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Abstract

This paper introduces the discrete singular convolution algorithm for vibration analysis of rectangu-
lar plates with mixed boundary conditions. A uni4ed scheme is proposed for the treatment of simply
supported, clamped and transversely supported (with nonuniform elastic rotational restraint) boundary
conditions. The robustness and reliability of the present approach are tested by a number of numerical
experiments. All results agree well with those in the literature. ? 2001 Elsevier Science Ltd. All rights
reserved.

Keywords: Discrete singular convolution; Vibration analysis; Mixed boundary condition; Nonuniform boundary
condition; Rectangular plate

1. Introduction

Plates with mixed boundary conditions are key components in civil and mechanical engineer-
ing and industrial design. Although theoretical analysis is valuable for providing basic under-
standing, in general, there is no analytical solution to the problems of vibration and buckling
of rectangular plates with discontinuous boundary conditions. Therefore, numerical computation
is one of the most important approaches for obtaining full solutions for theoretical analysis and
engineering design. For this reason, the numerical simulation of rectangular plates with mixed
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Nomenclature
a length of a rectangular plate
am boundary extension parameters (am = a0m)
ajm boundary extension parameters
b width of a rectangular plate
Ckm DSC weight coeGcients
D Hexural rigidity
Dnq diIerential matrices
E modulus of elasticity
f a function
h thickness of a rectangular plate
i index
j index
k index
K elastic rotational stiIness function
K ′ nondimensional spring coeGcient
li dimensionless parameters in the horizontal coordinate
l′i dimensionless parameters in the vertical coordinate
m index
M DSC band width
n the normal coordinate w.r.t the rectangular plate edge
N maximum index of the grid points
q the coordinates
s the tangential coordinate w.r.t the rectangular plate edge
w transverse displacement
W dimensionless transverse displacement
Wi;j grid values of the dimensionless transverse displacement
W a vector
x the horizontal coordinate
X the dimensionless horizontal coordinate
Xi grid values of the X coordinate
y the vertical coordinate
Y the dimensionless vertical coordinate
Yj grid values of the Y coordinate

Greek letters
� length of a support interval
��;J DSC kernel
J grid spacing
� aspect ratio
� Poisson’s ratio
� mass density
� a parameter in the DSC kernel
! circular frequency
! dimensionless parameter
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boundary conditions has attracted much attention in the last few decades. Numerical analysis
of plates with mixed edges is not a trivial task. In particular, the problem is diGcult when the
discontinuous boundary conditions induce singularities in the stress distribution. A variety of
numerical methods have been developed for the solution of this problem. Ota and Hamada [1]
computed the fundamental frequency of a simply supported rectangular plate partially clamped
on the edge by using a distributed moment function along the mixed edge. Keer and Stahl
[2] formulated Fredholm integral equations of the second kind to study the same problem.
They analyzed the dependence of the fundamental frequency on the clamped portion. Similar
approaches were explored by many other researchers [3,4]. Narita [5] developed a series expan-
sion algorithm to solve the problem and attained the frequency parameters for a wide range of
mixed-edge rectangular plates. The reliability and robustness of the methods of 4nite strips, strip
elements, spline elements and 4nite elements were intensively investigated for their use in the
analysis of plates with mixed boundary conditions [6–11]. Galerkin approaches were studied by
Chia [12]. Recently, the use of the (generalized) diIerential quadrature method for plate anal-
ysis was examined by a number of researchers [13–16]. The global Rayleigh–Ritz variational
methods had a long history for their successful applications to plate vibration analysis [17–21].
The existence of so many diIerent approaches and so much on-going eIort for the analysis of
plates with mixed boundary conditions indicate the practical importance and the diGculty of
the problem.

