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Robustness and Cross-lingual Transfer: An
Exploration of Out-Of-Distribution Scenario in

Natural Language Processing
Sicheng Yu

Abstract

Most traditional machine learning or deep learning methods are based on the premise

that training data and test data are independent and identical distributed, i.e., IID.

However, it is just an ideal situation. In real-world applications, test set and training

data often follow different distributions, which we refer to as the out of distribution,

i.e., OOD, setting. As a result, models trained with traditional methods always suf-

fer from an undesirable performance drop on the OOD test set. It’s necessary to

develop techniques to solve this problem for real applications.

In this dissertation, we present four pieces of work in the direction of OOD in

Natural Language Processing (NLP) which can be further grouped into two sub-

categories: adversarial robustness and cross-lingual transfer.

For the sub-category of adversarial robustness, the two work are summarized as

follows:

1. We target at the question answering task. Question answering aims to find

the answer given a passage, a question and possibly a set of options. Often-

times question answering models over rely on some shortcut patterns, e.g.,

word alignment between question and passage, instead of robust reasoning.

Therefore, standard question answering models may fail on adversarial OOD

sets where the shortcut fails to work. To this end, we analyze the shortcut in

question answering task with the help of causal graphs and propose a coun-

terfactual variable control method to mitigate the problem. The experiment

results on different adversarial OOD sets show that our method improves the

robustness and interpretability of question answering models.
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2. We explore the model debiasing in the scenario of unknown bias where there

is no prior knowledge about the bias for natural language understanding tasks.

From the causal perspective, vulnerability in deep models is caused by the

confounder, e.g., the natural bias. A general method in causal inference for

deconfounding is intervention. We propose an automatic and multi-granular

intervention method for debiasing the natural language understanding models.

With the help of the it, we achieve new state-of-the-art performance on three

tasks under their OOD settings.

For the sub-category of cross-lingual transfer, the two work are summarized as

follows:

1. We investigate the zero-shot and few-shot cross-lingual understanding tasks

where the model is only trained with English data (zero-shot) and very few

target language data (few-shot), then we directly apply the model on the target

language which is OOD compared to the training data. We propose a counter-

factual syntax method which injects the universal syntax into the model and

further enforces the model to focus on the syntax information to assist the

cross-lingual transfer. Such enriched and utilized syntax information helps

the model to attain state-of-the-art performance on three cross-lingual under-

standing benchmarks.

2. We focus on the issue of translationese artifacts in translate-train method for

cross-lingual transfer where we use the translated text of the target language

for data augmentation. Although it introduces data of target language in train-

ing, it also brings the gap between originals and translationese. We propose

an approach to mitigate the gap on the source language and apply it on tar-

get languages. The results demonstrate that our approach outperforms several

strong baselines.
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Chapter 1

Introduction

Machine learning methods have demonstrated their power in diverse areas, e.g.,

computer vision, natural language processing and recommendation systems. An

indispensable assumption for the majority of machine learning methods is that the

training data and the test data follow the identical and independent distribution, i.e.,

IID. However, this is just an ideal hypothesis, which is very difficult to achieve in

practical applications. For example, a multiple-choice question answering model

is trained on the samples that the longest options have higher probability to be the

correct answer. The resulted model would perform very well on the test data with

similar distribution. However, when it is used to handle the test data with different

distribution, e.g., correctness is unrelated to the length of the option, it will likely

suffer a significant performance drop.

In this dissertation, we term such test data which is different from the training

data as out-of-distribution data, i.e., OOD. As mentioned above, it is necessary for

the natural language processing (NLP) community to explore how to mitigate the

performance drop on OOD, and this is the focus of this dissertation.
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1.1 Two OOD scenarios: Robustness and Cross-

lingual Transfer

There are various types of OOD. In this dissertation, we focus on two types, namely,

robustness and cross-lingual transfer, as described below. A more comprehensive

survey is conducted in Chapter 2.

• The first type of OOD in this dissertation is adversarial attacks, which are

designed to expose the vulnerability of models. Models that can defend such

attacks are said to have adversarial robustness. A key type of adversarial at-

tack is the attacks towards shortcut correlation in a dataset. A representative

example is the HANS adversarial set [105] for natural language inference de-

signed for the MNLI dataset [171]. The natural language inference (NLI) task

requires a model to identify the entailment relationship between a “premise”

sentence and a “hypothesis” sentence: the relationship between the two sen-

tences is considered “entailment” if the hypothesis can be inferred from the

premise, “contradictory” if the two sentences contradict each other, and “neu-

tral” if the two sentences are not related. Although ideally an NLI model

needs deep understanding of the semantics of the two sentences to predict

their entailment relation, oftentimes an NLI model learns shortcut correlations

between some superficial patterns of the two sentences and the entailment la-

bel. For example, a common shortcut correlation is that the probability of

“entailment” is proportional to the lexical overlap ratio between the two sen-

tences. NLI models heavily relying on such a bias may collapse in specially

designed OOD adversarial dataset. For example, “Mike ate an apple” and “An

apple ate Mike” have totally the same bag of words; however, their meanings

are completely the opposite.

• The second type of OOD is cross-lingual transfer, which is unique in nat-

ural language processing. Cross-lingual transfer is similar to cross-domain
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transfer but the different domains here are different languages. The model is

expected to learn the transferability across languages, e.g., a model trained on

English is expected to work directly on German text under zero-shot settings.

It is worth nothing that the two types of OOD settings do not cover all OOD

settings in NLP. However, we do not attempt to comprehensively review all OOD

settings in NLP in this dissertation. Rather, we explore the two typical OOD settings

above.

1.2 Research Contributions

In this thesis, we aim to develop general, task-agnostic methods to tackle adver-

sarial attacks and cross-lingual transfer problems. For adversarial robustness, we

focus on developing general methods that can prevent NLP models from relying on

shortcut correlations in the training dataset; for cross-lingual transfer, we focus on

methods that can overcome the language differences between the source and the tar-

get languages. Without loss of generalizability, we adopt several natural language

understanding tasks, e.g., question answering and natural language inference, as test

beds in this thesis due to the rich set of existing datasets for these tasks.

We summarize our key contributions in adversarial robustness as follows:

• First, we explore the scenario where the shortcut correlation is already known.

We focus on the question answering (QA) task for this work although our

method presumably can also be applied to other tasks with some modifica-

tions. Under the setting of multiple-choice question answering where the

model needs to select the best option given a passage and a question, we find

that a trained QA model performs surprisingly well when the question is not

given. The reason is likely that the QA model overly relies on the shortcut

of word matching between the words in a candidate answer and words in

the given passage, instead of real comprehension. Thus the model predicts
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the option with the highest degree of lexical overlap with the passage while

ignoring the question.

Motivated by this, we inspect the QA model through the lens of causal-

ity [117]. We formulate the shortcut and robust path as direct path and indirect

path in a causal graph. Then we train the model to disentangle the robust path

and the direct path through a multi-branch architecture. Each branch encodes

either the shortcut (direct path) or the robust path (indirect path). During in-

ference, the indirect effect is computed to enhance the robustness of the QA

model. We conduct experiments on multiple-choice question answering and

span-extraction question answering. The results on diverse adversarial sets

demonstrate the effectiveness of our method.

• Our first work above assumes the accessibility of the bias characteristic and

processes the bias samples through reweighting. However, oftentimes the

bias is unknown or implicit when we face a new task or dataset. Further-

more, it is demonstrated that sample reweighting with a pre-defined bias

model may waste data and mislead the resulted model [1]. In the second

piece of work, we also address the aforementioned issues from the perspec-

tive of causality but from another angle. We regard the confounding bias as

the reason for models to learn spurious correlations. While a common so-

lution is to perform intervention, existing methods handle only known and

single confounder [122], but in many NLU tasks the counfounders can be

both unknown and multifactorial. Thus we propose a novel interventional

training method performing multi-granular intervention with identified multi-

factorial confounders. Our experiments on three NLU tasks, namely, natural

language inference, fact verification and paraphrase identification, show that

our method achieves state-of-the-art performance.

We summarize our key contributions in cross-lingual transfer as follows:

• Our focus point is zero-shot settings, i.e., models trained on a source language
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are directly tested on a target language. Normally, models trained directly on

a source language overfit the source language and suffer a significant per-

formance drop on a target language. We tackle this issue by incorporating

language-agnostic information, specifically, universal syntax such as depen-

dency relations and POS tags, into language models, based on the observation

that universal syntax is transferable across different languages. Specifically,

universal dependency and universal POS tags where “universal” denotes the

annotation or label for dependency and POS tags are shared across all the lan-

guages, e.g., the verb in Chinese is termed as “VERB” and the verb in English

is also termed as “VERB”. Our approach includes the design of syntax-aware

networks as well as a counterfactual training method to implicitly force the

networks to learn not only the semantics but also the syntax. To evaluate our

method, we conduct cross-lingual experiments on natural language inference

and question answering using mBERT and XLM-R as network backbones.

Our approach achieves the state-of-the-art performance without using auxil-

iary dataset.

• The second work related to cross-lingual transfer is based on a more practi-

cal standard approach, i.e., the translate-train approach. The key idea of this

approach is to use the translator of the target language to generate training

data to mitigate the gap between source and target languages. However, its

performance is often hampered by the artifacts in the translated texts (trans-

lationese). We discover that such artifacts have common patterns in different

languages and can be modeled by deep learning. We thus propose an approach

to mitigate such effect on the training data of a source language (whose orig-

inal and translationese are both available), and apply the learned module to

facilitate the inference on the target language. We conduct extensive exper-

iments on the multilingual QA dataset TyDiQA. Our results show that our

approach can outperform strong baselines.
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Robustness and Cross-lingual
Transfer: An Exploration of Out-

Of-Distribution Scenario in Natural
Language Processing

Chapter 2

Literature Review

Part I

Adversarial Robustness

Part II
Cross-lingual Transfer

Chapter 3

Counterfactual Variable
Control for Robust and

Interpretable QA

Chapter 4

Interventional Training for

OOD in NLU

Bias characteristic
must be known.

Chapter 5

Counterfactual Syntax for

cross-lingual transfer

Translator can
introduces data in

training.

Chapter 6

Translate-train Embracing
Translationese Artifacts

Figure 1.1: The organization of the dissertation.

1.3 Dissertation Structure

As shown in Figure 1.1, the remainder of this dissertation is organized as follows:

We will first review some related literature corresponding to this dissertation in

Chapter 2. Next, we will dive into Part I, adversarial robustness, and Part II, cross-

lingual transfer, respectively.

In Part I, we have two chapters (Chapter 3 and Chapter 4). First we will elabo-

rate on our first work of robustness in question answering in Chapter 3 using a novel

counterfactual variable control method. This work is under review by the IEEE

Transactions on Neural Networks and Learning Systems (TNNLS). Second work

targets at a more practical scenario: bias is not known. To address the unknown

bias problem, we propose an automatic and multi-factorial intervention method for

general natural language understanding tasks. This work was published at the 2022

Conference on Empirical Methods in Natural Language Processing (EMNLP).

In Part II, we have two chapters (Chapter 5 and Chapter 6). Chapter 5 covers our

second work on cross-lingual OOD by introducing syntax feature into cross-lingual
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transfer. This work was published at the Joint Conference of the 59th Annual Meet-

ing of the Association for Computational Linguistics and the 11th International Joint

Conference on Natural Language Processing (ACL-IJCNLP 2021). In Chapter 6,

we go through our next work focusing on the translate-train setting for cross-lingual

transfer. Specifically, we explore the effect and solution for translationese artifacts.

This work was published at the 60th Annual Meeting of the Association for Com-

putational Linguistics (ACL 2022).

Finally, we present some directions of future work for out-of-distribution NLP

research in Chapter 7.
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Chapter 2

Literature Review

Due to the diverse and complex characteristic of different type of OOD, researchers

have proposed various solutions for them. In this chapter, we first give a brief

introduction to common scenarios of OOD not mentioned in Chapter 1. Noted

that there may also be overlap between the different kinds of OOD scenarios. For

example, the differences between the training and the test data may include both

domain difference and language difference at the same time. Then we dive into

the two scenarios that we focus in this dissertation, i.e., adversarial robustness and

cross-lingual transfer, and introduce the existing methods, respectively.

2.1 Other Out-Of-Distribution Scenarios

2.1.1 Cross-domain Transfer

In the scenario of cross-domain transfer, data is from a different domain (or a dif-

ferent dataset). We give some examples in Figure 2.1 using sentiment analysis task.

The sentiment analysis model is expected to generalize its ability from one domain,

i.e., the source domain, to another domain, i.e., the target domain 1. Most of the

existing work can be divided into two groups. The first group of work is based

1The application may have more than one source domain or more than one target domain in
cross-domain transfer.
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Domain: Book

Label: Positive
I received this as a Christmas gift, and I read it again
and again. A must-have for comic book fans.

Label: Negative
I wish I had the time spent reading this book back so I
could use it for better purposes.  This book wasted my
life

Domain: Housewares

Label: Positive
I was so thrilled when I unpacked my processor.  It is 
so high quality and professional in both looks and
performance.  


Label: Negative
It also doesn't work 100% of the time, and we're not
sure why.  When we fill it, it seems to work fairly well
right after but it either does not have as many sprays
as it is supposed to, or it isn't working very long.

Figure 2.1: Examples of cross-domain transfer scenario from multi-domain senti-
ment analysis dataset [10] with two domains: books and housewares.

on the domain generalization setting [88, 89, 90, 109] where the model only meets

the data from the source domain without any data from the target domain. Since

the target domain is the unseen domain in this setting, this setting is also the most

challenging one in cross-domain transfer. The second group of work focus on a

more practical setting, i.e., we can collect some unlabeled data from target domain,

which is also termed as unsupervised domain adaption [76, 172, 131]. In unsuper-

vised doamain adaptation, there are mainly four lines of work. One line of work

applies loss modification, e.g., adversarial loss [156, 54] guides the model to gen-

erate domain-agnostic feature or the weighting term for each sample [66]. Another

line of work resorts to the pivot feature. Specifically, these methods construct the

shared feature space for both the source domain and the target domain using the

common feature [115, 197, 198, 199]. For example, the word “good” is useful in

both of the book domain and houseware domain. The third line of work tries to an-

notate the unlabeled data with the pseudo-label [183, 200] using the model trained

on the source domain. The last line of work comes with the pretrained models, e.g.,

domain-oriented BERT variants [46, 42, ?].

2.1.2 Few-shot Learning

Few-shot learning displays a scenario where we only get access to very few training

data [169]. For illustration, Figure 2.2 shows an example of few-shot learning for

relation classification task. Here “3 way 2 shot” means there are three classes and
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Training data

Label: Capital of 
London is the capital of the U.K.

Washington is the capital of the U.S.A.

Label: Member of
Newton served as the president of the Royal Society.

Leibniz was a member of the Prussian Academy of Sciences.


Label: Birth name
Samuel Langhorne Clemens, better known by his pen name Mark Twain, was an
American writer.

Alexei Maximovich Peshkov, primarily known as Maxim Gorky, was a Russian and

Soviet writer.


Figure 2.2: Examples of few-shot learning scenario from FewRel [47] with 3 way 2
shot.

each class has two samples in training. In this scenario, it is non-trivial for the model

to construct a high-quality data distribution for each class thus the gap between

training data and test data is inevitable. The work proposed for few-shot learning

include applying the data augmentation in the training [8, 35], meta-learning [32,

149], etc.

