rate; σ is the volatility; and ϵt ∼ N(0,1) is an independent and

identically distributed normal error term. The mean level of this AR(1) process is 0 because the

mean of the despiked price process is captured by the seasonality component f(t), which is modeled

as follows:

f(t) = γ0 +
11∑
i=1

γ1i ·D1i
t +

6∑
j=1

γ2j ·D2j
t +

23∑
h=1

γ3h ·D3h
t ,

where γ0 is the constant level; γ1i, γ2j , and γ3h represent the seasonality coefficient of month

i ∈ {1, . . . ,11}, week day j ∈ {1, . . . ,6}, and hour h ∈ {1, . . . ,23}, respectively; and D1i
t , D

2j
t , and

D3h
t are dummy variables equal to 1 if period t is in month i, week day j, and hour h, respectively,

and 0 otherwise.

Zhou et al. (2014) calibrate this model to prices observed between 2005 and 2008 in the New

York City zone of the NYISO real-time market. The frequency of observations in this market is 5

minutes. We summarize in Tables 1-2 and in Figure 5 the calibration results of Zhou et al. (2014).

The resulting mean absolute error and root mean square error are 7.6349 $/MWh and 12.4023
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Figure 5 Empirical spike distribution; the estimated spike probability λ̂ is 0.0751 (Source: Zhou et al. 2014)

$/MWh, respectively, which correspond to 9% and 15% of the average observed price, 85.1206

$/MWh. The calibration error is thus relatively small. The frequency of negative prices estimated

on 10,000 Monte Carlo simulated price paths sampled from the calibrated price model is close to

that observed in the data: 0.44% in the simulation versus 0.45% in the data. Hence, this calibrated

price model is adequate for our analysis purposes.

5.2. Numerical setup

We consider various industrial batteries with the same energy capacity of 10 MWh and the same

power capacity of 1 MW (about 1% of the size of the NYISO New York City Zone real-time

market; NYISO, 2014), but with different values of the round-trip efficiency parameter. This setting

corresponds to the slow storage case. We focus on slow storage rather than fast storage because

industrial batteries are currently more common in grid-level electricity storage applications than

fast storage devices (such as flywheels) due to their larger energy capacity and longer duration

of charge/discharge (Eyer and Corey 2010, Akhil et al. 2013). We use a period length equal to 5

minutes, which is consistent with the frequency of the observed prices used to calibrate the price

model (see §5.1). Thus, the value of the parameter C is the power capacity rescaled to a five-minute

period: 1MW/(12 periods/hour) = 1/12 MWh/period.

The round-trip efficiency of an industrial battery depends on its technology and specific design:

it varies between 0.4 and 0.5 for a metal air battery, 0.6 and 0.7 for a nickel-cadmium battery, 0.70

and 0.80 for a lead acid battery, 0.75 and 0.85 for a flow battery (such as zinc-bromine), 0.85 and

0.90 for a sodium-sulfur battery, and 0.9 and 0.95 for a lithium-ion battery (EPRI 2004, Eyer and

Corey 2010, ESA 2013).

To consider a wide range of battery technologies, we choose values of the round-trip efficiency

parameter r in the set {0.5,0.6,0.7,0.8,0.9}. For all the values of r in this set, we experimented with

different possible feasible combinations of values for the charging efficiency α and the discharging
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efficiency β (recall that r= α ·β), and found that our results did not change substantially. We thus

report the results for the most common combination: equal charging and discharging efficiencies

(EPRI 2004, Eyer and Corey 2010, Hittinger et al. 2012), i.e., α= β =
√
r. We considered values

of the one-period storing efficiency parameter η in the set {1,0.9999988,0.9999965,0.9999941},

which are derived from the one-month self-discharge rates of 0% for a sodium sulfur battery,

1% for a lead acid battery, 3% for a nickel-cadmium battery, and 5% for a nickel-metal hydride

battery, respectively (EPRI 2004). Because of the low sensitivity of our findings to the value of

this parameter, we report the results for the case of no self discharge (η= 1).

We consider a one year horizon, so the total number of (five-minute) periods in our MDP is

105,120 (= 12 ·24 ·365). We set the discount factor δ for each period to 0.9999999, corresponding to

an annual risk-free interest rate of 1% with continuous compounding (recall that we use risk-neutral

valuation).

For each given set of parameters we solve a discretized version of model (3) by using backward

dynamic programming. As in Zhou et al. (2014), we use the method of Jaillet et al. (2004) to

discretize the AR(1) process as a trinomial lattice with five-minute time increments that specifies

attainable price levels and their transition probabilities for each stage. This constructed lattice

converges in 6 stages to 11 levels. The spike process is, by definition, discrete. We discretize the

feasible inventory set into 121 equally spaced levels (we tried using more inventory levels, and

our results were unchanged), discretizing the feasible action space for each such inventory level

accordingly.