All the above-mentioned methods were successful for plate analysis with discontinuous bound-
ary conditions in one way or another. It is very diGcult to have a detailed analysis of the advan-
tages and disadvantages of all these computational approaches. However, each of these methods
can be classi4ed as either a global method (Ritz method, diIerential quadrature method) or
a local method (4nite element method, 4nite diIerence method, 4nite strip method). In gen-
eral, global methods are highly localized in their spectral representations, but are unlocalized in
the coordinate representation. By contrast, local methods have high spatial localization, but are
delocalized in their spectral representations. Moreover, the use of global methods is usually re-
stricted to structured grids, whereas, local methods can be implemented to block-structured grids
and even unstructured grids. Furthermore, global methods are much more accurate than local
methods, while the major advantage of local methods is the Hexibility for handling complex
geometries and boundary conditions. In ordinary applications of plate analysis and structural
engineering, it is relatively safe and eGcient to use either a global method or a local one.
However, when the problem under study involves singularities, for instance, a rapid increase in
stress concentration, neither the global methods nor the local methods can be applied without
numerical instability and convergence problems. The global methods lose their accuracy near
the singularities due to local high frequency components which require extremely high order
approximations. The local methods have to be implemented in an adaptive manner, which greatly
limits their accuracy and requires extremely small spatial mesh sizes. In many situations, the
rate of convergence of a numerical method simply cannot match the divergent rate of the prob-
lem under study near a singularity. It is desirable to have a method that has both spectral and
spatial localization, and is thus locally smooth and asymptotically decaying in both spectral and
coordinate spaces. Most importantly, such a method has the global methods’ accuracy and the
local methods’ Hexibility for handling singularity problems in analysis of mechanical behavior
of structures.
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Recently, the discrete singular convolution (DSC) algorithm [22] was proposed as a poten-
tial approach for the computer realization of singular convolutions of Hilbert type, Abel type
and delta type. These convolutions have wide ranges of practical applications such as spectral
properties of time correlation functions, electrodynamics, tomography, linear response theory,
processing of analytic signal, surface interpolation and solving partial diIerential equations.
Mathematical foundation of the DSC algorithm is the theory of distributions [23]. In particular,
numerical solutions to diIerential equations are formulated via the singular kernels of the delta
type. By appropriately selecting the parameters of a DSC kernel, the DSC approach exhibits the
global methods’ accuracy for integration and the local methods’ Hexibility for handling com-
plex geometries and boundary conditions. The DSC algorithm has found its success in solving
the Fokker–Planck equation [22], the SchrRodinger equation [24], Maxwell’s equations [25], the
Navier–Stokes equation [26,27] and for image restoration from noise [28]. Most recently, the
DSC algorithm was used to resolve some numerically challenging problems. It was utilized to
integrate the sine-Gordon equation with the initial values close to and on a homoclinic man-
ifold singularity [29] for which conventional local methods encountered great diGculties and
resulted in numerically induced spatial and temporal chaos [30]. Another complex example that
was resolved by using the DSC algorithm is the integration of the Cahn–Hilliard equation in
a circular domain, which is challenging because of the fourth order arti4cial singularity at the
origin and the complex phase space geometry [31].

The further developments, which are relevant to the present work, are the use of the DSC
algorithm for analysis of mechanical behavior of structures [32,26,33,34]. Previous works have
shown that the DSC approach provided more than 10 signi4cant 4gures accuracy for the 4rst
100 eigenmodes of a rectangular plate vibration with simply supported boundary conditions
[32,26]. The vibration of circular plates was also analyzed with clamped boundary conditions
[26]. Extremely accurate DSC results were obtained for beam bending, vibration and buck-
ling [33,34]. However, the boundary conditions and the corresponding treatment in these works
are relatively simple and uniform. The objective of the present study is to extend the previ-
ous implementation of the DSC algorithm for rectangular plate analysis to mixed boundary
conditions.

This paper is organized as follows. In Section 2, we describe the DSC algorithm for the
treatment of vibration of plates. A uni4ed scheme is developed to implement the DSC algorithm
for the analysis of plates with arbitrarily mixed boundary conditions. Numerical experiments and
convergence tests are presented in Section 3. This paper ends with a conclusion.

2. Method of analysis

In this section, the DSC algorithm for treating various boundary conditions is discussed in the
context of plate vibration analysis, while the approach can be used for many other applications.
We limit our attention to the vibration of rectangular (classic) KirchhoI plates with simply
supported, clamped and transversely supported edges. Consider a rectangular plate which has a
length a, width b, thickness h, mass density �, modulus of elasticity E, and Poisson’s ratio �
(see Fig. 1).
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Fig. 1. Geometry and coordinate system of a rectangular plate with mixed edge supports.