2.1.3 Long-tailed Learning

In the data collection process, it is hard to keep the label class balance due to the

nature of the real world. For example, we show an example in the Figure 2.3 which

is borrowed from the Few-NERD [26], Within the parent category “organization”,

the child category “company” occupies a very large proportion, while the propor-

tion of the child category “sportsteam” is very small. The frequent class and rare

class are called head class and tail class respectively, and such a long-tailed phe-

nomenon is studied as Zipf’s Law [133]. As a result, the model may perform poorly

in the tail class due to the lack of training if the training data follows a long-tailed

distribution. The solutions for long-tailed learning are mainly derived from several

ideas. First, the target is to maintain a balanced dataset or training loss, e.g., resam-

pling, and reweighting [14]. Second, the two-stage strategy [69] is proposed where

the backbone is learned in the first stage and the classifier is learned in the second

stage with the backbone fixed. Third, the idea of ensemble learning is borrowed
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Figure 2.3: Example of long-tailed learning scenario borrowed from the figure in
Few-NERD [26].

into long-tailed learning by introducing a multi-expert model [167].

2.2 Adversarial Robustness

Although large-scale pre-trained language models have shown their strength in lan-

guage understanding, they could be easily fooled by simple adversarial attacks, e.g.,

adding distractor sentences [189] or manipulating the semantic meaning by arrang-

ing the words [105]. In this section, we first outline the common types of adversarial

attacks and focus on the benchmarks used or proposed in this dissertation. Then we

zoom in on the methods for adversarial robustness for certain type of attacks against

in this dissertation.

2.2.1 Adversarial Attacks

An adversarial sample is usually constructed by perturbation or modification on

the original sample. The target is to fool the model, i.e., the model would predict
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incorrectly on the adversarial sample. From the angle of the accessibility of the

model, the adversarial attack can be distinguished as white-box attack and black-

box attack. Our dissertation mainly tackles the black-box attack.

The white-box assumes the validness of the model including its architecture,

parameter, intermediate output, gradient, etc. The work belonging to the white-

box attack can be roughly summarized into three groups. The first group is based

on the Fast Gradient Sign Method (FGSM) based on the gradient of loss. FGSM

is originally applied on image [38], and extended by the NLP community. Typical

work include TextFool [92] and its upgraded version [140]. The FGSM-based attack

usually applies the perturbation on the character level or the word level. The second

group resorts to the directional derivatives. A well-known work is HotFlip [28]

carried on the character level using swap, insert and delete. The third group utilizes

the attention scores within the model computation by replacing the word which

receives the largest attention score [11].

Black-box attack lacks the information of the model except for the final output,

thus usually build on the heuristics. From the aspect of the relationship between the

ground-truth label of the adversarial sample and the original sample, we define two

types of black-box attacks, i.e., label-reserved black-box attack and label-altered

black-box attack. Label-reserved black-box attack method utilizes paraphrasing to

generate semantically equivalent sentences. [61] produces adversarial samples us-

ing a syntactically controlled paraphrase network to manipulate the syntactic struc-

ture of the sentences. [134] proposes universal replacement rules for semantically

equivalent sentences, e.g., adding another question mark to the question sentence.

Currently, the label-altered black-box attack considers the characteristics of the task

and the original dataset and summarizes the bias existed in the dataset. In the adver-

sarial sample generating process, the attacker modifies the sample so that the bias

is misleading. For example, the lexical overlap bias in the natural language infer-

ence task may induce the model to predict entailment when the input two sentences

share a large ratio of words. The attacker designs the adversarial sample by mak-
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ing the two sentences with opposite semantic meanings while maintaining the same

bag-of-words [105].

Bias Type Adversarial Strategy Task Dataset

AddSent [63] Word alignment Concatenation adversaries QA SQuAD
AddVerb∗ Word alignment Concatenation adversaries QA SQuAD
Add1Truth2Opt∗ Word alignment Option Modification QA M, D, R
Add2Truth2Opt∗ Word alignment Option Modification QA M, D, R
Add1Pas2Opt∗ Word alignment Concatenation adversaries QA M, D, R
Add1Ent2Pas∗ Word alignment Word scrambling QA M, D, R
HANS [105] Lexical overlap ratio Template-based NLI MultiNLI
FEVER Symm Claim-only [142] Manual generation FV FEVER
PAWS [190] Lexical overlap ratio Back-translation,Word scrambling PI QQP

Table 2.1: Summary of the adversarial sets utilized in this dissertation. The adver-
sarial sets with ∗ are proposed by us. “M, D, R” denotes MCTest, DREAM, and
RACE. “FV” and “PI” denote Fact Verification and Paraphrase Identification.

Finally, we summarize the adversarial sets used in this dissertation in Table 2.1.

2.2.2 Methods

There are several streams of work which aim at improving the robustness of model

against the black-box attack.

• Many recent work generate adversarial examples to augment the train-

ing data such as to make the model more robust against adversarial at-

tacks [134, 97, 63, 168]. They achieve fairly good performance but they have

their limitations. First, they need to be aware of the prior knowledge of the

adversarial attack, i.e., “in what way to generate adversarial examples”, which

is often not available in real applications. Second, their model performance

strongly relies on the quality of adversarial examples as well as the training

hyperparameters, e.g., augmentation ratios.

• Alternative methods for robustness in NLP include using advanced regular-

izer [182, 98, 181], training loss [64, 58, 65], sample filtering [177, 12] and

model ensembles [17, 13, 49, 157]. Among them, model ensembles are the
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most popular method recently. Specifically, model ensemble method first de-

signs a bias model and then trains a target debiased model fused with the bias

model. Training instances predicted correctly by the bias model will be down-

weighted in the training of the debiased model. Early work mainly revolves

around different fusion methods [49, 17, 157, 103] with known bias. Then

researchers started looking into unknown bias by designing the bias model

with heuristics, e.g., a model trained with very small amount of data [158] or

a model with only the bottom layers of the language model [37]. However,

instance reweighting based methods rely on either prior knowledge of bias or

heuristic design of the bias model. Furthermore, it is pointed out that such

bias models may not be able to predict the main model’s reaction of biased

samples and reweighting may waste data [1].

• The third stream of work resorts to causal inference. Causal inference [120,

119] measures the causal effect between variables and has been widely ap-

plied to various scenarios, e.g., social science [7] and medical science [45].

Causal inference can be applied for debiasing in NLP by measuring the robust

causal effect and removing the undesirable spurious causal effect. Our work

in Chapter 3 adopts counterfactual method from causal inference. Counter-

factual analysis allows us to evaluate the effect of an event or variable by

modifying it in a counterfactual scenario, which is contradicted to the factual

scenario. Counterfactual methods are also emerging recently in natural lan-

guage inference [70], semantic parsing [84], story generation [128], dialog

systems [196], gender bias [161, 146], and sentiment bias [59]. In Chapter 3,

we take the first step towards improving the robustness of QA models based

on counterfactual analysis. Another work in Chapter 4 utilizes intervention

derived in causal inference. Intervention [116] helps to eliminate the effect of

confounders [179, 185, 110]. Invariant Risk Minimization (IRM) [2] is one

of the method to implement intervention in deep neural network by learning
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a model invariant to different environments [2, 166]. IRM has been widely

adopted in computer vision community [77, 139, 23, 96, 166, 154]. In Chap-

ter 4, we propose an interventional training method to eliminate the effect

from confounders for natural language understanding tasks.

2.3 Cross-lingual Transfer

Cross-lingual learning aims to transfer knowledge from one source natural language

to other target languages. In this section, we first review the backbone for the cross-

lingual transfer, i.e., multilingual representation. Then we turn to three different

cross-lingual transfer settings and their related work.

2.3.1 Multilingual Representation

In the multilingual word embedding era, the cross-lingual transfer is always

based on multilingual embedding. In terms of granularity, multilingual embedding

could be divided into two categories.

The first category is based on word level. Typical work on word level depend

on word mapping which first trains word embeddings in several languages indi-

vidually and then maps them to shared space. Some methods directly maximize

the similarity using square error [107], orthogonal transformation [3], Canon-

ical Correlation Analysis (CCA) [44], and max-margin based ranking loss [85].

Other methods may incorporate the seed lexicon for a joint multilingual embedding

space [4, 148, 81, 55].

The second category is based on the sentence level. Within this category, one

group of methods utilizes matrix factorization. For example, FastAlign [27] uses

paralleled sentence-pair and unparalleled word mapping for sentence alignment.

[145] also extends the method by making use of monolingual data. Other groups of

methods may directly bridge the gap between sentence pair [52] or reconstruct the

sentence in the target language based on the idea of autoencoder [82].
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Training Objectives Training Corpus Parallel Data Downstream

MBERT MLM, NSP Wikipedia No NLU
XLM MLM, TLM, CLM Wikipedia Yes NLU, NLG
XLM-RoBERTa MLM CommonCrawl No NLU
ERNIE-M CAMLM, BTMLM CommonCrawl Yes NLU
HICTL Contrastive Learning CommonCrwal Yes NLU
InfoXLM Contrastive Learning CommonCrwal Yes NLU
VECO CAMLM CommonCrwal Yes NLU, NLG

Table 2.2: Summarization of multilingal pretrained language models. Here the
Training corpus denotes the monolingual corpus.

In the pretrained language model era, multilingual community extend the mono-

lingual pretrained language model [25, 100] for multilinguality and demonstrate

their prominent capability on cross-lingual knowledge transfer [175, 125, 56]. The

cross-lingual transfer part of our thesis is also built on top of the multilingual pre-

trained language model. Multilingual BERT [25] is the first multilingual pre-trained

language model. The differences between the multilingual version of BERT and its

monolingual version are as follows: (1) the training corpus is multilingual while not

paralleled; (2) the tokenizer and embedding table are built based on multilinguality

as well. The training objectives of Multilingual BERT remain the same, i.e., masked

language modeling (MLM) and next sentence prediction (NSP) XLM [80] takes

the parallel data into consideration by introducing an additional training objective,

i.e., translation language modeling (TLM). In addition to TLM, XLM also aug-

ments causal language modeling (CLM) following auto-regressive language mod-

eling. After XLM, XLM-RoBERTa [21] scales the amount of unlabeled data in

training. ERNIE-M [114] argues that the parallel data is not fully utilized in XLM

and thus proposes cross-attention masked language modeling (CAMLM) and back-

translation masked language modeling (BTMLM). Apart from the typical MLM

training objective, some work resort to contrastive learning, e.g., HICTL [170] and

InfoXLM [15]. Recently, VECO [102] also unifies multilingual natural language

understanding (NLU) and natural language generation (NLG) tasks in one multilin-

gual model. All in all, we summarize the features of aforementioned in Table 2.2.
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2.3.2 Cross-lingual Transfer

There are four settings of cross-lingual transfer attracting attentions from re-

searchers: zero-shot, few-shot and translate-train. Zero-shot setting requires the

model trained on source languages has the ability to directly test on target lan-

guages while few-shot setting provides a few additional data from target languages.

Translate-train setting assumes the availability of a multilingual translator and trans-

lates the source language data into target languages as data augmentation.

Our first work on cross-lingual transfer in Chapter 5 focuses on zero-shot and

few-shot settings. The bottleneck of these two settings is attributed to two issues: (i)

catastrophic forgetting [73, 101], where knowledge learned in the pre-training stage

is forgotten in downstream fine-tuning; (ii) lack of language-agnostic features [16,

191] or linguistic discrepancy between the source and the target languages [175, 83].

Existing work can be also roughly divided into two groups. The first proposes

to modify the language model by aligning languages with parallel data [191] or

strengthening sentence-level representation [170]. The second group focuses on the

learning paradigm for fine-tuning on downstream tasks. For instance, some methods

adopt meta-learning [113, 178] or intermediate tasks training [124] to learn cross-

lingual knowledge. Our work belongs to the later group and fills the blank of using

the syntactic information in zero-shot (few-shot) cross-lingual understanding.

Our second work on cross-lingual transfer in Chapter 6 focuses on translate-

train setting. Existing translate-train methods explicitly utilize the parallel data [30]

or augment more types of data in training [192]. However, the effect of trans-

lationese is ignored. The only attempts [5] are conducted for translate-test and

zero-shot learning. Translationese artifacts have been widely studied in translation

tasks [29, 39, 187, 86, 33]. Some recent work focus on how to mitigate or control the

effect of translationese, e.g., tagged training [104, 136, 165]. In contrast, our work

concentrates on translate-train and aim at mitigating the artifacts in translationese.

17



Part I

Adversarial Robustness
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Chapter 3

Counterfactual Variable Control for

Robust and Interpretable Question

Answering

3.1 Introduction

We explore the adversarial robustness against known bias situation in this chapter by

focusing on the QA task. Recently, the error rates on the multiple-choice question

answering (MCQA) and span-extraction question answering (SEQA) benchmarks

were smashed overnight by large-scale pre-trained models, such as BERT [25], XL-

Net [180], RoBERTa [100] and Megatron-LM [147]. Impressively, using Megatron-

LM achieved an error rate of less than 10% on the large-scale MCQA dataset

RACE [79]. However, top-performing models often lack interpretability [31, 71],

nor are they robust to adversarial attacks [134, 152, 163]. For example, adding one

more question mark at the end of the input question, which is a simple adversarial

attack, may decrease the performance of QA models [134]. This vulnerability will

raise security concerns when the model is deployed in real-world applications, e.g.,

intelligent shopping assistants and web search engines. It is thus desirable to figure

out why this happens and how to improve the robustness of QA models.
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Existing methods for robust QA models mainly resort to robust training. One

straightforward way is to generate adversarial examples for training [63, 134]. How-

ever, sometimes it is expensive and time-consuming to manually generate adversar-

ial examples, and QA models are still not robust to unseen attacks. On the other

hand, recent work focus on regularizing QA models via additional losses. For ex-

ample, QAInformax [182] maximizes the mutual information between the passage

and the question to achieve regularization. However, so far, robust inference has not

been fully exploited.

In this chapter, we carefully inspect both the training and the test processes for

QA models. We find the aforementioned vulnerability is caused by the fact that the

model tends to exploit the correlations in the training data. To illustrate this, we

show some example results of the BERT-Base MCQA model [25] in Figure 3.1.

Supposedly, the model should predict the answer based on the passage, the ques-

tion, and the options. Surprisingly, the absence of the question during only the test

stage (Figure 3.1 (b)) or during both the training and the test stages (Figure 3.1 (c))

leads to a limited performance drop. Our hypothesis is that the BERT-Base MCQA

model uses a huge amount of network parameters to learn the shortcut correlation

between the no-question inputs (i.e., passage and options) and the ground-truth an-

swer in a brute-force manner. Figure 3.1(d) shows an example where this shortcut

could be realized by simply aligning the words appearing in both the passage and

options. Can we just conclude from this example that questions have little effect on

answers? We must say no, as this violates our common sense about the causality in

QA — the question causes the answer.

With the observation above in mind, we take a step further towards robust and

interpretable QA systems by figuring out the causality in QA based on causal in-

ference [120, 122]. We begin by analyzing the causal relationships in QA, i.e.,

associating any two variables based on the causal effect. Inspired by the recent

success of causal inference in applications [126, 153, 111], we represent the causal

relationships in QA using the Structural Causal Model (SCM) [120]. Figure 3.2(a)
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Man: Excuse me. Could you tell me the way
to the Book Shop??

Woman: Turn left at the second crossing, the
highest building on the left is the shop.

Question: Where are they talking?