We take the value of the storage strategy to be the value function in the initial stage with zero

inventory level of the version of model (3) discretized as just discussed (the beginning of period

1 corresponds to 00:00 on January 1-st and we let p⃗1 = (0,0)). We let the value of the disposal

strategy be the value of the version of expression (12) evaluated in a backward fashion again using

the discretized AR(1) process and the discrete spike process.

5.3. Comparison of the values of the storage and disposal strategies

We compare the value of the storage strategy at different round-trip efficiencies and the value of the

disposal strategy. Figure 6 plots these values for different frequencies of negative prices, which we

achieve by introducing separate probabilities for positive and negative spikes, fixing the probability

of a positive spike to the estimated spike probability, and varying the probability of a negative

spike based on this estimated value. (We obtained qualitatively similar results when generating

more frequent negative prices by increasing the absolute values of the negative calibrated values

of the hourly seasonality parameters γ̂3h’s displayed in Table 2.) When negative prices occur more
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Figure 6 Impact of different frequencies of negative prices on the values of the disposal and storage strategies

frequently, the values of all the strategies increase; for each given frequency of negative prices, the

value of each considered storage strategy is always higher than the value of the disposal strategy.

Additionally, while the value of the disposal strategy is close to zero at a frequency of negative

prices equal to 0.5% (recall that 0.45% is the frequency of negative prices in the data used for

calibration), the value of this strategy becomes quite substantial at a 10% negative price frequency

(the frequency of negative prices in ERCOT in the past few years; Huntowski et al. 2012): about

$118,000 in our one year horizon given a power capacity of 1 MW (118,000 $/MW-year = 118

$/kW-year), but still less than the value of the storage strategy, e.g., about 391 $/kW-year when

the value of the round-trip efficiency parameter r equals 0.8.

To better contrast the values of these strategies, Figure 7 breaks down both the value of the

storage strategy corresponding to a value of 0.8 for the round-trip efficiency parameter r and the

value of the disposal strategy for different price intervals. Each bar represents the stage 1 estimated

market value of all the cash flows incurred during the entire horizon that are transacted at the

corresponding price interval. The value of the considered storage strategy arises both from selling

electricity at positive prices (most notably the [100 $/MWh, 200 $/MWh] interval) and from buying

electricity at negative prices—this storage strategy also buys at low positive prices, mostly in the

interval [0, 100 $/MWh]. By definition, the disposal strategy can only buy at negative prices. For

some (negative) price intervals, the value of the disposal strategy is slightly larger than that of the

storage strategy, because the battery cannot buy at negative prices when it is full—this difference

is not perceivable in Figure 7.

Despite being less valuable than the storage strategy, the disposal strategy might be appealing
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parameter r is set equal to 0.8 and by the disposal strategy when negative prices occur 10% of the

time

to merchants because devices for destroying electricity are much cheaper than those for storing

it. For instance, a load bank costs about 60 $/kW (Emerson 2014, Coffman Electrical Equipment

Co 2014), but a battery with a round-trip efficiency parameter r equal to 0.8 costs between 1,000

$/kW and 6,000 $/kW (Akhil et al. 2013). Therefore, at high frequencies of negative prices the

profitability of the disposal strategy (the estimated market value of its cash flows minus the capital

cost) might be larger than that of the storage strategy. Merchants might thus be induced to invest

in load banks in markets where negative prices occur often, such as the Electric Reliability Council

of Texas (Huntowski et al. 2012) and the European Energy Exchange (Nicolosi 2010, Brandstätt

et al. 2011).

5.4. Relevance of modeling negative prices when determining a storage policy

To examine the relevance of modeling the possibility of negative prices when devising a storage

policy, we compare the values of the storage policies displayed in Figure 6 with their corresponding

values when we ignore the possibility of negative prices in the optimization in our discretized version

of model (3). Specifically, to compute the latter values, we set any negative price to zero when

evaluating the payoff function R(at,Pt(p⃗t)) in this optimization, obtain the resulting optimized

actions for every stage and state, and finally evaluate these actions under the original price model

that does admit negative prices.
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Figure 8 Percentage of the value of the storage strategy retained if negative prices are ignored when determining

a storage policy

Figure 8 plots the percentage of the value of the storage strategy captured by storage poli-

cies determined when ignoring negative prices. As expected, if negative prices occur infrequently

ignoring negative prices when determining a storage policy has little influence on the value of the

storage strategy. However, if negative prices happen more than 5% of the time, neglecting negative

prices in devising a storage policy results in a substantial loss of value, e.g., a loss of 30% for a

battery with round-trip efficiency equal to 0.8 when negative prices occur 10% of the time. This

loss ensues because this heuristic storage policy buys more than is optimal at low positive prices.