The governing diIerential equation for the plate is given by [35]

@4w
@x4

+ 2
@4w
@x2@y2

+
@4w
@y4

=
�h!2

D
w; (1)

where w(x; y) is the transverse displacement of the midsurface of the plate, D=Eh3=[12(1−�2)]
the Hexural rigidity, and ! the circular frequency. We consider one of the following three types
of support conditions for each plate edge:

For simply supported edge (S):

w = 0; −D
(
@2w
@n2

+ �
@2w
@s2

)
= 0: (2)

For clamped edge (C):

w = 0;
@w
@n

= 0: (3)

For transversely supported edge with nonuniform elastic rotational restraint (E):

w = 0; −D
(
@2w
@n2

+ �
@2w
@s2

)
= K(s)

@w
@n
; (4)

where K(s) is the varying elastic rotational stiIness of the plate elastic edge and n and s denote,
respectively, the normal and tangential coordinates with respect to the rectangular plate edge.

For generality and simplicity, the following dimensionless parameters are introduced:

X =
x
a
; Y =

y
b
; W =

w
a
; �=

a
b
; !=!a2

√
�h
D
: (5)

Accordingly, we obtain the dimensionless governing equation for the vibration analysis of a
rectangular plate as

@4W
@X 4 + 2�2

@4W
@X 2@Y 2 + �

4@
4W
@Y 4 =!2W: (6)
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Consider a uniform grid having

0 = X0¡X1¡ · · ·¡XN = 1

and

0 = Y0¡Y1¡ · · ·¡YN = 1:

To formulate the eigenvalue problem, we introduce a column vector W as

W= (W0;0; : : : ; W0;N ;W1;0; : : : ; WN;N )T; (7)

with (N + 1)2 entries Wi;j =W (Xi; Yj); (i; j = 0; 1; : : : ; N ).
Let us de4ne the (N +1)× (N +1) diIerential matrices Dnq (q=X; Y ; n=1; 2; : : :), with their

elements given by

[Dnq]i; j = �
(n)
�;J(qi − qj) (i; j = 0; : : : ; N ); (8)

where ��;J(qi − qj) is a DSC kernel of the delta type [22]. Here J is the grid spacing and �
determines the eIective computational bandwidth. Many DSC kernels were constructed in the
original work. Here, we choose a simple example, the regularized Shannon’s delta kernel

��;J(q− qj) =
sin[(&=J)(q− qj)]
(&=J)(q− qj) e−((q−qj)2=2�2) (9)

to illustrate the algorithm and its application. Other DSC kernels were discussed in the original
work [22]. The performance of a few DSC kernels for Huid dynamic computations and structural
analysis was compared in Ref. [32]. The diIerentiation in Eq. (8) can be analytically carried
out as

�(n)�;J(qi − qj) =
[(

d
dq

)n
��;J(q− qj)

]
q=qi

= Cnm; (10)

where, for a uniform grid spacing, m= (qi − qj)=J. Here the matrix is banded to i − j = m=
−M; : : : ; 0; : : : ; M . Therefore, the system of linear algebraic equations for the governing PDE (6)
is given by

(D4
X ⊗ I+ 2�2D2

X ⊗D2
Y + �

4I ⊗D4
Y )W=!2W; (11)

where I is the (N + 1)2 unit matrix and ⊗ denotes the tensorial product. Eigenvalues can be
evaluated from Eq. (11) by using a standard solver. However, appropriate boundary conditions
are to be implemented before calculating eigenvalues. This is described below.

We 4rst note that boundary condition W = 0 is easily speci4ed at the edge. To implement
other boundary conditions, we assume, for a function f, the following relation between the
inner nodes and the outer nodes on the left boundary:

f(X−m)− f(X0) =

 J∑
j=0

ajmX
j
m


 [(f(Xm)− f(X0)]; (12)

where coeGcients ajm (m= 1; : : : ; M; j = 0; 1; : : : ; J ) are to be determined by the boundary con-
ditions. For the three types of boundary conditions described earlier, we only need to consider



G.W. Wei et al. / International Journal of Mechanical Sciences 43 (2001) 1731–1746 1737

the zeroth order term in the power of X j. Therefore we set a0m ≡ am and, after rearrangement,
obtain

f(X−m) = amf(Xm) + (1− am)f(X0); m= 1; 2; : : : ; M: (13)

According to Eq. (10), the 4rst and the second derivatives of f on the boundary are approx-
imated by

f′(X0) =
M∑

m=−M
C1
mf(Xm) (14)

=

[
C1
0 −

M∑
m=1

(1− am)C1
m

]
f(X0) +

M∑
m=1

(1− am)C1
mf(Xm) (15)

and

f′′(X0) =
M∑

m=−M
C2
mf(Xm)

=

[
C2
0 +

M∑
m=1

(1− am)C2
m

]
f(X0) +

M∑
m=1

(1 + am)C2
mf(xm);

respectively. Here, the symmetries of the DSC coeGcients have been used.
For simply supported edges, the boundary conditions reduce to

f(X0) = 0; f′′(X0) = 0: (16)

These are satis4ed by choosing am =−1; m= 1; 2; : : : ; M . This is the so called anti-symmetric
extension [22].