A. In a street.

B. In the Book Shop.

C. In a tall building.

Ha! I can get the 

answer without


the Question.




conventional
multi-choice QA model

Passage Question Options

Prediction


Test Accuracy: 61.5% 

Passage Options

Prediction


Test Accuracy: 57.1%

(Expected: 33.3%) 

Passage Options

Prediction


Test Accuracy: 58.2%

(Expected: 33.3%) 

conventional
multi-choice QA model

question-muted

multi-choice QA model

(a) conventional training and test (b) conventional training but
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Figure 3.1: We observe multi-choice QA models are “capable” to answer a question
without any question data in input (question-muted) during test (b), or during both
training and test (c). We conduct these experiments using the BERT-base model [25]
on the multi-choice QA benchmark DREAM [150]. (a) shows the normal case for
reference. (d) show a training sample on DREAM.
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Figure 3.2: The SCM of MCQA. P is for passage, Q for question, O for options and
A for answer. Particularly, R denotes the comprehensive reasoning.

shows the SCM for MCQA as an example, where each node denotes a variable

(e.g., Q for question and A for answer) and the directed edge from one node to an-

other represents their causal relation (e.g., Q→A denotes question causes answer).

Besides the input and output variables, we introduce an intermediate variable R to

reflect the expected comprehensive reasoning among all the inputs. SCM illustrates

that not only comprehensive reasoning but also shortcut correlations have effects on

the output answer. As highlighted in Figure 3.2(b), P and O can directly reach A,

leading to a success rate 24% higher than the random guess shown in Figure 3.1(b).

These shortcut correlations are “distractors” against our goal of robust QA, i.e., the

prediction should be caused by the comprehensive reasoning.

According to the above causality-based analysis, we expect the robust QA sys-

tems to conduct comprehensive reasoning and exclude the shortcut effects for un-

biased inference. To alleviate the effects of shortcuts, we propose a novel approach

21



called Counterfactual Variable Control (CVC) based on the causality theory. CVC

in essence includes counterfactual analysis [120, 122, 118] and variable control.

The former allows us to evaluate the effect of an event by modifying it in a counter-

factual scenario. The latter, motivated by controlling for variables, aims to explicitly

separate the effects of different variables. In this way, we can avoid any interference

from controlled variables. To implement CVC in deep models, we realize the SCM

as a multi-branch architecture [13, 17] that is composed of a robust branch reflecting

the comprehensive reasoning and several shortcut branches. We highlight that CVC

training exactly follows the multi-branch training [13], while CVC testing is based

on counterfactual analysis to capture the indirect effects of only the comprehen-

sive reasoning. To further evaluate the robustness of CVC, we conduct adversarial

attacks that are challenging for shortcut correlations, e.g., words alignment. Exper-

iments are conducted on four QA benchmarks with different backbone networks,

e.g., BERT [25] and RoBERTa [100]. The results validate the effectiveness and

generalizability of our proposed CVC approach. As shown in the case studies, our

CVC can not only achieve robust performance, but also conduct interpretable and

reasonable inference processes due to the theoretical foundation of causal inference.

Our main contributions include (i) an overall causality-based analysis using

structural causal model for robust QA; (ii) a novel counterfactual variable control

(CVC) approach to mitigating the shortcut correlations while preserving the robust

comprehensive reasoning in QA; (iii) plugging CVC in different deep backbones

and evaluating it on several QA benchmarks; (iv) four types of adversarial attacks

for MCQA and one human-annotated adversarial set for SEQA to evaluate the ro-

bustness of QA models.

3.2 Counterfactual Variable Control (CVC)

CVC aims to conduct unbiased inference by excluding the shortcut effects. In this

section, we use multi-choice question answering (MCQA) as a case study of QA
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tasks, and introduce the notations for our proposed Counterfactual Variable Control

(CVC). Given a natural language paragraph as passage p, the models for MCQA

are expected to answer the related question q by selecting the correct answer a

from the candidate options o. In the following, we use uppercase letters to denote

the variables (e.g., Q for question) and lowercase letters for the specific value of a

variable (e.g., q for a specific question).

3.2.1 Normal Prediction and Counterfactual Prediction

We further introduce counterfactual notations, i.e., the imagined values of variables

as if their ancestors had existed (i.e., uncontrolled) in a counterfactual world [120,

153, 118, 137]. We highlight that our overall notations are general and impose

no constraints on the detailed implementation of QA models. Based on the input

variables with their normal or counterfactual values, we define the notations for the

two cases of model prediction: Normal Prediction and Counterfactual Prediction.

Normal Prediction (NP) means that the model makes predictions when the vari-

ables are all controlled or uncontrolled. We use the function format Y (X = x),

abbreviated as Yx, to represent the effect of X = x on Y . We use this notation to

formulate any path on the SCM, and further derive the prediction as:

Ap,q,o,r =A(P=p,Q=q,O=o,R=r), (3.1)

where r = R(P = p,Q = q,O = o) denotes the normal value of comprehensive

reasoning, and Ap,q,o,r denotes the inference logits of the model with realistic inputs

values. If all the inputs are controlled (e.g., muting their values as null), the value

that A would obtain can be represented as:

Ap∗,q∗,o∗,r∗=A(P=p∗,Q=q∗,O=o∗,R=r∗), (3.2)

where r∗ = R(P = p∗,Q = q∗,O = o∗), and Ap∗,q∗,o∗,r∗ is the inference logits of the

model with null values of input variables, which are denoted as p∗, q∗, and o∗.
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Figure 3.3: Multi-task training framework in our CVC. The complete input (e.g.,
X = {P,Q,O} for MCQA) are fed to the robust branch, while a subset to each
shortcut (e.g., Xn = {P,O} to the n-th branch). Solid arrows indicate feedforward,
and dashed arrows for backpropagation.

Counterfactual Prediction (CP) means that the model predicts the answer when

some variables are controlled, but the others are assigned counterfactual values ob-

tained when these variables are uncontrolled. This is a key operation in the coun-

terfactual analysis [120, 122, 118]. For example, we control the input variables P,

Q, and O with their values to null (denoted as p∗, q∗, and o∗), and assign their child

node R with a counterfactual value r = R(P = p,Q = q,O = o) obtained when the

inputs P, Q, and O were valid. Similarly, we can control R as r∗ while assigning its

parent nodes P, Q, and O with counterfactual values p, q, and o.

To conduct CVC inference, we propose two variants of counterfactual control:

(i) controlling only input variables; and (ii) controlling only the mediator variable.

For (i), we formulate the value of A as:

Ap∗,q∗,o∗,r =A(P=p∗,Q=q∗,O=o∗,R=r), (3.3)

For (ii), we have:

Ap,q,o,r∗=A(P=p,Q=q,O=o,R=r∗), (3.4)

3.2.2 CVC Inference

Recall that CVC is to preserve only the robust prediction derived by comprehensive

reasoning and exclude shortcut correlations. Motivated by the theory of causal-

ity [108], CVC can be realized by comparing the fact and its counterpart, i.e., es-

timating the difference between the normal prediction (NP) and the counterfactual
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Figure 3.4: Illustration of the processes for CVC-IV inference and CVC-MV infer-
ence.

prediction (CP). Intuitively, the importance of a variable can be revealed by con-

trolled experiments. If the difference between the experimental group and control

group is large, this variable may have significant effect on the output. We utilize this

conclusion from another view. If we know that a variable is essential, we expect the

difference to be large. In our case, we expect the difference corresponded to the

comprehensive reasoning R is large, i.e., the model should rely on R for inference.

Following the definition in Section 3.2.1, the idea can be realized by controlling on

either inputs (e.g., Q) or mediator variables (e.g., R). Therefore, CVC can be real-

ized in two ways corresponding to the controlled variables: CVC on Input Variables

(CVC-IV) and CVC on Mediator Variables (CVC-MV). We illustrate the inference

in Figure 3.4. CVC on Input Variables (CVC-IV) is derived as:

CVC-IV = Ap∗,q∗,o∗,r − Ap∗,q∗,o∗,r∗ (3.5)

where in Ap∗,q∗,o∗,r the input variables are controlled to be null (e.g., p∗) while the

mediator variable is set as its counterfactual value, which is obtained by imaging a

counterfactual world where the inputs had not been controlled (i.e., r).

CVC on Mediator Variable (CVC-MV) is derived as:

CVC-MV = Ap,q,o,r − Ap,q,o,r∗ , (3.6)

where in Ap,q,o,r∗ the input variables are set as their observed values (e.g., p) while

the mediator variable is controlled, i.e., by imagining a counterfactual world where

all inputs had been set to null (i.e., r∗).
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Note that both CVC-IV and CVC-MV aim to capture the causal effect of com-

prehensive reasoning in QA. The main difference lies in on which variables to apply

the control. The surgery is on the input variables in CVC-IV and the mediator vari-

able in CVC-MV. The former aims to remove all the shortcut correlations, while the

latter preserves only the effect of comprehensive reasoning on answer after the sub-

traction. Experiments further show that CVC-IV and CVC-MV perform differently

in various QA settings.

3.3 The Implementation of CVC

In this section, we introduce how to implement CVC using deep neural networks, in-

cluding multi-task training and counterfactual inference strategies. Multi-task train-

ing aims to separate robust path and shortcut paths by multi-branch architecture,

counterfactual inference conducts unbiased inference based on CVC-IV or CVC-

MV in Section 3.2.

3.3.1 Multi-task Training

As illustrated in Figure 3.3, our overall framework implements the SCM in Fig-

ure 3.2(a) as multiple neural network branches. The main branch takes all the input

variables (i.e., complete input) to learn the causal effect corresponding to the ro-

bust path of SCM (i.e., P,Q,O→R→A), which we call comprehensive reasoning

branch (or robust branch). The other branches, we call shortcut branches, take a

subset of inputs (i.e., part of the variables are muted) to explicitly learn the shortcut

correlations corresponding to the shortcut paths of SCM (e.g., P,O → A as Q is

muted). We deploy each branch as the standard QA model with pre-trained back-

bone [25] where the pre-trained backbone consists of bottom shared layers and top

layers The model is trained via multi-task training, i.e., each branch is optimized

using an individual objective. Only the robust branch gradients are propagated to

update the bottom shared layers in the backbone.
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Robust branch F r aims to learn comprehensive reasoning for robust QA. It takes

the complete input X , e.g., the realistic values of question, passage and options in

MCQA. The network body, with parameters denoted as θr, consists of a pre-trained

backbone (e.g., BERT) and a classifier (e.g., one FC layer). Its prediction can be

formulated as:

Ar = F r(X ; θr). (3.7)

Following recent work [13], we fuse the prediction Ar with shortcut predictions to

avoid the robust branch to overfit shortcut correlations. We will elaborate the details

and explanations in the paragraph of loss computation.

Shortcut branches F s
n (n= 1, 2, · · · , N ) aim to explicitly learn the unrobust cor-

relations between incomplete (controlled) input and the ground truth answer. Each

branch takes a subset of variables Xn ⊂ X as input, setting the other variables as

null. Its network, with parameters denoted as θsn, has the same architecture with the

robust branch. Its prediction can be formulated as:

As
n = F s

n(Xn; θsn), (3.8)

Loss Computation. We use cross-entropy loss to optimize all the branches. For the

n-th shortcut branch, we directly minimize the cross-entropy loss over its prediction

As
n:

Ls
n = −

∑
i

pi log softmax(As
n,i), (3.9)

where i denotes the i-th dimension of the prediction, and the one-hot vector p de-

notes the encoding of ground truth answer.

For the robust branch, directly optimizing over the robust prediction Ar cannot

avoid the model to learn the correlations as in the conventional QA models, and

cannot guarantee the model to learn the pure comprehensive reasoning. We tackle

this problem by adjusting Ar using shortcut predictions As
n. In this way, we can force

Ar to only preserve the prediction that can never be achieved by shortcuts, i.e., the

comprehensive reasoning prediction with the complete input variables as input. We
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implement this adjustment by fusing the predictions from the robust branch and

shortcut branches:

Ae
i =

∑
n

p̂ri · p̂sn,i, (3.10)

where p̂ri = softmax(Ar
i ), p̂sn,i = softmax(As

n,i) and i is the i-th dimension of the

prediction. Here we use probabilities instead of logits because we empirically found

negative values in logits may reverse the adjustment [17], while probabilities work

as normalization and ensure each item in Eq. 3.10 positive value. We then optimize

the cross-entropy loss over the adjusted result Ae:

Le = −
∑
i

pi log softmax(Ae
i ). (3.11)

However, we found that empirically the robust branch may focus on only hard sam-

ples and ignore easy samples by fusing the branches at the level of predictions.

When prediction from shortcut branches are correct with high confidence, logits-

level fusion may lead to a very small value in Eq. 3.11. We further propose two

variants of losses to tackle this issue at the level of losses:

Le1 = −
∑
n

1

n

∑
i

pi log softmax(p̂ri · p̂sn,i),

Le2 = −
∑
n

wn

∑
i

pi log softmax(p̂ri · p̂sn,i),
(3.12)

where wn =softmax(Ls
n)= exp(Lsn)∑m=n

m=1 exp(Lsm)
. wn is a weight used to explicitly enhance

the effect of the n-th shortcut branch on the robust branch. We formulate the overall

loss used in multi-task training as follows,

Lall = Le +
∑
n

Ls
n. (3.13)

where Le can be replaced with Le1 or Le2. We empirically found that Le2 achieves

better performance, and conduct the ablation study in experiments.

3.3.2 Counterfactual Inference

Different from conventional inference that is based on the posterior probability [25],

we propose to use counterfactual inference based on causal effects [122, 118]. In
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this section, we introduce how to conduct CVC-IV and CVC-MV inferences given

the robust branch F r and shortcut branches {F s
n}Nn=1.

Following the notation formats of NP and CP in Eq. 3.3 and Eq. 3.4 along with

the notation of output for each branch in Eq. 3.7 and Eq. 3.8, we can (i) denote

the prediction of the n-th shortcut branch as asn = F s
n(p, o; θsn) and its muted value

as as∗n = F s
n(p∗, o∗; θsn); and (ii) denote the prediction of the robust branch as ar =

F r(p, q, o; θr) and its muted value as ar∗=F r(p∗, q∗, o∗; θr).

In the CVC-IV inference, we mute all the input variables. In this case, we

obtain NP as Aas∗1 ,··· ,as∗N ,ar∗ and CP as Aas∗1 ,··· ,as∗N ,ar . Combining Eq. 3.5 and 3.10, we

can derive the CVC-IV inference result as:

CVC-IV = Aas∗1 ,··· ,as∗N ,ar − Aas∗1 ,··· ,as∗N ,ar∗

=
∑
n

p̂r · csn −
∑
n

crn · csn,
(3.14)

where each element in crn or csn is the same constant in [0, 1]. We highlight that

CVC-IV inference corresponds to computing Natural Indirect Effect (NIE) in causal

inference [122, 118]. It is equivalent to the normal inference on the robust model,

similar to existing work such as Learned-Mixin [17]. Differently, CVC-IV is totally

derived from the systematical causal analysis in QA and is thus more explainable

than Learned-Mixin which is heuristic.

In the CVC-MV inference, we mute Ar as ar∗. We can denote the NP as

Aas1,··· ,asN ,ar , and the CP as Aas1,··· ,asN ,ar∗ . Combining Eq. 3.6 and 3.10, we can de-

rive the CVC-MV inference result as:

CVC-MV = Aas1,...,a
s
N ,ar − Aas1,...,a

s
N ,ar∗

=
∑
n

p̂r · p̂sn −
∑
n

crn · p̂sn,
(3.15)

which is an indirect way of making inference using only the robust branch. It corre-

sponds to computing Controlled Indirect Effect (CIE) in causal inference [122, 118].