Consequently, the battery is full more often than is optimal when negative prices do occur, and

the ability to purchase at such attractive prices is thus lost.

Our results suggest that modeling negative prices when obtaining a storage policy is currently

relevant in some markets, and is likely to become more important as negative prices become more

frequent in practice.

6. Conclusions

Motivated by the empirical observation that electricity prices can be negative, we investigate how to

manage electricity surpluses from the perspective of a merchant. We model as an MDP the problem

of managing a storage facility in a wholesale market with prices that are potentially negative and

derive the optimal policy structure of this MDP for the fast storage case. We demonstrate that this

optimal policy structure generalizes a classic result of Charnes et al. (1966) and differs significantly
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from typical threshold policies known to be optimal in the literature when prices are only non-

negative. In the slow storage case, using an extant price model calibrated to NYISO real-time

market data, we conclude that ignoring negative prices when devising a storage policy can incur a

significant loss of value when negative prices occur more than 5% of the time. We also find that the

value of the disposal strategy may be sizable, although smaller than that of the storage strategy.

For instance, when negative prices occur 10% of the time, the value of the disposal strategy is 118

$/kW-year compared to 391 $/kW-year for the storage strategy corresponding to a battery with a

80% round-trip efficiency. However, as the capital costs of load banks are much cheaper than those

of batteries, investing in such disposal devices might be more attractive to merchants.

While the storage strategy is common in most commodity markets, the disposal strategy is

relatively rare. A type of disposal can be found in the practice of hydro spill: during rainy seasons,

excess water in a dam can be spilled to satisfy environmental or irrigation requirements (Ikura and

Gross 1984, BPA 2010, 2013). However, our analysis shows that there is potentially a hidden value

in this practice, as pumping and spilling water could be used as a method to destroy negatively-

priced electricity surpluses. As wind penetration increases and negative prices potentially become

more frequent, the disposal strategy may become more common.

In addition to providing guidance on the management of electricity surpluses at the firm level,

our results also raise awareness of potential issues at the societal level. Assuming that the disposal

strategy is less socially desirable than the storage strategy, our results have three policy implica-

tions. First, government policies may need to be enacted to promote the storage strategy, as our

results suggest that merchants may find the disposal strategy more profitable (i.e., once capital

costs are accounted for) than the storage strategy. Second, the Production Tax Credit (as men-

tioned in §1) may ultimately need to be modified (e.g., made hour-dependent or price-dependent) in

order to promote generating wind energy only when it is needed. Currently, this subsidy is constant

within a year (DSIRE 2014), and may thus promote generation of wind energy that is subsequently

destroyed. Third, curtailing wind energy may need to be used to mitigate the imbalance between

electricity supply and demand (Brandstätt et al. 2011, Wu and Kapuscinski 2013). At present,

operators in many regions curtail wind energy only for safety reasons (Genoese et al. 2010, Nicolosi

2010, Brandstätt et al. 2011), which may lead to negative prices and hence potential destruction

of green energy. However, the assumption that the disposal strategy is less socially desirable than

the storage strategy may not always hold. Sioshansi (2014), for example, identifies conditions when

electricity storage reduces social welfare, and thus it may be possible that the disposal strategy,

or a mix of the storage and disposal strategies, is socially beneficial at times. Investigating these

issues requires an equilibrium model, which is an opportunity for future research.
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Appendix A: Proofs

Proof of Lemma 1

We first prove finiteness. For each stage t, given any p⃗t, it holds that

|Vt(xt, p⃗t)| ≤ (1/α) · |Pt(p⃗t)|+
T∑

τ=t+1

|Et[Pτ (p⃗τ )]| · (1/α)<∞,

where the first inequality holds because in each stage the quantity bought cannot exceed 1/α, the quantity

sold cannot exceed 1, and 1≤ 1/α, and the second inequality is due to Assumption 1.

We prove convexity by induction considering the set T ∪{T +1}. The function VT+1(·, p⃗T+1)≡ 0 is trivially

convex on X . We make the induction hypothesis that Vτ (·, p⃗τ ) is convex on X for every stage τ from stage t+1

through T . For stage t, Et[Vt+1(·, p⃗t+1)] is convex since expectation preserves the convexity of Vt+1(·, p⃗t+1),

which holds by the induction hypothesis. It follows that the objective function in (6) is convex in yt on [0, ηxt]

given p⃗t. Thus, an optimal solution to the optimization in (6) can be either 0 or ηxt. By similar arguments,

an optimal solution to the optimization in (7) can be either ηxt or η. Hence, we can limit the search for an

optimal solution to the optimization in (4) to the three candidate points 0, ηxt, and η, which we include in

the set Yt. We denote the objective function for the optimization in (4) by vt(xt, yt, p⃗t). We can thus write

Vt(xt, p⃗t) = max
yt∈Yt

vt(xt, yt, p⃗t).