For clamped edges, the boundary conditions require
f(X0) = 0; f′(X0) = 0: (17)

These are satis4ed by am = 1; m= 1; 2; : : : ; M . This is the symmetric extension [22].
For a transversely supported edge, the boundary conditions are

f(X0) = 0; f′′(X0) + Kf′(X0) = 0: (18)

Hence, the equation is given by
M∑
m=1

(1 + am)C2
mf(Xm) + K

M∑
m=1

(1− am)C1
mf(Xm) = 0: (19)

Further simpli4cation of the above equation gives
M∑
m=1

[(1 + am)C2
m + K(1− am)C1

m]f(Xm) = 0: (20)

One way to satisfy Eq. (20) is to choose

am =
KC1

m + C2
m

KC1
m − C2

m
; m= 1; 2; : : : ; M: (21)

Expressions for the right, top and bottom boundaries can be derived in a similar way.
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For the continuous nonuniform (elastic) boundary conditions, the rotational spring coeGcients
K1(Y ); K2(Y ); K3(X ) and K4(X ) are taken as

K1(Y ) = K2(Y ) = K ′ (Y − l1)(l2 − Y )
(l2 − l1) (06 l1¡l2 6 1); (22)

K3(X ) = K4(X ) = K ′ (X − l′1)(l′2 − X )
(l′2 − l′1)�

(06 l′1¡l′2 6 1); (23)

where K ′ is the nondimensional spring coeGcient, K ′=K0a3=D, and l1(l′1); l2(l
′
2) are the nondi-

mensional starting and ending points of elastic boundary, respectively. Obviously, the imple-
mentation of the rotational spring coeGcients leads to a minor modi4cation of the matrix in
Eq. (11).

3. Results and discussion

Numerical solutions for the vibration of rectangular plates with mixed boundary conditions are
presented to illustrate the versatility, accuracy and reliability of the DSC algorithm. Convergence
tests and comparison studies are carried out to ascertain the validity of the proposed method
for the undertakings. Two sets of DSC parameters are used, i.e., �=2:8J when M =25 (used
in convergence studies), and �=3:2J when M =32 (used in all other calculations). Qian and
Wei [36] have shown that there is a wide range of � values that provide accurate and reliable
results. The present choices fall in the “reliable range” of � values.

3.1. Convergence study

We consider 4ve diIerent cases (see Table 1) to investigate the convergence of the DSC
algorithm. These include the mixing between simply supported and clamped boundary conditions
(Cases 1 and 2), the mixing between transversely supported and clamped edges (Case 3), and
the mixing between transversely supported and simply supported edges (Cases 4 and 5).

In all convergence tests, we examine the consistency of the 4rst 4ve eigenvalues with respect
to the variation of grid size N . In Case 1, a simply supported plate partially clamped at one
edge, we observe a very good overall convergence over a number of grid sizes. In fact, the
third eigenvalue converges slightly slower compared to others. Therefore, the third eigenmode
must have a node distribution which is very sensitive to the discontinuity at the mixing point
of two boundary conditions. Case 2 has a partially simply supported and partially clamped
con4guration. Such a case is more diGcult to converge due to the stress concentration induced
by the discontinuous boundary conditions. However, the DSC performs quite well for this case.
Very good convergence is observed for modes 3 and 4.

In Case 3, the mixing is between clamped and transversely supported edges. Uniform rota-
tional spring support along the boundary is considered in this case and the nondimensional spring
coeGcients are chosen as K =100. For this case, we have observed very good convergence. In
the last two calculations, we have also chosen the nondimensional spring coeGcient K ′=100. It
is observed that an arbitrary combination between simply supported and transversely supported
edges produces little problem for the present computations. It is noted that the Rayleigh–Ritz
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Table 1
Convergence study of the frequency parameters

Boundary conditions Mesh size !1 !2 !3 !4 !5

N = 26 22.40 49.87 55.50 82.26 99.66
N = 28 22.41 49.87 55.51 82.26 99.66
N = 30 22.42 49.88 55.52 82.26 99.66
N = 32 22.42 49.88 55.53 82.26 99.66
N = 34 22.42 49.88 55.54 82.26 99.67