We empirically find that the hyperparameter crn makes a clear effect. Therefore,

we train a c-adaptor F c
n to adaptively estimate crn. This can be formulated as:

crn = F c
n(p̂r, p̂sn, Distance; θ

c
n), (3.16)
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Algorithm 1 Counterfactual Variable Control (CVC) algorithm
Stage one: multi-task training
Input: complete train set data X and N different subsets of train set data {Xn}Nn=1

Output: F r with parameters θr and {F s
n}Nn=1 with parameters

{θsn}Nn=1

1: for batch in X and {Xn}Nn=1 do
2: for n in {1, ..., N} do
3: optimize θsn with batch of Xn by Eq. 3.9;
4: end for
5: optimize θr with batch of X by Eq. 3.11 for MCQA (by Le2 in Eq. 3.12 for

SEQA);
6: end for

Stage two: counterfactual inference
Input: F r with parameters θr, {F s

n}Nn=1 with parameters {θsn}Nn=1, complete target
test data X ′ along with its subsets {X ′n}Nn=1 and a boolean USE IV .
Output: CVC inference result ({F c

n}Nn=1 with parameters
{θcn}Nn=1)

1: if USE IV then
2: compute CVC-IV inference result with target data by Eq. 3.14;
3: else
4: optimize {θcn}Nn=1 with X and {Xn}Nn=1 by Eq. 3.15, Eq. 3.16 and cross-

entropy loss for QA task;
5: compute CVC-MV inference result with target data X ′ and {X ′n}Nn=1 by

Eq. 3.15 and Eq. 3.16;
6: end if

where F c
n(x1, x2, x3; θcn) = W2

n tanh(W1
n[x1;x2;x3]), [; ] is the concatenation op-

eration, and θcn = {W1
n,W

2
n} are learnable parameters. We implement Distance

as the Jensen-Shannon divergence [94] JS[p̂r||p̂sn] between p̂r and p̂sn. We imple-

ment c-adaptor using a two-layer MLP and conduct an ablative study to show its

efficiency.

3.3.3 Summary

We highlight that CVC training follows the supervised training on multi-task net-

works [13, 17]. These work use similar architecture on other applications. However,

our CVC-IV and CVC-MV inference methods are derived from our causal analysis

of QA models — our main contribution to the QA methodology.

Algorithm 1 summarizes the pipeline of our proposed Counterfactual Variable
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Control (CVC) approach. The approach consists of two stages: multi-task training

(Section 3.3.1) and counterfactual inference (Section 3.3.2). Multi-task training

aims to train a robust branch F r and N shortcut branches {F s
n}Nn=1. Counterfactual

inference performs the robust and interpretable reasoning for QA.

3.4 Experiments

3.4.1 Experimental Settings

We evaluate the robustness of CVC for both MCQA and SEQA, using a variety

of adversarial attacks [189]. Below we introduce the base datasets followed by

the adversarial sets for each base datasets. We conduct multi-task training on the

training split of base datasets and conduct inference on original development/test

splits of base datasets and adversarial sets.

Base Datasets

We show the information of MCQA base datasets in Table 3.1. Specifically, MCQA

aims to select the correct answer from several input options given a passage and a

question. We conduct experiments on the following benchmark datasets.

• MCTest [135] is generated from fictional stories and aims at open-domain ma-

chine comprehension. The questions are limited to the level that young children

can understand. MCTest consists of two subsets, MC500 and MC160. We use the

combination of them in our experiments.

• DREAM [150] is a dialogue-based dataset designed by experts to evaluate the

comprehensive ability of foreign learners. In addition to simply matching ques-

tions, DREAM also contains more challenging questions that requires common-

sense reasoning.

• RACE [79] is a dataset of English exam from middle and high school reading
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comprehension. RACE covers a variety of topics and the proportion of questions

that requires reasoning is much larger than other reading comprehension datasets.

Compared to MCQA, options are not provided on the SEQA task. SEQA locates

the answer span in a passage given a question. We use the SQuAD dataset for

SEQA.

• SQuAD [129] is adopted as the benchmark for SEQA where passages are from a

set of Wikipedia articles. SQuAD requires several types of reasoning like lexical

variation, syntactic variation, etc.

Adversarial Sets

Adversarial Attacks on MCQA. To further evaluate the robustness of QA models,

we propose four kinds of grammatical adversarial attacks to generate adversarial

examples.

• Add1Truth2Opt and Add2Truth2Opt (Adv1 and Adv2): We replace one

(or two) of the wrong options with another one (or two) answers that are correct

in other samples with the same passage.

• Add1Pas2Opt (Adv3): We replace one of the wrong options with a random

distracting sentence extracted from the passage. This distractor does not contain

any word that appears in the ground truth option.

• Add1Ent2Pas (Adv4): We first choose one of the wrong options with at least

one entity, e.g., person name and time, and then replace each entity with another

entity of the same type. Then, we add this modified sentence to the end of the

passage.

Adversarial Attacks on SEQA. For the SEQA task, we utilize three kinds of

grammatical adversarial attacks. AddSent (Adv1), AddOneSent (Adv2) and

AddVerb (Adv3).
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MCTest DREAM RACE SQuAD

Construction Crowd. Exams Exams Crowd.
Passage type Child’s stories Dialogues Written text Wikipedia
# of passages 660 6,444 27,933 23,215
# of questions 2,640 10,197 97,687 107,785
# of options 4 3 4 -

Table 3.1: We conduct MCQA experiments on three datasets, i.e., MCTest [135],
DREAM [150], RACE [79], and SEQA experiments on the SQuAD dataset [129].
“Crowd.”: crowd-sourcing; “-”: not applicable.

MCTest DREAM RACE

Random guess 25.0 33.3 25.0
Complete input 68.9 61.5 64.7
No P 24.2 32.8 41.6
No Q 52.5 57.1 51.0
No P, Q 22.4 33.4 34.7

Table 3.2: Accuracies (%) of conventional training BERT-base MCQA models
tested with complete input. “No X” means the value of input variable X is muted.

• AddSent and AddOneSent released by [63] add distracting sentences to the

passage. The generating process is: firstly perturb the question (e.g., asking an-

other entity) and create a fake answer, then convert the perturbed question into a

distracting sentence. The final distracting sentences were filtered by crowdwork-

ers. AddSent is similar to AddOneSent but much harder than AddOneSent.

These two settings can be used to measure the model robustness against entity or

noun attacks.

• AddVerb was inspired by above two sets which aims to evaluate the model ro-

bustness against verb attacks instead of noun. we hire expert linguists to annotate

the AddVerb following [63]. Examples are as follows. For the question “What

city did Tesla move to in 1880?”, AddSent sample could be “Tadakatsu moved

to the city of Chicago in 1881.”, and AddVerb sample could be “Tesla left the

city of Chicago in 1880.”
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Figure 3.5: The SCM for SEQA task where Q is decomposed to S, V and E.

3.4.2 Implementation Details

General Implementation

We deploy the pre-trained BERT and RoBERTa backbones provided by Hugging-

Face [174]. The learning rates are fixed to 3e-5, 2e-5 and 1e-5 for BERT-base,

BERT-large, and RoBERTa-large respectively. A linear warm-up strategy for learn-

ing rates is used with the first 10% steps in the whole multi-branch training stage.

The batch size is selected amongst {16, 24, 32} for the three backbones. The number

of bottom shared layers is fixed to 5/6 of the total number of layers in the backbone

language model for parameter-efficiency, e.g., sharing 10 layers in bottom shared

layers when the BERT-base (12 layers) is adopted as the backbone. The overall ex-

periments are conducted on two pieces of Tesla V100 or two pieces of RTX 2080Ti

(depending on the usage of memory). Gradient accumulation and half precision are

used to relieve the issue of memory usage. Following [17, 40, 130], we perform

model selection for CVC-IV (i.e., choosing the hyperparameters of training epochs)

based on the model performance in the development/test sets on the used dataset.

MCQA-Specific Implementation

MCQA has two shortcut correlations (see Figure 3.2), i.e., Q→A and P→A1. We

present the muting experiment results of MCQA in Table 3.2 that can reflect the

strength of corresponding direct cause-effects. For example, the results on the row
1O→A is not discussed here as O is mandatory and can not be muted
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SQuAD

Complete input 88.1
No E 59.4
No V 55.1
No E, V 15.3
No Q 12.4

Table 3.3: F1 scores (%) of conventional training BERT-base SEQA models tested
with complete input. “No X” means the value of input variable X is muted.

of “No Q” represent the performance of only using P→ A and O→ A shown in

Figure 3.2 (b). We inspect them and notice that the effect from the former one is

trivial and negligible compared to the latter. One may argue that Q is an important

cue to predict the answer. Actually, annotators intentively avoid any easy question-

answer pairs when building MCQA datasets. For example, they include a person

name in all options of questions about who. We thus assume Q → A has been

eliminated during well-designed data collection and utilize one shortcut branch (i.e.,

muting Q). Therefore, Eq. 3.11 and 3.12 are equivalent for MCQA (N = 1 and

wn =1). Other MCQA-specific implementation details are the same with the official

code of [25].

BERT-base BERT-large RoBERTa-large

Data Method Test A1 A2 A3 A4 A.G. Test A1 A2 A3 A4 A.G. Test A1 A2 A3 A4 A.G.

M
C

Te
st CT 68.9 63.9 59.4 20.2 54.8 - 72.3 70.0 66.8 35.5 57.6 - 88.9 88.2 86.6 72.6 84.2 -

MV 68.1 69.1 65.6 26.8 61.0 +6.1% 73.2 74.3 73.5 38.4 68.4 +6.2% 88.5 89.3 89.6 82.4 83.4 +3.3%
IV 69.4 70.0 65.4 28.7 59.9 +6.4% 74.4 75.5 75.1 40.4 69.5 +7.6% 87.4 88.1 88.2 82.6 84.2 +2.9%

D
R

E
A

M CT 61.5 47.5 39.2 20.9 41.8 - 65.9 50.6 43.0 25.6 48.2 - 84.1 78.2 76.3 57.1 71.8 -
MV 60.1 49.6 39.9 23.7 45.6 +2.3% 64.0 51.9 46.5 26.3 51.3 +2.2% 82.8 77.9 80.2 66.6 71.4 +3.2%
IV 60.0 49.2 40.7 25.0 47.1 +3.1% 64.5 52.0 46.2 26.6 51.1 +2.1% 81.7 78.3 79.7 66.7 72.3 +3.4%

R
A

C
E CT 64.7 56.0 50.1 36.6 58.3 - 67.9 61.9 57.9 51.0 61.7 - 78.4 72.4 67.9 65.9 72.1 -

MV 64.4 56.7 51.7 39.1 59.2 +1.4% 68.5 62.6 58.2 52.0 65.7 +1.5% 78.1 74.4 72.1 68.3 72.4 +2.2%
IV 64.1 57.0 52.2 38.8 58.6 +1.4% 68.4 63.1 59.1 51.3 65.1 +1.6% 77.6 75.3 73.3 68.6 71.4 +2.6%

Table 3.4: Accuracies (%) on three MCQA datasets. Models are trained on original
training data. BERT-base, BERT-large and RoBERTa-large are backbones. “A.G.”
denotes the average improvement over the conventional training (CT) [25] for Adv*
sets. All results on RACE with RoBERTa-large are trained with 1/4 training data
due to the resource limitation. “MV” and “IV” are “CVC-MV” and “CVC-IV”.
“A” denotes “Adv”.
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BERT-base BERT-large RoBERTa-large

Method Dev A1 A2 A3 A.G. Dev A1 A2 A3 A.G. Dev A1 A2 A3 A.G.

CT 88.4 49.9 59.7 44.6 - 90.6 60.2 70.0 50.0 - 93.5 77.0 82.8 61.3 -
QAInformax 88.6 54.5 64.9 - +4.9% - - - - - - - - - -
CVC-MV 87.2 55.7 65.3 51.3 +6.0% 90.2 62.6 72.4 52.5 +2.4% 92.6 79.4 84.1 63.2 +1.9%
CVC-IV 86.6 56.3 66.2 51.5 +6.6% 89.4 62.6 71.8 54.1 +2.8% 92.2 79.6 85.0 64.1 +2.5%

Table 3.5: SEQA F1-measure (%) on the SQuAD Dev set (Test set is not pub-
lic) and adversarial sets. Models are trained on original training data. BERT-base,
BERT-large and RoBERTa-large are backbones. “-”: not applicable from original
paper. “A.G.”: our average improvement over the conventional training (CT) [25]
for Adv*. “A” denotes “Adv”. Results of CT are from [25] and [97]. Results of
QAInformax are from [182]

SEQA-Specific Implementation

Different from MCQA, we propose to manually separate the question (Q) of SEQA

into corresponding parts: entities & nouns (E); verbs & adverbs (V); and the re-

maining stop words & punctuation marks (S). As shown in Figure 3.5, the SCM of

SEQA contains four input variables as P (passage), E, V and S. The comprehensive

reasoning variable R mediates between these four variables and answer A. The rea-

son why we conduct this partition is twofold: (1) P is mandatory for SEQA. The

lack of P will result in an invalid prediction. To study the effects of Q→ A, what

we can do is to split the variable Q into partitions. (2) Our resulting Q partitions

are intuitive. E and V contain the most important semantic meanings. We inspect

the empirical effects of all shortcut paths as shown in Table 3.3, and build short-

cut branches with N = 2 to represent all shortcut paths in Figure 3.5(b). The first

shortcut branch takes X1 = {P, S,V} as input and aims to learn P, S,V→ A. The

second shortcut branch takes X2 = {P, S,E} as input and learns P, S,E→ A. We

empirically use Le2 to train SEQA models. Other SEQA-specific implementation

details are the same with the official code of [25].
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Set Method TestAdv1Adv2Adv3Adv4A.G.

M
C

Te
st

CT [25] 68.9 63.9 59.4 20.2 54.8 -
DRiFt [49] 69.6 66.0 61.9 23.0 54.8 +1.9%
Bias Product [17] 71.0 66.7 63.6 22.8 65.5 +5.1%
Learned-Mixin [17] 70.5 66.2 60.4 20.2 58.8 +1.8%
CVC-MV 68.1 69.1 65.6 26.8 61.0 +6.1%
CVC-IV 69.4 70.0 65.4 28.7 59.9 +6.4%

D
R

E
A

M

CT [25] 61.5 47.5 39.2 20.9 41.8 -
DRiFt [49] 60.1 48.5 42.2 23.9 44.7 +2.5%
Bias Product [17] 58.6 47.5 38.8 22.6 40.2 -0.1%
Learned-Mixin [17] 60.9 49.2 41.7 20.0 42.3 +1.0%
CVC-MV 60.1 49.6 39.9 23.7 45.6 +2.3%
CVC-IV 60.0 49.2 40.7 25.0 47.1 +3.1%

R
A

C
E

CT [25] 64.7 56.0 50.1 36.6 58.3 -
DRiFt [49] 62.0 56.1 53.3 39.3 58.3 +1.7%
Bias Product [17] 62.3 56.7 53.3 37.0 56.8 +1.0%
Learned-Mixin [17] 64.3 56.5 51.9 38.0 60.1 +1.4%
CVC-MV 64.4 56.7 51.7 39.1 59.2 +1.4%
CVC-IV 64.1 57.0 52.2 38.8 58.6 +1.4%

Table 3.6: Comparison of ours and related ensembling methods on MCQA with
BERT-base. We implement these methods by replacing Eq. 3.10 with their adjust-
ment functions. “A.G.”: our average improvement over the conventional training
method (CT) [25] for Adv*.