We next show that the function vt(·, yt, p⃗t) is convex on X for each of the possible values of yt in set Yt:

• If yt = 0 then it follows from (5) and (6) that vt(xt,0, p⃗t) = δEt [Vt+1 (0, p⃗t+1)] + xt ·Pt(p⃗t) · β, which is

linear, and hence, convex, in xt on X .

• If yt = ηxt then, by (5) and either one of (6) and (7), we have vt(xt, ηxt, p⃗t) = δEt [Vt+1 (ηxt, p⃗t+1)], which

is easily shown to be convex in xt on X based on the induction hypothesis.

• If yt = η then (5) and (7) imply that vt(xt, η, p⃗t) =−Pt(p⃗t)/α+ δEt [Vt+1 (η, p⃗t+1)]+xt ·Pt(p⃗t)/α, which

is linear, and hence convex, in xt on X .

By Proposition A-3 in Porteus (2002), the function Vt(·, p⃗t) is convex on X . It follows from the principle of

mathematical induction that Vt(·, p⃗t) is convex on X for all t∈ T ∪{T +1}, and hence is convex on X when

restricting attention to t∈ T . �

Proof of Lemma 2

It follows from Lemma 1 that both the objective functions for the optimizations in (8) and (9) are finite and

convex in yt given any t and p⃗t. Therefore, a maximizer for each of these optimizations must be one of the

two end points of their corresponding feasible sets, i.e., yS
t (xt, p⃗t) is either 0 or ηxt and yB

t (xt, p⃗t) is either

ηxt or η. �

Proof of Lemma 3

Fix t and p⃗t. Consider the optimization in (8). According to Lemma 2, the value of yS
t (xt, p⃗t) can be either

0 or ηxt for each xt on X . The convexity of the function wS
t (·, p⃗t) on [0, η], which follows from Lemma 1,

implies that there exists a critical inventory level (the largest one if there are multiple such levels) denoted
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Figure 9 The value of xSη for the possible values of yS
t (1, p⃗t)

by xS such that yS
t (xt, p⃗t) = 0 for all xt in [0, xS], and yS

t (xt, p⃗t) = ηxt for all xt in (xS,1]. We can characterize

xS by considering the two possible values of yS
t (1, p⃗t), i.e., 0 and η:

• Suppose that yS
t (1, p⃗t) = 0, which occurs when the function wS

t (·, p⃗t) is either non-increasing on [0, η],

as in panel (a) of Figure 9, or non-monotonic on [0, η], as in panel (b) of Figure 9. In this case we have

yS
t (xt, p⃗t) = 0 for all xt in X , so that xS = 1.

• Suppose that yS
t (1, p⃗t) = η, which occurs when the function wS

t (·, p⃗t) is either non-decreasing on [0, η], as

in panel (c) of Figure 9, or non-monotonic on [0, η], as in panel (d) of Figure 9. In this case we have yS
t (xt, p⃗t) =

0 for all xt smaller than the maximum value of yt/η such that wS
t (yt, p⃗t) = wS

t (0, p⃗t), and yS
t (xt, p⃗t) = ηxt

otherwise. Therefore, xS is this maximum value of yt/η.

Consequently, we let XS
t (p⃗t) be the function that returns xS at the given t and p⃗t.

Consider the optimization in (9). As stated in Lemma 2, the value of yB
t (xt, p⃗t) can be either ηxt or η for

each xt on X . By the convexity of the function wB
t (·, p⃗t) on [0, η], there exists a critical inventory level (the

smallest one if there are multiple such levels) denoted by xB such that yB
t (xt, p⃗t) = ηxt for all xt in [0, xB),

and yB
t (xt, p⃗t) = η for all xt in [xB,1]. Considering the two possible values of yB

t (0, p⃗t), i.e., 0 and η, allows

us to characterize xB:

• If yB
t (0, p⃗t) = 0 then we have yB

t (xt, p⃗t) = ηxt for all xt smaller than the minimum value of yt/η such

that wB
t (yt, p⃗t) =wB

t (η, p⃗t), and yB
t (xt, p⃗t) = η otherwise. Hence, xB is this minimum value of yt/η.

• If yB
t (0, p⃗t) = η then we have yB

t (xt, p⃗t) = η for all xt in X , so that xB = 0.

We thus let XB
t (p⃗t) be the function that returns xB at the given t and p⃗t. �

Proof of Proposition 1

We fix both t and p⃗t throughout this proof.