N = 26 27.75 60.33 61.00 94.55 111.80
N = 28 27.77 60.37 61.00 94.54 111.85
N = 30 27.78 60.40 61.00 94.54 111.88
N = 32 27.80 60.43 61.00 94.54 111.92
N = 34 27.81 60.45 61.00 94.54 111.94

N = 26 35.38 72.20 72.21 106.56 129.57
N = 28 35.38 72.19 72.20 106.54 129.55
N = 30 35.38 72.19 72.20 106.53 129.53
N = 32 35.38 72.18 72.20 106.52 129.52
N = 34 35.38 72.18 72.20 106.51 129.51

N = 26 24.36 54.21 57.00 86.87 103.89
N = 28 24.35 54.20 56.98 86.86 103.88
N = 30 24.35 54.20 56.98 86.85 103.87
N = 32 24.35 54.19 56.98 86.84 103.86
N = 34 24.35 54.19 56.98 86.83 103.85

N = 26 24.55 54.97 54.97 85.15 104.92
N = 28 24.55 54.96 54.96 85.13 104.90
N = 30 24.54 54.96 54.96 85.13 104.88
N = 32 24.54 54.95 54.95 85.12 104.86
N = 34 24.54 54.95 54.95 85.11 104.85

method generates upper bound solutions, whereas, the present approach generates results from
the diIerential equation and its solution cannot be determined as being upper bound or lower
bound. However, for a reasonable grid size, the DSC solution becomes grid independent and
converges to the exact solution [26].
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Table 2
Natural frequencies of simply supported but partially clamped square plates

Boundary conditions !1 !2 !3 !4 !5

Nowacki [38], Ota and Hamada [1] 22.4 — — — —
Cheung [7] 22.5 — — — —
Keer and Stahl [2] 22.49 — — — —
Rao et al. [10] 22.96 — — — —
Narita [5] 22.63 50.04 55.95 82.34 99.71
Gorman [39] 22.48 — — — —
Fan and Cheung [6] 22.73 50.15 56.23 — —
Mizusawa et al. [11] 22.71 50.10 56.13 82.37 99.73
Liew et al. [37] 22.40 — — — —
Laura et al. [14] 21.99 — — — —
Shu and Wang [16] 22.42 49.93 55.51 82.32 99.64
DSC 22.42 49.88 55.54 82.26 99.67

Piskunov [40] 26.3 — — — —
Cheung [7] 28.1 — — — —
Fan and Cheung [6] 28.65 61.06 62.48 — —
Mizusawa et al. [11] 28.58 61.01 62.23 94.53 113.40
Shu and Wang [16] 28.28 61.01 61.56 94.29 113.92
DSC 27.81 60.45 61.00 94.54 111.94

Ota and Hamada [1] 25.5 — — — —
Cheung [7] 25.9 — — — —
Fan and Cheung [6] 26.37 52.23 61.78 — —
Laura et al. [14] 25.41 — — — —
DSC 25.59 52.10 59.80 88.14 100.54

While Cases 1 and 2 are standard testing problems in the literature, we noted that Cases 3,
4 and 5 have not been previously reported. In the next section, comparison is made between
the present DSC results and those in the literature.

3.2. Plates with simply supported but partially clamped edges

Unlike the simply supported case which admits an analytical solution, plates with mixed
boundary conditions have no analytical solution available yet. To further validate the present
algorithm, we compare the DSC results with those available in the literature. We 4rst examine
the natural frequencies of simply supported but partially clamped square plates. This problem
has been investigated by a number of researchers for testing their computational methods.

In Table 2, the results obtained by using the DSC approach are listed for the 4rst 4ve
eigenvalues. For Case 1, the DSC eigenvalues agree with previous results. In particular, we have
an excellent agreement with those of Shu and Wang [16] obtained by using their generalized
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Table 3
Natural frequencies of simply supported but partially clamped square plates centered in the middle with diIerent
width ratios

Ratio !1 !2 !3 !4 !5

1
4 Cheung [7] 26.46 50.83 61.11 — —

Fan and Cheung [6] 27.27 51.63 64.72 — —
DSC 26.38 50.64 62.35 82.26 98.85

1
3 Kurata and Okamura [41] 27.31

Keer and Stahl [2] 27.30
Rao et al. [10] 27.85
Narita [5] 28.10 52.85 66.86 — —
Cheung [7] 27.63 52.39 66.24 — —
Fan and Cheung [6] 27.83 52.41 66.25 — —
DSC 27.23 51.51 64.49 84.65 99.16