3.4.3 Results and Analyses

Comparison with Baselines and State-of-the-Arts

Table 3.4 and Table 3.5 show the overall results for MCQA and SEQA, respec-

tively. Note that the adversarial sets Adv are used to evaluate the robustness of QA

models. We report the average gain on Adv, denoted as A.G., to compare CVC

with the conventional training methods (CT). From Table 3.4, we can see that both

CVC-MV and CVC-IV can surpass the baseline method [25] for defending against

adversarial attacks, e.g., by average increase of 7.6% with BERT-large and 3.3%

with RoBERTa-large on MCTest. It is worth highlighting the example that CVC-IV

on BERT-base gains 8.5% on the most challenging Adv3 set of MCTest. Besides,

our methods are applicable to different backbones like BERT and RoBERTa-large.

The results on SEQA in Table 3.5 show similar observation. These results empiri-
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Method Dev Adv1 Adv2 Adv3 A.G.

CT [25] 88.4 49.9 59.7 44.6 -
DRiFt [49] 85.7 53.7 65.7 48.5 +4.5%
Bias Product [17] 87.8 53.6 65.7 47.3 +4.1%
Learned-Mixin [17] 87.2 53.1 63.9 45.5 +2.1%
CVC-MV 87.2 55.7 65.3 51.3 +6.0%
CVC-IV 86.6 56.3 66.2 51.5 +6.6%

Table 3.7: Comparison of ours and related ensembling methods on SEQA with
BERT-base. We implement DRiFt by directly changing our adjustment function
(Eq. 10) to its. For Bias Product and Learned-Mixin, we first use the corresponding
adjustment functions in [17], then we use the TF-IDF released by original paper as
the shortcut branch in our implementation. “A.G.”: our average improvement over
the conventional training method (CT) [25] for Adv*.

cally demonstrate that our CVC strategy is general and model-agnostic.

Compared to state-of-the-art method, our CVC is more robust to adversarial

attacks. As shown in Table 3.5, CVC outperforms the state-of-the-art QAInfor-

max [182] by an average of 1.7% F1-measure with the same BERT-base backbone.

As shown in Table 3.6 and Table 3.7, CVC also outperforms ensemble based meth-

ods [17] on MCTest and DREAM datasets. Besides, all the approach achieve less

improvement on RACE compared to other two datasets. The possible reason is

that RACE is designed for reading comprehension that highlights comprehensive

reasoning. Thus, the training data is more debiased. Note that our counterfactual

analysis can regard these ensemble based methods as implementation of our CVC-

IV.

Also, we notice that CVC-MV often performs worse than CVC-IV on Adv sets

but better on in-domain Test (or Dev) sets. The possible reason is that the impor-

tant hyperparameter of CVC-MV crn is learned from in-domain data. We will show

that augmenting in-domain data with Adv examples greatly improves the perfor-

mance of CVC-MV in Table 3.10.
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Ablative Setting Dev Adv1 Adv2 Adv3

(1) w/o first Shct.br. 85.5 52.6 62.5 50.8
(2) w/o second Shct.br. 86.1 57.7 66.1 42.1
(3) use Le 72.4 45.9 54.9 42.6
(4) use Le1 86.5 53.5 63.2 46.7

CVC-IV (ours) 86.6 56.3 66.2 51.5

(5) same crn 85.7 54.3 64.1 51.0
(6) crn =JS 85.9 54.3 64.2 51.1
(7) crn =Euc 86.0 54.4 64.1 51.2
(8) w/o distance 86.9 55.3 65.0 51.3
(9) w/o p̂r and p̂n 84.0 53.2 62.6 49.4

CVC-MV (ours) 87.2 55.7 65.3 51.3

Table 3.8: The ablation study on SQuAD (BERT-base). (1)-(4) are ablative settings
for multi-task training (using CVC-IV); (5)-(9) are ablative settings related to CVC-
MV.

Ablation Study

Ablations on SEQA. Table 3.8 shows the SEQA results in 10 ablative settings to

evaluate the importance of shortcut branches, loss functions, and inference strate-

gies: (1) removing the first shortcut branch (E muted) from the multi-task train-

ing; (2) removing the second shortcut branch (V muted) from the multi-task train-

ing; (3) using Le to replace Le2; (4) using Le1 to replace Le2; (5) setting crn to

the same constant (tuned in {0.2, 0.4, 0.6, 0.8, 1}) for all input samples; (6) setting

crn = JS[p̂r||p̂sn] where JS denotes Jensen–Shannon divergence; (7) setting crn as the

euclidean distance between p̂r and p̂sn; (8) removing the distance item in Eq. 3.16

and (9) removing p̂r and p̂sn in Eq. 3.16.

Compared to the ablative results, we can see that our full approach achieves the

overall top performance on SEQA. There is one exception. A higher score on Adv1

is achieved (57.7 vs. 55.7) if we do not use the second shortcut branch (V muted),

i.e., the second ablative. However, this setting achieves much lower performance

on Adv3 (42.1 vs. 51.3). This observation indicates that this setting without all the

shortcut branches cannot make a good trade-off on different adversarial attacks.

Ablations on MCQA. Table 3.9 shows the MCQA results in 10 ablative settings.
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Ablative Setting Test Adv1 Adv2 Adv3 Adv4

(1) one modified Shct.br. 68.3 63.1 58.0 24.8 56.5
(2) two Shct.br. with Le 70.1 66.8 61.0 24.6 57.1
(3) two Shct.br. with Le1 70.2 66.7 62.1 25.6 56.5
(4) two Shct.br. with Le2 70.8 66.6 61.8 27.1 62.2

CVC-IV (ours) 69.4 70.0 65.4 28.7 59.9

(5) same crn 68.1 69.3 64.4 25.6 59.3
(6) crn =JS 70.1 67.0 61.9 20.8 62.2
(7) crn =Euc 69.8 67.7 61.9 22.3 60.5
(8) w/o distance 66.1 67.9 65.2 27.8 61.0
(9) w/o p̂r and p̂n 65.6 66.3 64.8 27.4 59.9

CVC-MV (ours) 68.1 69.1 65.6 26.8 61.0

Table 3.9: The ablation study on MCTest (BERT-base). (1)-(4) are ablative settings
for multi-task training (using CVC-IV inference). “Average” means the average
performance on Adv* test sets; (5)-(9) are ablative settings related to CVC-MV
inference.

Specifically, we (1) use X1 = {Q,O} as the input of the only shortcut branch; (2)

use two shortcut branches, where the first one takes X1 = {P,O} as input and the

second one takes X2 = {Q,O} as input, and deploy the Le in Eq. 3.11; (3) use the

same two shortcut branches as (2), but deploy the Le1 in Eq. 3.12; (4) use the same

two shortcut branches as (2), but Le2 in Eq. 3.12 is used; The ablative setting of

(5)-(9) on MCQA are the same as those used for SEQA.

Results on (1)-(4) show that considering the shortcut branch with input {Q,O}

is not effective for the robustness of model. The reason is that this shortcut branch

is hard to train, i.e., not easy to converge (please refer to “MCQA-specific” and Ta-

ble 3.2). Our empirical conclusions are as follows. Firstly, the shortcut branch with

negligible effect magnitude can be ignored when designing the multi-branch archi-

tecture. Secondly, if no prior knowledge of the effect magnitude on each shortcut

path (of SCM), using Le2 is the best choice. Results on (5)-(9) show the efficiency

of our proposed c-adaptor.
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Figure 3.6: A case study of CVC on MCTest trained on official data. The ground
truth is underlined.

Case Studies

We show two examples as case studies to show the interpretability of our approach

from two aspects: (1) the disentanglement of robust paths and shortcut in multi-

branch architecture, (2) human-like counterfactual inference. Figure 3.6 and Fig-

ure 3.7 illustrate two samples from MCQA and SEQA respectively to demonstrate

the underlying mechanism of CVC-IV and CVC-MV inference. In Figure 3.6, the

conventional training method CT [25] merely aligns the words between passage and

options. This action leads to the wrong choice C, which is a confusing choice gen-

erated by Adv1. In contrast, both CVC-IV and CVC-MV pick the right answer D.

On the bottom blocks, we demonstrate the calculation on prediction logits during

CVC-IV (Eq. 3.5) and CVC-MV (Eq. 3.6), respectively. We take the CVC-MV as

an example to interpret this calculation. Both Normal Prediction (NP) Ap,q,o,r and

Counterfactual Prediction (CP) Ap,q,o,r∗ contain the logits of A, B, C and D. The

logit value ofC is from the word alignment shortcut and it is high in both NP and CP.

It thus can be counteracted after the subtraction in CVC-MV. In contrast, the logit
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CVC-MV inference for start token 

-

=
CVC-MV prediction 

CVC-IV inference for start token 

-

=
CVC-IV prediction 

On the other hand, Luther also points out that the Ten Commandments when considered not as God's condemning
judgment but as an expression of his eternal will, that is, of the natural law also positively teach how the Christian
ought to live. This has traditionally been called the "third use of the law." For Luther, also Christ's life, when
understood as an example, is nothing more than an illustration of the Ten Commandments, which a Christian
should follow in his or her vocations on a daily basis. Luther denied Christ's life a dark story.

Question: What did Luther consider Christ's life?

Ground-truth answer: illustration of the Ten Commandments
CT result: a dark story
CVC-IV result: an illustration of the Ten Commandments,
CVC-MV result: an illustration of the Ten Commandments,

Figure 3.7: A case study of CVC on SQuAD trained on official data. The distracting
sentence from AddVerb is underlined. Only bold tokens in passage are shown in
bar chart due to limited page size.

value of D is from the comprehensive reasoning. When muting the corresponding

variable R (denoted by r∗ in CP Ap,q,o,r∗), this value must be reduced. Then it be-

comes evident after the subtraction in CVC-MV. The sample in Figure 3.7 on SEQA

can be interpreted in the same way. The only differences is that the “options” for

SEQA are tokens, e.g., which token is the start position for answer span). Note that

we normalize the bar chart (the result of the subtraction) for a clear visualization.

Data Augmentation

Data augmentation with adversarial examples is an intuitive method to improve the

model robustness [134, 63]. We conduct experiments on the MCTest dataset to show
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Test Adv1 Adv2 Adv3 Adv4 AG

Adv1
CT 71.0 70.6 72.1 42.5 60.5 -
CVC-IV 71.7 73.3 74.9 49.2 63.8 +3.9%
CVC-MV 71.6 72.9 74.8 48.0 62.7 +3.2%

Adv2
CT 72.3 73.0 75.1 50.1 63.3 -
CVC-IV 71.8 73.8 76.2 59.8 65.5 +3.5%
CVC-MV 71.8 74.2 76.6 61.1 65.5 +3.9%

Adv3
CT 67.5 62.7 59.9 70.9 57.1 -
CVC-IV 67.6 64.5 62.4 70.2 61.6 +2.0%
CVC-MV 66.8 63.7 62.3 70.3 60.5 +1.5%

Adv4
CT 69.8 65.4 60.2 27.7 63.3 -
CVC-IV 69.9 66.2 62.4 32.7 61.0 +1.4%
CVC-MV 67.5 65.6 62.4 25.4 66.7 +0.9%

All
CT 70.5 72.1 74.1 72.5 63.4 -
CVC-IV 72.7 73.5 76.4 71.9 68.4 +2.0%
CVC-MV 73.1 74.6 76.6 73.3 73.5 +4.0%

Table 3.10: Accuracies (%) on the MCTest dataset, using different kinds of data
augmentation in training with BERT-base. The leftmost column shows which type
of adversarial attack for MCQA is used as data enhancement.

the effect of augmentation adversarial data on CT, CVC-IV, and CVC-MV. Specif-

ically, we augment the training data by generating adversarial samples following

our adversarial attacks Adv. The results are shown in Table 3.10. Comparing Ta-

ble 3.10 to the results without data augmentation (Table 3.4), we can observe that

models get consistently improved via data augmentation. Comparing the results

between CT and CVC, we find that CVC achieves further performance boosts for

augmented models. For example, CVC-MV gains an average accuracy increase of

4.0% to “Add All” models when the training data are augmented with all the four

kinds of adversarial examples. Note that it is high-cost and time consuming to con-

duct the data augmentation experiments for SEQA, because the adversarial attacks

for SEQA require a lot of human annotations and proofreading.
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Matched Dev HANS

CT 84.2 62.4
Reweight [17] 83.5 69.2
Bias Product [17] 83.0 67.9
Learned-Mixin [17] 84.3 64.0
Learned-Mixin+H [17] 84.0 66.2
DRiFt-HYPO [49] 84.3 67.1
DRiFt-HAND [49] 81.7 68.7
DRiFt-CBOW [49] 82.1 65.4
Self-debias+Conf-reg [158] 84.5 69.1
Self-debias+Reweight [158] 82.3 69.7
Mind the Trade-off [157] 84.3 70.3
ForgettableHANS [177] 84.3 70.4
ForgettableBoW [177] 83.4 71.2
ForgettableBiLSTM [177] 83.3 71.3

CVC-IV 82.9 70.0
CVC-MV 83.0 71.5

Table 3.11: NLI accuracies (%) on Matched Dev and HANS. Our CVC methods are
trained only on the original training data (MNLI) with BERT-base.

Extension to Natural Language Inference

Our CVC method can also work on other NLP tasks like Natural Language Infer-

ence (NLI) task. Following the setting in previous work [17], we train the model

on MNLI [171] and evaluate it on a adversarial set, HANS [105]. We use the over-

lapped tokens in hypothesis and premise as the only bias branch in implementation

of CVC. From the results shown in Table 3.11, we observe that CVC-MV outper-

forms CT by over 9% on the adversarial set, and achieves comparable performance

compared to state-of-the-art methods.

3.5 Conclusion

We inspect the problem of fragility in QA models, and build the structural causal

model to show that the crux is from shortcut correlations. To train robust QA mod-

els, we propose a novel CVC approach and implement it on the multi-task training

pipeline. We conduct extensive experiments on a variety of QA benchmarks, and
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show that our approach can achieve high robustness and good interpretation. Our

future work is to enhance the structural causal model by considering the subjective

factors, e.g., the preference of dataset annotators and the source of passages.

45



Chapter 4

Interventional Training for

Out-Of-Distribution Natural

Language Understanding

4.1 Introduction

In the previous chapter we concentrate on debiasing for known bias. In this chapter,

we turn to a more practical situation of unknown bias. From the era of word embed-

dings [123] to pre-trained language models [25], researchers of natural language

understanding (NLU) have tried to push the performance on benchmark datasets.

Traditional settings assume independent and identical distribution (IID) in train-

ing and testing splits. However, the IID setting cloaks the vulnerability of neural

models, i.e., neural models tend to learn non-robust “shortcut” patterns in the train-

ing data but fail to make robust predictions on unseen samples. To evaluate the

robustness of models, the out-of-distribution (OOD) setting draws the attention of

the NLU community. For example, the task of natural language inference (NLI)

determines whether a hypothesis can be entailed from a premise. We can observe

that the lexical overlap between the hypothesis and the premise correlates with the

entailment label on the benchmark MNLI dataset [171] (as shown in the top part
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Figure 4.1: The proportions of entailment and non-entailment samples with differ-
ent percentages of lexical overlap.

of Figure 4.1). [105] proposed an OOD set named HANS for NLI. As shown in

the bottom part of Figure 4.1, HANS does not have the correlation between lexi-

cal overlap and the entailment label. NLI models that rely on the lexical overlap

heuristic suffer from a significant degradation on HANS [158].