Case 1: 0 ≤ XS
t (p⃗t) < XB

t (p⃗t) ≤ 1. We consider the following exhaustive and mutually exclusive cases

illustrated in panel (a) of Figure 10:

• For xt in [0,XS
t (p⃗t)], according to Lemma 3 the optimal action for the optimization in (6) is to sell to

empty the storage facility, thus dominating the feasible do-nothing action for this optimization. Moreover, the

do-nothing action is optimal for the optimization in (7) by Lemma 3 and the assumption XS
t (p⃗t)<XB

t (p⃗t).
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Figure 10 Optimal solutions to the optimizations in (8) and (9) in different regions for Cases 1, 2, and 3 in

Proposition 1

It follows from (5) that the optimal action for the optimization in (4) is to sell to empty the storage facility,

i.e., a∗
t (xt, p⃗t) =−xt.

• For xt in [XB
t (p⃗t),1], buying to fill up the storage facility is the optimal action for the optimization in

(7) by Lemma 3, and hence this action dominates the do-nothing action for this optimization. Furthermore,

Lemma 3 and the assumption XS
t (p⃗t) < XB

t (p⃗t) imply that the do-nothing action is optimal for the opti-

mization in (6). By (5), the optimal action for the optimization in (4) is to buy to fill up the storage facility,

i.e., a∗
t (xt, p⃗t) = 1−xt.

• For xt in (XS
t (p⃗t),X

B
t (p⃗t)), doing nothing is optimal for both the optimization in (6) and the optimization

in (7) according to Lemma 3. By (5), doing nothing is also the optimal action for the optimization in (4),

i.e., a∗
t (xt, p⃗t) = 0.

Case 2: XS
t (p⃗t) = 1 and XB

t (p⃗t) = 0 (as illustrated in panel (b) of Figure 10). By the assumption XS
t (p⃗t) = 1

and Lemma 3 we have wS
t (0, p⃗t)≥wS

t (η, p⃗t), or, equivalently,

δEt [Vt+1 (0, p⃗t+1)]≥−Pt(p⃗t) ·β+ δEt [Vt+1 (η, p⃗t+1)] . (13)

Moreover, the assumption XB
t (p⃗t) = 0 and Lemma 3 imply that wB

t (0, p⃗t)≤wB
t (η, p⃗t), or, equivalently,

δEt [Vt+1 (0, p⃗t+1)]≤−Pt(p⃗t)/α+ δEt [Vt+1 (η, p⃗t+1)] . (14)

Combining inequalities (13) and (14) yields(
1

α
−β

)
·Pt(p⃗t)≤ 0. (15)

Inequality (15) and the assumption r < 1, i.e., α ̸= 1 or β ̸= 1, yield

Pt(p⃗t)≤ 0. (16)

The assumption XS
t (p⃗t) = 1 and Lemma 3 imply that yS

t (xt, p⃗t) = 0 for all xt in X , and it then follows

from (6) that V S
t (xt, p⃗t) = δEt [Vt+1 (0, p⃗t+1)] + xt ·Pt(p⃗t) · β for all xt in X , which is a linear function of xt

on X . By the assumption XB
t (p⃗t) = 0 and Lemma 3, we have yB

t (xt, p⃗t) = η for all xt in X , so from (7) we

obtain V B
t (xt, p⃗t) =−Pt(p⃗t)/α+ δEt [Vt+1 (η, p⃗t+1)] + xt ·Pt(p⃗t)/α for all xt in X , which is a linear function
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Figure 11 Cases 3(iiia)-3(iiic)

of xt on X . The linearity of the functions V S
t (·, p⃗t) and V B

t (·, p⃗t) on X implies that they can cross at most

once on the interior of X . If no such crossing occurs then there are two cases to consider:

2(i) If V S
t (xt, p⃗t)≥ V B

t (xt, p⃗t) for all xt in X then a∗
t (p⃗t) =−xt for all xt in X .

2(ii) If V S
t (xt, p⃗t) ≤ V B

t (xt, p⃗t) for all xt in X and V S
t (xt, p⃗t) < V B

t (xt, p⃗t) for at least one xt in X , then

a∗
t (p⃗t) = 1−xt for all xt in X .

If the stated crossing occurs we have the following case:

2(iii) We let z(1) be the point on the interior of X where the functions V S
t (·, p⃗t) and V B

t (·, p⃗t) cross.

Inequality (16) and the fact that the stated crossing cannot occur when Pt(p⃗t) = 0, because in this case the

functions V S
t (·, p⃗t) and V B

t (·, p⃗t) are constant on X , imply that Pt(p⃗t) < 0. Thus, also by the assumption

r < 1, the slope of V S
t (·, p⃗t), which is β ·Pt(p⃗t), is strictly greater than the slope of V B

t (·, p⃗t), which is Pt(p⃗t)/α.