1
2 Ota et al. [1] 28.3 — — — —

Keer and Stahl [2] 28.37 — — — —
Rao et al. [10] 28.62 — — — —
Narita [5] 28.44 53.49 67.85 — —
Cheung [7] 28.94 54.26 68.07 — —
Fan and Cheung [6] 28.65 54.00 68.58 — —
DSC 28.36 53.29 67.60 89.87 100.39

1
2 Liew et al. [37] 24.72 56.97 — 96.37 100.6

Narita [5] 26.18 58.70 58.70 98.58 102.0
DSC 26.66 56.90 62.30 96.33 105.26

diIerential quadrature method. Case 2 is a half simply supported and half clamped plate. We
have observed that the DSC eigenvalues are slightly smaller than those of Shu and Wang [16],
and of Mizusawa et al. [9] except for the 4th mode. The last example listed in Table 2 is
Case 6, which is a simply supported plate partially clamped at the end of two opposite edges.
This case was studied by Fan and Cheung [6] by using the 4nite strip method, and others
[1,7,14]. The DSC results are consistent with those obtained by other methods.

In the rest of this subsection, we examine the DSC approach for variable ratio of the clamped
edge in mainly simply supported plates (see Table 3).

The ratio of the clamped edge in Case 7 varies from 1
4 ;

1
3 to 1

2 . This case was studied by
Ota et al. [1], Narita [5], Cheung [7], Fan and Cheung [6], and Keer and Stahl [2]. We have
listed the 4rst 4ve eigenvalues obtained by the DSC approach. It is found that the DSC results
are in excellent agreement with those of other authors. Case 8 is a simply supported rectangular
plate clamped at the four corners. Even for the 4rst eigenvalue, a large discrepancy exists in the
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Table 4
Frequency parameters for plate having mixed and nonuniform boundary conditions

� K ′ !1 !2 !3 !4 !5

0.5 0 Shu and Wang [16] 12.773 21.014 34.115 42.107 49.643
DSC 12.767 20.994 34.072 42.104 49.597

0.1 Shu and Wang [16] 12.776 21.020 34.123 42.108 49.646
DSC 12.770 21.001 34.081 42.104 49.600

1 Shu and Wang [16] 12.799 21.072 34.190 42.113 49.669
DSC 12.796 21.058 34.158 42.111 49.628

10 Shu and Wang [16] 12.966 21.473 34.747 42.160 49.860
DSC 12.976 21.496 34.773 42.162 49.847

100 Shu and Wang [16] 13.336 22.517 36.456 42.328 50.508
DSC 13.339 22.531 36.485 42.335 50.519

106 Shu and Wang [16] 13.490 23.015 37.410 42.455 50.983
DSC 13.483 22.992 37.361 42.453 50.958

1.0 0 Shu and Wang [16] 22.420 49.932 55.494 82.308 99.641
DSC 22.424 49.881 55.535 82.262 99.665

0.1 Shu and Wang [16] 22.433 49.937 55.512 82.318 99.643
DSC 22.438 49.888 55.553 82.273 99.667

1 Shu and Wang [16] 22.544 49.985 55.656 82.406 99.660
DSC 22.562 49.942 55.714 82.373 99.687

10 Shu and Wang [16] 23.426 50.387 56.904 83.194 99.816
DSC 23.520 50.385 57.086 83.250 99.861

100 Shu and Wang [16] 25.891 51.818 61.638 86.742 100.579
DSC 25.977 51.844 61.884 86.921 100.659

106 Shu and Wang [16] 27.191 52.950 65.065 90.288 101.508
DSC 27.195 52.908 65.094 90.260 101.539

0.5 0 Shu and Wang [16] 24.065 29.895 40.898 57.256 63.662
DSC 24.064 29.892 40.893 57.251 63.666