Recently, causal inference has been adopted in NLP to identify robust correla-

tions by analyzing reliable causal effects between variables [188, 110]. From the

perspective of causality [120, 119], the crux under a model’s vulnerability is con-

founding bias. We summarize the causal relations behind NLU tasks as a causal

graph in Figure 4.2(a). X represents the input, e.g., a pair of sentences for NLI,

and Y represents a label to be predicted. X → Y represents the desired relation

for a robust NLU model, i.e., how to predict the label with reliable understanding

of the input. X ← C → Y denotes a backdoor path of some unreliable relation

between X and Y confounded by the confounder C. Examples of C include nature
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Figure 4.2: (a) Causal graph of NLU tasks, (b) intervention operation, and (c) an
example of each node in the causal graph on the NLI task, where the data sample is
from MNLI [171].

bias in the dataset [153] or crowdsourced workers preference [36]. For instance, in

NLI, C may represent the degree of lexical overlap between the premise and the

hypothesis, which is correlated with the entailment relation in the MNLI dataset

(see Figure 4.1).1 When crowdsourced workers are engaged to create hypotheses

for NLI, C could be the experience level of a worker, with inexperienced workers

more likely to write simple sentences with straightforward meanings. As a result,

these examples of C will make X and Y spuriously correlated.

A common solution of deconfounding is intervention [121, 122], which aims to

block the backdoor path (or spurious correlation) by cutting off C →X (see Fig-

ure 4.2 (b)). The key idea is to stratify X into different environments [2, 154], i.e.,

several subsets of training data, according to the identified confounder. Then the

model is expected to make environment-agnostic prediction. By doing so, we are

controllingX and thus break the backdoor path by D-Separation [75]. Figure 4.2(c)

depicts an example where the NLI training data is stratified into several environ-

ments, e.g., one with obvious trend of lexical overlap bias and another does not.

Then the NLI model is trained to fit both environments.
1We highlight that the lexical overlap bias is an example for the purpose of illustration and veri-

fication only. Our method is designed for situations with unknown confounders.
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However, the confounder C is not always observed. Furthermore, confounders

can be multifactorial in NLU, e.g., it may contain both inherent dataset bias and

artifacts from crowdsourced workers. Both scenarios make intervention non-trivial.

In this chapter, we propose BAI, a bottom-up automatic intervention method, which

can (1) identify the unobserved confounder(s) automatically, and (2) perform multi-

granular intervention to handle multifactorial confounders. Inspired by [23], the

automatic stratifying mechanism is realized by maximizing the difference between

data in different environments.2 We further propose a novel bottom-up intervention

mechanism that aims to address the multifactorial characteristic of C. While most

existing debiasing work only considers a single bias, our bottom-up mechanism en-

ables the model to pick up different confounders in two rounds of interventions.

Specifically, based on our preliminary experiments, we find that fine-grained parti-

tion (i.e., partition with more environments) results in smaller differences between

environments, making environment-agnostic learning easier. Thus we start from

a fine-grained partition. We then move on to a coarse-grained partition to further

block the backdoor effect via C and make the learning environment-agnostic.

We apply BAI on three OOD benchmarks for NLU tasks. The results show

that our method outperforms state-of-the-art methods, e.g., achieving 7 percentage

points of absolute gains from the previous best method under OOD setting of Quora

Question Pairs (QQP) [190], a benchmark dataset for paraphrase identification.

Contributions: (1) we analyze the issue of NLU vulnerability from the per-

spective of causality analysis; (2) we propose a bottom-up automatic intervention

method to perform intervention for unobserved and multifactorial confounders; and

(3) extensive experiments on three OOD benchmarks demonstrate that our method

outperforms state-of-the-art methods.

2Here an environment refers to a subset of training data. A partition is an assignment of the whole
training set into multiple environments, e.g., a partition with five environments.
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4.2 Method

4.2.1 Preliminaries

Causal Intervention is the core idea of this chapter. We formulate NLU tasks with a

causal graph [122], which illustrates the causal relationships between variables with

a directed acyclic graph. As shown in Figure 4.2, each node represents a variable,

e.g., a pair of sentences or a label for NLU tasks, and each directed edge denotes

that the head node has direct effect on the tail node.

Naı̈ve model training, i.e., empirical risk minimization (ERM) [159], indiscrim-

inately learns both spurious correlation X←C→Y and causal correlation X→Y .

Specifically, by applying Bayes’ rule on Figure 4.2(a), we can obtain:

P (Y |X) =
∑
c

P (Y |X, c)P (c|X), (4.1)

where the bias is introduced via P (C|X). For example, consider the NLI task. Let

X be a pair of two sentences (premise and hypothesis) and Y the entailment label.

Let C represents the degree of lexical overlap between the two sentences in X , and

let c1 and c2 denote two situations: having obvious lexical overlap and having little

or no lexical overlap. Typically on IID training data of NLI, P (c1|X) is larger than

P (c2|X), and thus P (c1|X) tends to dominate the overall term, P (Y |X). In other

words, model tends to learn P (Y |X) from c1 instead of X .

In contrast, causal intervention in Figure 4.2(b) yields:

P (Y |do(X)) =
∑
c

P (Y |X, c)P (c), (4.2)

where the do(X) denotes that intervention is conducted on X . With do operation,

c is no longer associated with X and thus the model treats c1 and c2 fairly subject to

the prior distribution of C.

Invariant Risk Minimization [2] (IRM) is one of the popular tool for intervention

in deep neural networks. Given the stratified environments, IRM targets at a robust

model which is invariant to environments. In this work, we utilize two versions of

IRM.
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Given the input X , model f and the partition of environments E , the original

version of IRM [2] minimizes the objective:

IRMv1 =
∑
e∈E

XE(f(Xe), Y ) + λ · ‖∇w|w=1.0XE(w·f(Xe), Y )‖2, (4.3)

where Xe denotes the data in the environment of e and XE denotes cross-entropy

loss. w is a fixed dummy classifier. The second term measures the optimality

of w for each environment to encourage the model to make environment-invariant

predictions. This version of IRM is unstable due to the second-order derivatives.

Another version of IRM [154] initializes individual classifier We for each envi-

ronment e while all environments share one feature extractor. Here we denote the

model for the environment e as f e = We ◦ Φ where Φ is a feature extracter, e.g.,

BERT. The corresponding loss is written as:

IRMv2 =
∑
e∈E

XE(f e(Xe), Y ) + λ · Var
e′∈E

(We′). (4.4)

The second term is the variance of classifier weights, which encourages optimal

classifiers for different environments to be close to each other.

4.2.2 Bottom-up Automatic Intervention

To implement intervention on NLU tasks with the unobserved and multi-factorial

confounder, we propose a Bottom-up Automatic Intervention (BAI) method using

IRM. Figure 4.3 and Figure 4.4 show the overall pipeline of BAI. It consists of

two components: automatic stratification and bottom-up intervention. The auto-

matic stratification component generates partition of environments by maximizing

the difference between data in different environments based on a reference model.

The bottom-up intervention component performs intervention at two levels of gran-

ularity.

Automatic Stratification generates the partition of environments with unobserved

confounder. A good partition is achieved when a reference model behaves differ-

ently under different environments. Inspired by [23], we first train a reference model
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Figure 4.3: First step of BAI: automatic stratifying where Mn1 and Mn2 are opti-
mized individually.

fref through the naı̈ve trained BERT [25] 3. Note the second term of Eq. 4.3 is to

make environment-invariant prediction, that is, to minimize the difference of data

behavior across environments. Inversely, our goal is to maximize the difference of

data behavior by magnifying the second term of IRM.

As shown in Figure 4.3, we initialize an environment matrix M ∈ RD×N in-

dicating the belonging of each training sample to each environment, where D and

N denote the number of training data and pre-defined environments, respectively.

Mi,j is the probability of i-th sample belonging to j-th environment. IRMv2 is not

applicable since the naı̈ve trained reference model only has one classifier. Thus we

derive M by fixing the reference model fref and maximizing the second term of

IRMv1 as follows:

max
M

∑
e∈E

‖∇w|w=1.0XE(w·fref(X
e), Y )‖2, (4.5)

where E is the partition of environments determined by M. Note that max operation

makes the back-propagation of gradients from M infeasible. To address this issue,

we deploy the Gumbel Softmax trick [62] to re-formulate the discrete sampling as:

E = g(M) = Gumbel-Softmax(M). (4.6)

3Here we expect the reference model to have bias since a biased model is able to recognize bias
sample since the bias sample would be predicted easily with high confidence.
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Figure 4.4: Second step of BAI: bottom-up intervention. The dashed arrows denote
the back-propagation. Only the modules (or parameter matrices) with dashed box
are updated.

We term the environment matrix with n environments as Mn. Specifically, we

deploy automatic stratifying to extract two environments matrices, i.e., fine-grained

Mn1 and coarse-grained Mn2 (n1 > n2), for bottom-up intervention.

Bottom-Up Intervention adopts multi-granular partitions for intervention in a

bottom-up fashion, to derive a robust model fint. As shown in Figure 4.4, bottom-up

intervention consists of two rounds of intervention deployed by IRMv2 due to its

stability and scalability.

We first generate fine-grained partition En1 and coarse-grained partition En2 from

Mn1 and Mn2 (see Figure 4.4), where the number of environments in En1 is larger

than that in En2 . Second, we start from the fine-grained partition En1 and train

the intervened robust model fint. Similarly, we decompose fint = W ◦ Φ where

Φ is feature extractor, e.g., BERT, and W is a set of learned classifiers. We use

We to represent the classifier exclusive to environment e and W{E} to denote the

set of classifiers for E partition, that is, W{En1} = {We | e ∈ En1} represents all

classifiers for partition En1 . The feature extractor and the classifiers of En1 in bottom

fine-grained intervention are optimized by:

min
Φ,W{En1}

∑
e∈En1

XE(f e
int(X

e), Y ) + λ· Var
e′∈En1

(We′), (4.7)

Then we conduct the intervention of coarse-grained partition En2 . To prevent

the catastrophic forgetting, i.e., the intervention with new partition may make the
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model forget the invariant property on previous partition, we incorporate the idea

from continual learning [91, 132]. Specifically, we fix the parameter of model fint

including the feature extractor and n1 classifiers for En1 . Then we augment n2

classifiers for the new partition En2 , resulting in n1 + n2 classifiers. Here we only

optimize the n2 augmented classifiers during training as:

min
W{En2}

∑
e∈En2

XE(f e
int(X

e), Y ) + λ · Var
e′∈En1∪En2

(We′), (4.8)

where the first term is based on the new partition En2 while the second term com-

putes the variance of classifier weights across all n1 + n2 classifiers.

Inference is based on the design of IRMv2 [154]. Since we are not able to distin-

guish which environment the input data belongs to, we simply average the weight

of n1 + n2 classifiers for inference:

Ŷ = f ē
int(X) = W̄ · Φ(X), (4.9)

where W̄ denotes the mean weight of all classifiers.

4.3 Experiment

4.3.1 NLU Tasks and Benchmarks

We apply our method on three NLU tasks to evaluate the effectiveness of our

method. Specifically, we train on the original training set and evaluate on both the

IID and the OOD evaluation sets. The accuracy is reported for all the benchmark

datasets.

Natural Language Inference aims to classify the relationship between two sen-

tences, i.e., a premise and a hypothesis, into three classes: “entailment”, “contradic-

tion” and “neutral”. It has been observed that NLI models may rely on the lexical

overlap bias [105]. We adopt MNLI [171] and HANS [105] as the IID and OOD

sets, respectively.
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Method
MNLI FEVER QQP

IID OOD IID OOD IID OOD
Dev HANS Dev Symmetric Dev PAWS

Naı̈ve Fine-tuning 84.5 62.4 85.6 63.1 91.0 33.5
Reweighting (KB) 83.5 69.2 84.6 66.5 89.5 50.8
Product-of-Expert (KB) 82.9 67.9 86.5 66.2 88.8 58.1
Learned-Mixin 84.0 64.9 83.1 64.9 86.6 56.8
Regularized-Confidence (KB) 84.5 69.1 86.4 66.2 89.0 36.0
Reweighting (UB) 82.3 69.7 87.1 65.5 85.2 57.4
Product-of-Expert (UB) 81.9 66.8 85.9 65.8 86.1 56.3
Regularized-Confidence (UB) 84.3 67.1 87.6 66.0 89.0 43.0
Forgettable Examples 83.1 70.5 87.1 67.0 89.0 48.8
Self-Debiasing 83.2 71.2 - - 90.2 46.5
EIIL 83.9 69.9 89.2 68.1 87.9 57.3

BAI (Ours) 82.3 72.7 90.1 69.1 84.2 65.0

Table 4.1: Comparing our method to SOTAs on three benchmarks. Performance
shown is in terms of accuracy. “KB” and “UB” denote known bias version and
unknown bias version respectively. Results of Naive Fine-tuning, Reweighting,
Product-of-Expert, Learned-Mixin and Regularized-Confidenceand with known
bias are from [37], [158] and [157]. Results of others are from the original paper.

Fact Verification also takes in a pair of sentences, i.e., a claim and an evidence, and

requires the model to give the position of the evidence towards the claim. The labels

are “support”, “refutes”, and “not enough information”. Fact verification models

often suffer from the claim-only bias [158]. In this paper, we use FEVER [155] as

the IID data and FEVER Symmetric [142] as the OOD data.

Paraphrase Identification identifies whether a sentence is paraphrase of another

sentence. A sentence pair is labeled as “duplicate” if the two sentences share the

same semantic meaning, otherwise “non-duplicate”. Similar to NLI, lexical overlap

bias exists in paraphrase identification. We use QQP [164] in training as the IID set

and PAWS [190] as the OOD set.

4.3.2 Implementation

BERT-base [25] from HuggingFace’s Transformers [173] is deployed as the fea-

ture extractor for fair and direct comparison with previous methods. For stan-

dard hyperparameters for the training of NLU model, we use the same configu-
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ration as [157, 158], i.e., 3 epochs of training, learning rate of 5e−5 for NLI and

2e− 5 for fact verification and paraphrase identification. Unlike previous meth-

ods [17, 40, 18, 141, 37] which are directly evaluated on the OOD set, we only per-

form checkpoint selection on the OOD set. We choose hyperparameters exclusive

to our method according to the analysis on the NLI task (see RQ3) and deploy the

same configuration for the other two tasks to avoid hyperparameter tuning. Specif-

ically, we set the learning rate to 1e−2 for automatic stratification to optimize the

environment matrix, and n1 = 5 and n2 = 2 for bottom-up intervention. We also fix

λ to 1e2. Note the coarse-grained partition may require multiple turns of training to

achieve better performance. The average results over 5 runs with different random

seeds are reported.