Hence, we conclude that V S
t (xt, p⃗t) < V B

t (xt, p⃗t) for all xt in [0, z(1)) and V S
t (xt, p⃗t) > V B

t (xt, p⃗t) for all xt

in (z(1),1]. In other words, we have a∗
t (xt, p⃗t) = 1− xt for all xt in [0, z(1)), and a∗

t (xt, p⃗t) =−xt for all xt in

[z(1),1], where we arbitrarily break the tie between the optimal actions 1− xt and −xt at xt = z(1) in favor

of the action −xt. We let Z
(1)
t (p⃗t) be the function that takes the value z(1) at the given t and p⃗t.

Case 3: 0 <XB
t (p⃗t) ≤XS

t (p⃗t) ≤ 1 or 0 ≤XB
t ≤XS

t (p⃗t) < 1 (as illustrated in panel (c) of Figure 10). We

consider the following exhaustive and mutually exclusive cases for the potential values taken by the functions

XS
t (p⃗t) and XB

t (p⃗t).

• 0<XB
t (p⃗t)≤ 1 =XS

t (p⃗t). As in Case 2, if XS
t (p⃗t) = 1 then V S

t (·, p⃗t) is linear on X . Lemma 3 implies

that V B
t (·, p⃗t) is linear on [XB

t (p⃗t),1]. By Lemma 3 and the assumption XB
t (p⃗t)≤XS

t (p⃗t), it holds that on
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[0,XB
t (p⃗t)) doing nothing is optimal for the optimization in (7) and suboptimal for the optimization in (6),

so that V B
t (·, p⃗t)≤ V S

t (·, p⃗t) on [0,XB
t (p⃗t)). Thus, the functions V

B
t (·, p⃗t) and V S

t (·, p⃗t) can intersect (meet or

cross) at most once on [XB
t (p⃗t),1]. If V

S
t (xt, p⃗t)≥ V B

t (xt, p⃗t) for all xt in X then we have Case 3(i) for which,

given that XS
t (p⃗t) = 1, a∗

t (xt, p⃗t) =−xt for all xt in X . Otherwise we have Case 3(iiia): the functions V B
t (·, p⃗t)

and V S
t (·, p⃗t) either cross on (XB

t (p⃗t),1) or they coincide on [0,XB
t (p⃗t)] and V B

t (·, p⃗t) is strictly larger than

V S
t (·, p⃗t) on (XB

t (p⃗t),1]; the case when crossing occurs is illustrated in panel 3(iiia) of Figure 11, which also

relies on the equality V B
t (0, p⃗t) = V S

t (0, p⃗t), as implied by Lemma 3 and the assumptions XB
t (p⃗t) > 0 and

XS
t (p⃗t) = 1. We provide the optimal action for Case 3(iiia), together with the optimal actions for Cases 3(iiib)

and 3(iiic), later in Case 3(iii) of this proof.

• XB
t (p⃗t) = 0≤XS

t (p⃗t)< 1. As in Case 2, the function V B
t (·, p⃗t) is linear on X . The function V S

t (·, p⃗t) is

linear on [0,XS
t (p⃗t)] by Lemma 3. Lemma 3 and the assumption XB

t (p⃗t)≤XS
t (p⃗t) yield that on (XS

t (p⃗t),1]

doing nothing is optimal for the optimization in (6) and suboptimal for the optimization in (7), and hence

V S
t (·, p⃗t)≤ V B

t (·, p⃗t) on (XS
t (p⃗t),1]. Thus, the functions V S

t (·, p⃗t) and V B
t (·, p⃗t) can intersect (meet or cross)

at most once on [0,XS
t (p⃗t)]. If V

S
t (xt, p⃗t) ≤ V B

t (xt, p⃗t) for all xt in X then we have Case 3(ii) for which,

because XB
t (p⃗t) = 0, a∗

t (p⃗t) = 1− xt for all xt in X . Otherwise we have Case 3(iiib): the functions V S
t (·, p⃗t)

and V B
t (·, p⃗t) either cross on (0,XS

t (p⃗t)) or they coincide on [XS
t (p⃗t),1] and V B

t (·, p⃗t) is strictly smaller than

V S
t (·, p⃗t) on [0,XS

t (p⃗t)); the case with crossing is illustrated in panel 3(iiib) of Figure 11, which also uses the

equality V S
t (1, p⃗t) = V B

t (1, p⃗t), as implied by Lemma 3 and the assumptions XB
t (p⃗t) = 0 and XS

t (p⃗t)< 1.