0.1 Shu and Wang [16] 24.066 29.899 40.905 57.264 63.662
DSC 24.066 29.897 40.901 57.261 63.667

1 Shu and Wang [16] 24.079 29.937 40.964 57.337 63.666
DSC 24.080 29.940 40.969 57.344 63.672

10 Shu and Wang [16] 24.172 30.234 41.453 57.954 63.701
DSC 24.181 30.264 41.510 58.037 63.711

100 Shu and Wang [16] 24.383 31.014 42.950 60.106 63.834
DSC 24.389 31.040 43.014 60.224 63.847

106 Shu and Wang [16] 24.472 31.383 43.769 61.450 63.945
DSC 24.472 31.381 43.766 61.451 63.949

literature between the results of Narita [5] obtained by using the series expansion and those of
Liew et al. [37] obtained by using the Rayleigh based substructure method. The present DSC
results agree well with that of Narita [5] for mode 1 and those of Liew et al. [37] for modes
2 and 4.
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Table 4 (continued)

� K ′ !1 !2 !3 !4 !5

1.0 0 Shu and Wang [16] 30.973 59.807 70.445 96.760 110.942
DSC 31.003 59.913 70.452 96.822 111.065

0.1 Shu and Wang [16] 30.983 59.824 70.449 96.770 110.960
DSC 31.014 59.931 70.456 96.832 111.086

1 Shu and Wang [16] 31.067 59.968 70.482 96.854 111.126
DSC 31.108 60.094 70.493 96.928 111.274

10 Shu and Wang [16] 31.743 61.199 70.733 97.604 112.612
DSC 31.846 61.452 70.813 97.759 112.935

100 Shu and Wang [16] 33.674 65.566 72.035 100.879 119.253
DSC 33.778 65.875 72.109 101.124 119.789

106 Shu and Wang [16] 34.691 68.317 73.274 103.913 125.232
DSC 34.735 68.445 73.280 103.963 125.387

Table 5
Frequency parameters for plate having mixed and nonuniform boundary conditions

K ′ !1 !2 !3 !4 !5

0 19.739 49.348 49.348 78.957 98.696
0.1 19.757 49.360 49.371 78.974 98.707
1 19.909 49.466 49.572 79.124 98.804
10 21.081 50.383 51.260 80.474 99.671
100 24.351 54.187 56.973 86.834 103.852
106 27.806 60.446 61.000 94.535 111.939

0 19.739 49.348 49.348 78.957 98.696
0.1 19.749 49.358 49.358 78.970 98.704
1 19.835 49.451 49.451 79.083 98.777
10 20.617 50.300 50.300 80.114 99.483
100 24.539 54.948 54.948 85.113 104.847
106 31.474 64.254 64.254 91.936 115.824

3.3. Plates with mixed and nonuniform edges

Plates with mixed and nonuniform edges received relatively less attention in the literature. By
using the global generalized diIerential quadrature method, Shu and Wang [16] provided some
results for the Cases 9 and 10 with a range of spring coeGcients varying from 0 to 106. The
partial supports of the spring extend over one half of the plate edge length. We have carried out
the same computations on these two con4gurations. The DSC results are compared with those
of Shu and Wang in Table 4. The agreement between the two approaches are satisfactory.
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Based on the con4dence from the convergence study of partially transversely supported
edges (Cases 4 and 5), we also enlist the spring coeGcient variation study of these two cases
in Table 5.

The results are presented for a variety of nondimensional spring coeGcients K ′ of 0, 0.1,
1.0, 10, 100 and 106. In fact, the amplitude of the spring coeGcient K ′ can be used to model
physical condition varying from simply supported (K ′=0) to clamped (K ′ → ∞). In both cases
computed, all 4ve frequencies increase monotonically as the nondimensional spring coeGcient
increases from 0 to 106. This problem does not admit an analytical solution. Based on the
accuracy and convergence tests conducted in the last section, it is believed that the DSC results
are reliable.

4. Conclusion

This work introduces the discrete singular convolution (DSC) algorithm for the treatment of
plates with mixed and nonuniform boundary conditions. A uni4ed scheme is proposed for treat-
ing simply supported, clamped and transversely supported with nonuniform elastic rotational
restraint edges. Convergence tests are performed to validate the proposed approach for handling
various combinations of the three types of boundary conditions. A number of numerical ex-
amples are considered to explore the usefulness and test the accuracy of the present method.
The approach has been validated by convergence studies and comparisons with existing results
in the literature. It is found that the convergence of the DSC approach is very good and the
results agree well with those obtained by other researchers.

We have also computed some new results for plates with combinations of the mixed and
nonuniform edges. Frequency parameters for plates with a variety of spring coeGcients are pre-
dicted. These cases are also validated by convergence tests. All numerical experiments indicate
that the proposed DSC approach is a potential method for plate and structural analysis.
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