4.3.3 Comparison with SOTAs

In this section, we compare our method with the following baselines: Naı̈ve Fine-

tuning [25] directly fine-tunes the pre-trained language model on the downstream

NLU tasks; Reweighting [17] reweights each training sample according to the con-

fidence on bias model; Product-of-Expert [53] trains the robust model fused with

the bias model by sum of logits; Learned-Mixin [17] utilizes a different fusion

method. Regularized-Confidence [157] enhances the model in a knowledge distil-

lation fashion; Unknown bias version methods in [158] adopt the bias model trained

only with a small number of data; Forgettable Examples [176] trains the model

with an additional round with the forgotten data; Self-Debiasing [37] utilizes bot-

tom layers of model as the bias model; EIIL [23] is the IRM method that inspired

this paper, which is originally applied to CV.

Table 4.1 summarizes the performance comparison between BAI and the above

SOTA methods. Overall, BAI achieves the top performance on all the OOD sets.

Specifically, BAI significantly outperforms naı̈ve Fine-tuning by doubling the ac-

curacy on PAWS (65.0% vs. 33.5%), which demonstrates that BAI with causality-
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Ablative Setting Dev HANS

Naı̈ve FT 84.5 62.4
(a) Randomized Environment 84.0 62.4
(b) w/o Regularizer 83.0 66.8
(c) One Intervention 83.9 69.9
(d) Naive FT+Multiple Classifiers 84.4 62.6
Full Method 82.3 72.7

Table 4.2: RQ1. Results of ablative settings on MNLI. “FT” denotes Fine-tuning.

theoretic basis is effective for OOD generalization on NLU tasks. Also, BAI sur-

passes SOTA methods with 6.9% gains over previous best result on PAWS, which

shows the superiority of BAI over reweighting based methods.

We also observe a trade-off between IID and OOD on MNLI and QQP across

most of the methods, i.e., performance gains on OOD are achieved with the sacri-

fice of IID performance. It is because naı̈ve fine-tuning fits IID training data well.

Interestingly, the IID test data of FEVER benefits from debiasing methods, which

suggests that the data distribution of the IID test data may be different from that of

the training data.

4.3.4 Ablation Studies

In this section, we conduct extensive ablation studies to evaluate the components in

our BAI and answer the following research questions.

RQ1: How does each component of BAI contribute to the performance gains?

Answer: We design four ablative settings: (a) Replacing the learned environment

matrix with a randomly initialized one; (b) Removing the regularizer term in Eq. 4.7

and 4.8; (c) Replacing bottom-up intervention with single intervention, i.e., remov-

ing Eq. 4.8. (d) Using the same number of classifiers on naı̈ve fine-tuning model as

our BAI.

As reported in Table 4.2, the settings (a) and (d) prove that the environment parti-

tion is vital in our method and the improvement of our method is not from the added
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Stratifying Method Dev HANS

No Stratifying 84.5 62.4
(1) Domain Information 84.2 63.2
(2) Confidence 84.0 67.7
(3) Lexical Overlap 83.8 65.6
Automatic Stratifying (Ours) 83.9 69.9

Table 4.3: RQ2. Results of alternative methods for environment stratification on
MNLI.

parameters4. Result of (b) reveals that both the regularizer term and the design of

one classifier for one environment contribute to the gains in our method. Finally,

the full method with bottom-up intervention outperforms (c), which demonstrates

the effectiveness of multi-granular intervention.
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Figure 4.5: RQ3. The accuracies of one round of intervention on MNLI with dif-
ferent numbers of environments.

RQ2: Is there any other solution for stratification?

Answer: Yes. We evaluate several alternative methods for partition on MNLI ac-

cording to the attached information of training samples: (1) Domain information,

i.e., “fiction”, “governmnet”, “slate”, “telephone” and “travel”; (2) Confidence of

prediction [17]. We calculate the highest confidence or the options and the confi-

4BAI introduces 0.008% more parameters compared to that of Naı̈ve Fine-tuning.
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Figure 4.6: RQ4. (i) Characteristics and relationship for two partitions. Each sub-
graph shows the same analysis setting as in Figure 4.1 in corresponding environ-
ment; (ii) Examples for the easy and hard samples for the partition with n2 =2.

dence for the ground-truth label. All the samples are grouped into environments by

K-Means [48] according to the two confidence scores; (3) Prior knowledge of bias,

i.e., lexical overlap bias in Figure 4.1. We also group them into different environ-

ments by K-Means. For fairness, we fix the number of environments as 5, which is

the number of domains in the setting (1). We compare the above settings with our

model trained using only one intervention in Eq. 4.7.

As summarized in Table 4.3, the results show that directly using domain infor-

mation as basis for environments stratifying has very few gains, i.e., 0.8%. Although

intervention based on domain information is beneficial for every domain, such in-

tervention does not provide a good partition for debiasing as the lexical bias still

exists. Stratifying based on confidence and lexical overlap shows considerable im-

provements compared to that of no stratifying, which demonstrates the two factors

are indeed related to the confounder of MNLI. Note that the automatic stratify-

ing method is designed for unobserved confounder, which outperforms the simple

heuristics in settings (2) and (3) without using any prior knowledge of bias.

RQ3: How to set the number of environments?

Answer: We first analyze the situation of only one round of intervention and vi-

sualize the performance trend in Figure 4.5. Note that setting the number of en-
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Order & Combination Dev HANS

E2 → E5 81.7 70.1
E5 → E3 83.7 71.4
E5 → E3 → E2 81.3 73.5
E5 → E2 (Config in Table 4.1) 81.1 73.3

Table 4.4: RQ3. Results of different orders and combinations of environment num-
bers on MNLI, arrows represent the intervention order.

vironments as one equals to naı̈ve fine-tuning, i.e., no stratification. Overall, there

is a trade-off in the results between Dev and HANS, i.e., IID and OOD perfor-

mances. This phenomenon is particularly prominent in E2. The reason is that only

one intervention forces the model to focus on only one confounder. In this case, it

forces the model to pay much attention on the harder samples, i.e., the confounder

of crowdsourced worker preference, leading to significant performance drop on dev

set (see RQ4 for more details).With the number of environments increasing, the

gaps between the environments are also smaller, i.e., the OOD performance of ten

environments is close to that of the naı̈ve fine-tuning.

We further analyze the multiple interventions. We conduct experiments with the

number of interventions in different orders or combinations. The experiment results

are summarized in Table 4.4. We observe that applying the partition with two envi-

ronments in the final intervention is better and increasing the turns of intervention

only brings marginal improvements. Thus, we simply fix E5 → E2 for all tasks in

our paper.

RQ4: What is each environment like?

Answer: Figure 4.6 inspects each environment in two partitions, i.e., E5 and E2, on

MNLI and summarizes the characteristic for each environment. E2 can be regarded

as a coarse variant of E5, i.e., the first environment of E2 partition combines four

environments of E5. We can see that both partitions contain environments with

distinct characteristics. E2 focuses more on crowdsourced worker preference while

E5 shows each environment with more diverse situation for the nature bias, i.e.,

lexical overlap bias.
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We further investigate the crowdsourced worker preference in E2, i.e., the dif-

ficulty of the samples in these two environments is distinguishable. Samples in

the second environment are more challenging compared to the first one. As de-

picted in Figure 4.6 (ii), reasoning of easy samples is straightforward, i.e., nice

versus not nice and do not like. In contrast, hard examples require a deep

understanding of the semantic meaning. For instance, the hard samples with con-

tradiction and entailment as labels expect the model to have the ability to iden-

tify the current situation, e.g., no name for now, and the usual situation, e.g.,

name is usually mentioned in the past. The above inspection reveals that

BAI helps to generate meaningful and multifactorial partition.

4.4 Conclusion

In this chapter, we explore how to improve the robustness of NLU models under

OOD setting, and propose a bottom-up automatic intervention method for debiasing.

The experiment results demonstrate the superiority of our model over state-of-the-

art methods. In future work, we will consider two improvements on BAI. First, we

target at an end-to-end framework for intervention and dynamic learn the partition

of environment for NLU tasks. Second, we want to ease the trade-off effect between

IID and OOD sets.
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Part II

Cross-lingual Transfer
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Chapter 5

COSY: COunterfactual SYntax for

Cross-Lingual Understanding

5.1 Introduction

With the emergence of BERT [25], large-scale pre-trained language models have

become an indispensable component in the solutions to many natural language pro-

cessing (NLP) tasks. Recently, large-scale multilingual transformer-based models,

such as mBERT [25], XLM [80] and XLM-R [21], have been widely deployed

as backbones in cross-lingual NLP tasks [175, 125, 72]. However, these models

trained on a single resource-rich language, e.g., English, all suffer from a large

drop of performance when tested on different target languages, e.g., Chinese and

German—where the setting is called zero-shot cross-lingual transfer. For example,

on the XQUAD dataset, mBERT achieves a 24 percentage points lower exact match

score on the target language Chinese than on the training language English [57].

This indicates that this model has seriously overfitted English.

An intuitive way to tackle this is to introduce language-agnostic information—

the most transferable feature across languages, which is lacking in existing multi-

lingual language models [16]. In our work, we propose to exploit reliable language-

agnostic information—syntax in the form of universal dependency relations and
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English:           I      bought      two      new      laptops      yesterday      .

bought买了

I 我

laptops 电脑

yesterday 昨天

. 。

new新的

two 两台

<ROOT>

<OBJ>

Chinese:       我 昨天 买了 两台 新的 电脑 。

[PRON]

[VERB] [NOUN]

[NOUN]

[PUNCT]

[NUM]

[ADJ]

Shared Syntax:

In the caption, please also colorize the word of Dependency 
Relations & POS Tags as like these.

Figure 5.1: Examples of two sentences in English and Chinese that have the same
meaning and share the same syntax in the format of dependency relations and POS
tags.

universal POS tags [24, 112, 194, 193]. As illustrated in Figure 5.1, the sentences

in Chinese and English share the same meaning but have different word orders. The

order difference hampers the transferability between English and Chinese in con-

ventional language models (with sequential words as input). In contrast, it is clear

from Figure 5.1 that the two sentences share identical dependency relations and

POS tags. Thus, we can incorporate such universal syntax1 information to enhance

the transferability across different languages. To achieve this learning objective in

deep models, we design syntax-aware networks that incorporate the encodings of

dependency relations and POS tags into the encoding of semantics.

However, we find that empirically the conventional attention-based incorpora-

tion of syntax, e.g., relational graph attention networks [60], has little effect on

improving the model. One possible reason is that the learning process may be dom-

1In the rest of this chapter, syntax denotes universal syntax for simplicity.
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[SYM]

[AUX] [ADV]

[PRON]

[VERB]
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[CCONJ]

Randomize
< >

Randomize
[ ]

Figure 5.2: Illustration of counterfactual syntax generation. Red color highlights
the modified syntax with randomized labels.

inated by the pre-trained language models due to their strength in semantic repre-

sentation learning, which leads to an overfitted model. This raises the question of

how to induce the model to focus more on syntax while maintaining its original ca-

pability of representing semantics? To this end, we propose a novel COunterfactual

SYntax (COSY) method, inspired by causal inference [138, 120] and contrastive

learning [50].

The intuition behind COSY is to create copies of training instances with their

syntactic features altered (see the “counterfactual” syntax in Figure 5.2), and to

force the encodings of the counterfactual instances to be different from the encod-

ings of their corresponding factual instances. In this way, the model would learn to

put more emphasis on the syntactic information when learning how to encode an in-

stance, and such encodings are likely to perform well across languages. We evaluate
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our COSY method on both question answering (QA) and natural language inference

(NLI) under cross-lingual settings. Experimental results show that, without using

any additional data, COSY is superior to the state-of-the-art methods.

Contributions: 1) we develop a syntax-aware network that incorporates trans-

ferable syntax in language models; 2) we propose a novel counterfactual training

method that addresses the technical challenge of emphasizing syntax; and 3) exten-

sive experiments on three benchmarks demonstrate the effectiveness of our method

for cross-lingual tasks.

5.2 COSY: COunterfactual SYntax

COSY aims to leverage the syntactic information, e.g., dependency relations and

POS tags, to increase the transferability of cross-lingual language models. Specif-

ically, COSY implicitly forces the networks to learn to encode the input not only

based on semantic features but also based on syntactic features through syntax-

aware networks and a counterfactual training method.

As illustrated in Figure 5.3, COSY consists of three branches with each branch

based on syntax-aware networks (SAN) indicated by a distinct color. The main

branch (in black) is the factual branch that uses factual syntax as input. The red

and blue branches are counterfactual branches using counterfactual dependency re-

lations and counterfactual POS tags as input, respectively. The counterfactual train-

ing method guides the black branch to put more emphasis on syntactic information

with the help of other two branches. Note that the red and blue branches work for

counterfactual training, and only the prediction from the black branch is used in

testing.

Below, we first elaborate the modules of SAN in Section 5.2.1, and then intro-

duce the counterfactual training method in Section 5.2.2.
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Figure 5.3: The overall pipeline of our COSY. We call the architecture as syntax-
aware networks (Section 5.2.1) and the training method as counterfactual training
(Section 5.2.2). In this architecture, there are three branches: black, red and blue.
Black branch is just the normal attention-based network with additional syntactic
information, and only its prediction is used in the testing stage. Red branch and
blue branch are novel as they generate the counterfactual syntax samples and drive
the counterfactual losses in the training stage—the key functions in COSY. RGAT
stands for Relational Graph Attention Network [60, 95]. The modules of RGAT
and the modules of Fusion Projection are shared across branches, e.g., two
RGAT modules are sharing parameters. Cat denotes concatenation.

5.2.1 Syntax-Aware Networks (SAN)

As shown in Figure 5.3, SAN contains four major modules: a set of feature extrac-

tors, a relational graph attention network (RGAT), fusion projection, and a classifier.

In this section, we use the route in the black branch as an example to elaborate each

module. The set of feature extractors include three components: a pre-trained lan-

guage model, a dependency graph constructor and a POS tags extractor.

Pre-trained Language Model. Following previous work [57], we deploy a pre-

trained multi-lingual language model, e.g., mBERT [25], to encode each input sen-

tence into contextual features. Given a sequence of tokens with a length of S, we

denote the derived contextual features as H = [h1, ...,hS] ∈ RS×d, where d is the

dimensionality of each hidden vector.

Dependency Graph Constructor. We use it to construct the (factual) dependency
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graph for each input sentence. In this work, the Stanza toolkit [127] is used to

extract the universal dependency relations as the first step. Then, the dependency

graph can be represented asG={V,R,E}, where the nodes V are tokens, the edges

E denote the existence of dependency relations, and the set R contains the relation

types for E. Each edge eij ∈ E consists of a triplet (vi, vj, r) where v1, v2 ∈ V and

r ∈ R.

As shown in Figure 5.3, we define three kinds of relation types in R : 1) a

forward syntactic relation, e.g., love
OBJ
−−−→ apples; 2) an inverse syntactic relation,

e.g., apples
OBJ−1

−−−→ love; and 3) a self loop SELF that allows the information to

flow from a node to itself. Note that we regard the ROOT relation as a self-loop.

In this way, we obtain 75 different types of relations in total, and thus denote the

embedding matrix as R ∈ R75×d′ .

POS Tags Extractor. We deploy the same Stanza toolkit [127] to assign (factual)

POS tags P for all tokens. We obtain 17 different types of POS tags and denote the

embedding matrix as T ∈ R17×d′ .