• 0 < XB
t (p⃗t) ≤ XS

t (p⃗t) < 1. This is Case 3(iiic). As in Case 3(iiia), the function V B
t (·, p⃗t) is linear on

[XB
t (p⃗t),1] and we have V B

t (·, p⃗t) ≤ V S
t (·, p⃗t) on [0,XB

t (p⃗t)). As in Case 3(iiib), the function V S
t (·, p⃗t) is

linear on [0,XS
t (p⃗t)] and it holds that V S

t (·, p⃗t)≤ V B
t (·, p⃗t) on (XS

t (p⃗t),1]. Thus, the functions V S
t (·, p⃗t) and

V B
t (·, p⃗t) can cross at most once on [XB

t (p⃗t),X
S
t (p⃗t)]. The case when the functions V S

t (·, p⃗t) and V B
t (·, p⃗t)

cross on [XB
t (p⃗t),X

S
t (p⃗t)] is illustrated in panel 3(iiic) of Figure 11, which is also based on the equalities

V S
t (0, p⃗t) = V B

t (0, p⃗t) and V S
t (1, p⃗t) = V B

t (1, p⃗t), as implied by Lemma 3 and the assumptions XB
t (p⃗t) ̸= 0 and

XS
t (p⃗t) ̸= 1. If the functions V S

t (·, p⃗t) and V B
t (·, p⃗t) do not cross on [XB

t (p⃗t),X
S
t (p⃗t)], then they must coincide

on X . Moreover, we must have XB
t (p⃗t) = XS

t (p⃗t): if Pt(p⃗t) ̸= 0 and XB
t (p⃗t) ̸= XS

t (p⃗t) then the respective

slopes of the linear functions V S
t (·, p⃗t) and V B

t (·, p⃗t) on [XB
t (p⃗t),X

S
t (p⃗t)] are βPt(p⃗t) and Pt(p⃗t)/α, which

cannot be equal if r < 1, as assumed; if Pt(p⃗t) = 0 it is shown later in this proof that this case cannot subsist.

Hence, the functions V S
t (·, p⃗t) and V B

t (·, p⃗t) meet at XB
t (p⃗t) =XS

t (p⃗t).

We group Cases 3(iiia), 3(iiib), and 3(iiic) into Case 3(iii): we let z(2) be the point in [XB
t (p⃗t),X

S
t (p⃗t)]∩

(0,1), more specifically, [XB
t (p⃗t),1 = XS

t (p⃗t)) for 3(iiia), (0 = XB
t (p⃗t),X

S
t (p⃗t)] for 3(iiib), and [XB

t (p⃗t) ̸=

0,XS
t (p⃗t) ̸= 1] for 3(iiic), where the functions V S

t (·, p⃗t) and V B
t (·, p⃗t) intersect and Z

(2)
t (p⃗t) be the function

that evaluates to z(2) at the given t and p⃗t. Arbitrarily breaking the tie between the optimal actions −xt

and 1−xt at xt = z(2) in favor of the action −xt, we thus have

a∗
t (xt, p⃗t) =

{
−xt, ∀xt ∈ [0,Z

(2)
t (p⃗t)],

1−xt, ∀xt ∈ (Z
(2)
t (p⃗t),1].
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Impossibility of cases: Pt(p⃗t)< 0.

Case 1. By Lemma 2, the only two possible values for yB
t (0, p⃗t) are 0 and η. If yB

t (0, p⃗t) = 0 we have

yS
t (1, p⃗t) = 0 because

wS
t (0, p⃗t) = wB

t (0, p⃗t)

> wB
t (η, p⃗t)

= −Pt(p⃗t)

α
+ δE[Vt+1(η, p⃗t+1)]

> −Pt(p⃗t) ·β+ δE[Vt+1(η, p⃗t+1)]

= wS
t (η, p⃗t),

where the first inequality is due to our convention that yB
t (·, p⃗t) is the largest maximizer for the optimization

in (9) and the premise yB
t (0, p⃗t) = 0, and the second inequality to the assumption Pt(p⃗t)< 0. Lemma 3 thus

implies that XS
t (p⃗t) = 1, and Case 1 is impossible. If yB

t (0, p⃗t) = η if follows from Lemma 3 that XB
t (p⃗t) = 0,

and Case 1 cannot occur.

Case 3(iii). The slope of the linear function V S
t (·, p⃗t) on [0,XS

t (p⃗t)] is βPt(p⃗t) and the slope of the linear

function V B
t (·, p⃗t) on [XB

t (p⃗t),1] is Pt(p⃗t)/α. The assumptions Pt(p⃗t)< 0 and r < 1 yield

βPt(p⃗t)>
Pt(p⃗t)

α
. (17)

Case 3(iiic) when the functions V S
t (·, p⃗t) and V B

t (·, p⃗t) meet at XB
t (p⃗t) =XS

t (p⃗t) is impossible because other-

wise it would follow from inequality (17) that the function Vt(·, p⃗t) is strictly concave on X , which contradicts

its convexity established in Lemma 1. By construction, Case 3(iiia), Case 3(iiib), and Case 3(iiic) with

the qualification that the functions V S
t (·, p⃗t) and V B

t (·, p⃗t) cross on [XB
t (p⃗t),X

S
t (p⃗t] cannot subsist when

inequality (17) holds: for Case 3(iiia), given that V B
t (·, p⃗t)≤ V S

t (·, p⃗t) on [0,XB
t (p⃗t)] it follows from inequal-

ity (17) that V B
t (·, p⃗t) and V S

t (·, p⃗t) cannot intersect on [XB
t (p⃗t),1 = XS

t (p⃗t)); for Case 3(iiib), we have

V B
t (·, p⃗t)≤ V S

t (·, p⃗t) on [XS
t (p⃗t),1] and inequality (17) implies that V B

t (·, p⃗t) and V S
t (·, p⃗t) cannot intersect on

(0 =XB
t (p⃗t),X

S
t (p⃗t)]; for Case 3(iiic) with the stated qualification, by a similar logic V B

t (·, p⃗t) and V S
t (·, p⃗t)

cannot cross on [XB
t (p⃗t),X

S
t (p⃗t)] if inequality (17) is true.

Impossibility of cases: Pt(p⃗t) = 0. If Pt(p⃗t) = 0 and Et [Vt+1 (·, p⃗t+1)] is constant on [0, η] then Case 2(i)

occurs, and hence all the other cases are impossible, because our convention that yB
t (·, p⃗t) is the largest

maximizer for the optimization in (9) and yS
t (·, p⃗t) is the smallest maximizer for the optimization in (8)

yields yS
t (1, p⃗t) = 0 and yB

t (0, p⃗t) = η, and then Lemma 3 implies XS
t (p⃗t) = 1 and XB

t (p⃗t) = 0, and V S
t (·, p⃗t)

and V B
t (·, p⃗t) are both equal to the same constant on X .

Suppose that Pt(p⃗t) = 0, Et [Vt+1 (·, p⃗t+1)] is not constant on [0, η], and Et [Vt+1 (0, p⃗t+1)] =

Et [Vt+1 (η, p⃗t+1)]. Then by our convention that yS
t (·, p⃗t) is the smallest maximizer for the optimization in

(8) and yB
t (·, p⃗t) is the largest maximizer for the optimization in (9) we have yB

t (0, p⃗t) = η and yS
t (1, p⃗t) = 0,

and it follows from Lemma 3 that XS
t (p⃗t) = 1 and XB

t (p⃗t) = 0, as well as V S
t (·, p⃗t) = δEt [Vt+1 (0, p⃗t+1)] =

δEt [Vt+1 (η, p⃗t+1)] = V B
t (·, p⃗t) on X , which corresponds to Case 2(i), and thus all the other cases are impos-

sible.
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If Pt(p⃗t) = 0, E[Vt+1(·, p⃗t+1)] is not constant on [0, η], and E[Vt+1(0, p⃗t+1)]>E[Vt+1(η, p⃗t+1)] then yS
t (1, p⃗t) =

yB
t (0, p⃗t) = 0 and Lemma 3 thus implies that XS

t (p⃗t) = 1 and XB
t (p⃗t) ̸= 0, which corresponds to Case 3(i) or

Case 3(iiia), and hence all the other cases are impossible. By Lemma 3 we have V S
t (·, p⃗t) = δE[Vt+1(0, p⃗t+1)]

on X and V B
t (·, p⃗t) = δE[Vt+1(η, p⃗t+1)] < δE[Vt+1(0, p⃗t+1)] = V S

t (·, p⃗t) on [XB
t (p⃗t),1]. As shown in the con-

struction of Cases 3(i) and 3(iiia), we have V B
t (·, p⃗t)≤ V S

t (·, p⃗t) on [0,XB
t (p⃗t)). We thus conclude that Case

3(i) occurs and Case 3(iiia) is also impossible.

If Pt(p⃗t) = 0, E[Vt+1(·, p⃗t+1)] is not constant on [0, η], and E[Vt+1(0, p⃗t+1)] < E[Vt+1(η, p⃗t+1)] it follows

from Lemma 3 that XS
t (p⃗t) ̸= 1 and XB

t (p⃗t) = 0, which conforms with Case 3(ii) or Case 3(iiib), and con-

sequently all the other cases are impossible. Lemma 3 implies that V B
t (·, p⃗t) = δE[Vt+1(η, p⃗t+1)] on X and

V S
t (·, p⃗t) = δE[Vt+1(0, p⃗t+1)]< δE[Vt+1(η, p⃗t+1)] = V B

t (·, p⃗t) on [0,XS
t (p⃗t)]. In the construction of Cases 3(ii)

and 3(iiib) we showed that V S
t (·, p⃗t)≤ V B

t (·, p⃗t) on (XS
t (p⃗t),1]. Hence, Case 3(ii) occurs and Case 3(iiib) is

also impossible.

Impossibility of cases: Pt(p⃗t)> 0. If Pt(p⃗t)> 0 then Case 2 is impossible because inequality (16) is necessary

for the existence of this case. �
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