Relational Graph Attention Networks (RGAT). RGAT is one of the standard

backbones to incorporate the dependency graph [60, 95]. Given the (factual) de-

pendency graph G with the contextual features of each node, RGAT can generate

the relation-aware features (for each node). Details are given below. Suppose eij

is the directed edge from node vi to node vj and the dependency relation r. The

importance score of vj from vi is computed as:

s(vi, vj) = Concat(esij, e
r
ij) ·WAttn, (5.1)

where WAttn ∈ R(d/2+d′)×1 maps a vector to a scalar, erij is the embedding of the

dependency relation between vi and vj from R, and esij is computed by element-

wise multiplication between vi and vj:

esij = (hi ·WQ) ◦ (hj ·WK), (5.2)

where WK ∈ Rd×d/2 and WQ ∈ Rd×d/2 are the learnable parameters for key and

query projections [160], and hi and hj denote their contextual features extracted
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from pre-trained language models. Then, the importance scores are normalized

across Nj to obtain the attention score of vj from vi:

α(vi, vj) =
exp(s(vi, vj))∑

k∈Nj
exp(s(vk, vj))

, (5.3)

where Nj denotes the set of nodes pointing to vj . The relation-aware features

of vj is computed as the weighted sum of all nodes in Nj with corresponding

attention scores. After computing all nodes, we get the relation-aware features

Ĥ=[ĥ1, ..., ĥS] ∈ RS×d.

Fusion Projection. We fuse the relation-aware features Ĥ with the (factual) POS

tags information before feeding them into the classifier. Given POS tags P , the

fused features for each token are represented by

fj = Concat(ĥj,pj) ·WF , (5.4)

where WF ∈ R(d+d′)×d are learnable parameters of fusion projection and pj is

the corresponding embedding of the POS tag of the j-th token from T. The fused

features of the entire sequence are denoted as F=[f1, ..., fS] ∈ RS×d.

Classifier. It is designed based on the specific task, such as NLI or QA, follow-

ing [25].

5.2.2 Counterfactual Training

Recall that the challenge in the effective utilization of syntax is how to induce the

model to focus more on syntax while maintaining its original representation capabil-

ity of semantics. Inspired by counterfactual analysis [120, 119, 122] and contrastive

learning [43], we propose a counterfactual training method by incorporating coun-

terfactual syntax (counterfactual dependency graph and counterfactual POS tags)

on the red and blue branches in Figure 5.3. Each branch is designed to guide the

model to focus on one type of syntax, i.e., dependency graph or POS tags.

Counterfactual Dependency Graph is utilized on the red branch with factual POS

tags in Figure 5.3. We build a counterfactual dependency graph by maintaining
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graph structure and nodes, and replacing each type of relation (except for a self-loop

SELF) with a randomized (counterfactual) type. We name it G−. We feed G− and

H into RGAT to obtain the counterfactual relation-aware features denoted as Ĥ−.

Then, we fuse Ĥ− with the factual POS tags to derive the counterfactual features

Fcf1 = [f cf1
1 , ..., f cf1

S ] on the red branch. Finally, we can calculate the similarity

between the factual and the counterfactual features, by leveraging the dot-product

operation, as follows,

Lcf1 =
1

S

S∑
i

fi · f cf1
i . (5.5)

This counterfactual loss forces the model to emphasize the syntactic information

related to dependency relations.

Counterfactual POS Tags are utilized with the factual dependency graph on the

blue branch in Figure 5.3. We create counterfactual POS tags P− from factual POS

tags P by randomly selecting a POS tag for each token. Accordingly, we replace

each embedding pi by p−i . Given the relation-aware features Ĥ from the black

branch, we then feed the embeddings of counterfactual POS tags in Eq. 5.4 and get

the counterfactual features as Fcf2 = [f cf2
1 , ..., f cf2

S ]. Finally, we can calculate the

similarity between the factual and the counterfactual features (on the blue branch)

by leveraging the dot-product operation, as follows,

Lcf2 =
1

S

S∑
i

fi · f cf2
i . (5.6)

This counterfactual loss forces the model to emphasize the syntactic information

related to POS tags. The overall loss function used in training is as follows,

L = Ltask + λ(Lcf1 + Lcf2), (5.7)

where Ltask is the task-specific loss, i.e., a cross-entropy loss, and λ is a scale to

balance between the task-specific loss and our proposed counterfactual losses.
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Method #T #M A.D. XNLI MLQA XQUAD

en. avg. en. avg. en. avg.
m

B
E

R
T Naive F.T. 1 1 No 82.1 68.4 67.0 / 80.2 44.2 / 61.4 72.2 / 83.5 51.0 / 66.7

XMAML-One L O(L) Yes 82.1 69.6 - - - -
LAKM 1 1 Yes - - 66.8 / 80.0 - - -

COSY (Ours) 1 1 No 82.2 70.1 67.2 / 80.4 45.2 / 62.1 72.6 / 83.6 53.2 / 68.1

X
-R

ba
se Naive F.T. 1 1 No 84.6 75.1 - / 80.1 - / 65.1 71.6 / 83.1 55.9 / 71.8

XMAML-One L O(L) Yes - - - / 80.2 - / 66.1 - -
COSY (Ours) 1 1 No 84.3 75.6 67.7 / 80.7 48.5 / 66.5 74.0 / 85.1 57.3 / 73.4

X
-R

la
rg

e Naive F.T. 1 1 No 88.7 80.0 70.6 / 83.5 53.2 / 71.6 75.7 / 86.5 60.6 / 76.8
STILT 9 1 Yes 89.6 81.6 70.8 / 84.1 54.4 / 72.8 77.4 / 88.3 63.3 / 78.7

XMAML-One L O(L) Yes - - - / 84.3 - / 73.2 - -
COSY (Ours) 1 1 No 89.2 81.9 70.9 / 84.2 54.7 / 73.2 77.7 / 88.0 64.0 / 79.7

Table 5.1: Cross-lingual zero-shot performance comparison between COSY and
SOTA methods on three benchmark datasets. Note that we report accuracy for XNLI
and Exact Match/F1 scores for MLQA and XQUAD. For each dataset, “en.” denotes
the results of English while “avg.” is the average performance over all languages.
X-R means XLM-R and Naive F.T. is the abbr. of Naive Fine-Tuning. L is the
number of target languages. #T denotes the number of training turns, e.g., STILT
augments its training by using each of nine additional datasets. #M is the number
of final models, where 1 < O(L) < L, and A.D. denotes using additional datasets.

5.3 Experiments

In this section, we evaluate our COSY method for cross-lingual understanding under

both zero-shot and few-shot settings. For the zero-shot setting, we use English for

training and evaluate the model on different target languages. For the few-shot

setting, we follow the implementation in [113] and use the development set of the

target languages for model fine-tuning2.

5.3.1 Datasets

We evaluate our method on the natural language inference (NLI) and the question

answering (QA) tasks. We briefly introduce the datasets used in our experiments as

follows.

Natural Language Inference (NLI). Given two sentences, NLI asks for the re-

lationship between the two sentences, which can be entailment, contradiction or

2All the results and analyses are under the zero-shot settings by default, except for Table 5.2.
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Method en. non-en. avg. avg.

Naive F.T.∗ 81.9 70.3 71.2
XMAML-One∗ 82.4 70.7 71.6
COSY (Ours) 82.6 71.9 72.7

Table 5.2: Results of XNLI under the few-shot setting (mBERT). We report the
testing results of English (“en.”), the average results over all non-English languages
(“non-en. avg.”) and the average results over all languages (“avg.”). ∗ denotes the
results from [113]. More details are available in Appendix.

neutral. We conduct experiments on XNLI [22] and evaluate our method on 13

target languages3.

Question Answering (QA). In this chapter, we consider the QA task that asks the

model to locate the answer from a passage given a question. We conduct exper-

iments on MLQA [87] and XQUAD [6]. COSY is evaluated on 7 languages on

MLQA and 10 languages on XQUAD (with Thai excluded).

5.3.2 Implementation

In data preprocessing, we feed the same syntactic information to each of the sub-

words in the same word after tokenization. Our implementation of pre-trained

language models (mBERT and XLM-R) is based on HuggingFaces’s Transform-

ers [173]. We select the checkpoint and set hyper-parameters, e.g., learning rate and

λ in the loss function, based on the performance on the corresponding development

sets. We select learning rate amongst {7.5e−6, 1e−5, 3e−5} and fix the batch size

to 32. We select dimension d′ amongst {100, 300}. λ in counterfactual loss is set to

0.1 (see Figure 5.4). A linear warm up strategy for learning rate is adopted with first

10% optimization steps. Adam [74] is adopted as the optimizer. All experiments

are conducted on a workstation with dual NVIDIA V100 32GB GPUs.
3We remove Thai (th) and Swahili (sw) from our experiments since these two languages are not

supported by Stanza.
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5.3.3 Results

We compare our method with naive fine-tuning and the state-of-the-art methods.

The overall results on three benchmarks are presented in Table 5.1 (zero-shot) and

Table 5.2 (few-shot).

Comparison with Naive Fine-tuning. Naive Fine-tuning [175, 93, 57] is to di-

rectly fine-tune the pre-trained language model on downstream tasks as in [25].

From Table 5.1 and Table 5.2, we can observe that COSY consistently outperforms

the naive fine-tuning method on all datasets, e.g., by average 1.9 percentage points

(accuracy) and 2.9 percentage points (F1) on XNLI and XQUAD with XLM-Rlarge

in the zero-shot setting. These observations demonstrate the effectiveness of COSY

and suggest that universal syntax as language-agnostic features can enhance the

transferability for cross-lingual understanding. Furthermore, the results show that

COSY is able to work with different backbones and thus is model-agnostic.

Comparison with the State of the Art. We first outline the SOTA zero-shot (few-

shot) cross-lingual methods we compared with as follows: (1) XMAML-one [113]

borrows the idea from meta-learning. Specifically, XMAML-one utilizes an aux-

iliary language development data in training, e.g., using the development set of

Spanish in training to assist German on MLQA. XMAML-One reports the results

based on the most beneficial auxiliary language. (2) STILT [124] augments inter-

mediate task training before fine-tuning on the target task, e.g., adding training of

HellaSwag [186] before training on the NLI task. STILT also reports results with the

most beneficial intermediate task. (3) LAKM [184] first mines knowledge phrases

along with passages from the Web. Then these Web data are used to enhance the

phrase boundaries through a masked language model objective. Note that LAKM is

only evaluated on three languages of MLQA.

On the one hand, we observe that COSY surpasses the compared SOTA methods

over all evaluation metrics. Although meta-learning methods [32, 41, 151] advance

the state-of-the-art performance for few-shot learning, our COSY still outperforms
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Ablative Setting
MLQA XQUAD XNLI

EM F1 EM F1 Acc

Naive F.T. 44.2 61.4 51.0 66.7 68.4
(1) SAN-Black 44.3 61.4 51.6 66.9 68.7
(2) SAN-Black+Gate 44.5 61.5 51.9 67.1 68.7
(3) SAN-Black, Red 44.9 61.7 52.8 67.8 69.9
(4) SAN-Black, Blue 44.7 61.8 52.2 67.4 69.7
(5) COSY 45.2 62.1 53.2 68.1 70.1

Table 5.3: The ablation study on MLQA, XQUAD and XNLI (mBERT). We report
the average performance of all languages on the test set.

the meta-learning-based method, i.e., XMAML-One, with 1.1 percentage points in

the few-shot setting. On the other hand, the superiority of COSY is also reflected in

other aspects, which are shown in Table 5.1. Specifically, COSY does not require

additional datasets and cumbersome data selection process, which is more conve-

nient and resources saving.

5.3.4 Discussion and Analysis

Ablation Study. In Table 5.3, we show the MLQA, XQUAD and XNLI results

in 4 ablative settings, to evaluate the approach when we (1) only utilize the SAN-

Black branch; (2) utilize the SAN-Black branch with an intuitive gate mechanism

to control the information of pre-trained language model and syntax; (3) utilize the

SAN-Black branch and SAN-Red branch; (4) utilize the SAN-Black branch and

SAN-Blue branch.

Compared to the ablative results, we can see that our full method achieves the

overall top performance in all settings. Syntax features are incorporated into the

models in (1)-(5) and all of them outperform the naive fine-tuning method, which

demonstrates the effectiveness of universal syntax. By analyzing the settings one

by one, we can observe that SAN-Black only attains limited improvement com-

pared to naive fine-tuning since syntax is incorporated in the model by overlooked.

Gate mechanism (2) fails to solve the overlooking issue. Both of (3) and (4) with
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Figure 5.4: Left: average F1-measure (%) on target languages on MLQA devel-
opment set (mBERT). Right: average accuracy (%) on target languages on XNLI
development set (mBERT). Red dotted line denotes the model performance of using
naive fine-tuning.

counterfactual training are able to bring gains compared to (1), and the results in-

dicate that dependency relations are more effective compared to POS labels. We

also observe that our full method (5) does not accumulate the gains from (3) and

(4). One explanation could be that part of the information provided by the depen-

dency relations and POS labels overlaps. For instance, if we see an edge of relation,

worda

AMOD
−−−→wordb, we may infer that worda is NOUN and wordb is ADJ.

Effect of λ. We now study the impact of the scale value λ with counterfactual

losses. For clarity, we show the results with different values of logλ in Figure 5.4.

We can observe that COSY attains the highest results when λ=0.1 on both MLQA

and XNLI. As the value drops, the effect of counterfactual loss is also smaller and

the performance is getting closer to that from naive fine-tuning (red dotted line).

If a large value of λ is applied, e.g., λ = 1, the model begins to over-emphasize

the syntax and semantics are overlooked, which leads to significant decrease on

performance.

Effect of COSY. In this part, we first study whether counterfactual training method

indeed guides the model to focus more on syntactic information. We conduct anal-

ysis on the COSY and SAN-Black. Since it is non-trivial to measure the utilization
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Figure 5.5: F1-measure drop ∆ (%) with a standard normal distribution perturbation
on MLQA and XQUAD (mBERT). Two colors denote COSY and SAN-Black.

of syntax in a straightforward way, we adopt a standard way to measure the im-

portance of the neurons in deep models [67]. Specifically, we perturb the syntactic

features with a Gaussian noise to test data and check whether our model would be

more easily affected by the syntax perturbation. If so, then it verifies that our model

indeed relies more on syntax. The results are shown in Figure 5.5. We can discover

that the performance drop of COSY is larger compared to that with SAN-Black.

Meanwhile, we also explore whether COSY is beneficial for yielding more

meaningful syntax embedding than SAN-Black. Specifically, we compute the corre-

lation score (absolute cosine similarity) between the embedding of syntactic relation

and the corresponding inverse relation from the same type. For COSY, we observe
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MLQA XQUAD

EM F1 EM F1

(1) 44.8 61.7 52.2 67.3
(2) 45.1 62.0 53.1 68.1
(3) 44.9 61.9 52.7 67.8
(4) 45.0 62.0 53.2 68.0
Current 45.2 62.1 53.2 68.1

Table 5.4: Results of different generation ways for generating counterfactual syntax
with mBERT as backbone. “Current” means the current generation way described
in Section 5.2. We report the average performance of all languages.

that the score of the related types are 42.4× larger than that of two randomly se-

lected embeddings (average over 10000 times). However, for SAN-Black, its score

is only 1.4× larger than that of two randomly selected embeddings. It demonstrates

that COSY attains more meaningful syntax representations than SAN-Black.

Counterfactual Syntax Generation. Here we analyze other alternative ways of

counterfactual syntax generation. Specifically, we design the following variants and

report the results in Table 5.4: (1) we not only replace edge types, but also replace

connections for counterfactual dependency graph construction; (2) for each input

sequence, we create 5 counterfactual dependency graphs, 5 sets of counterfactual

POS tags, and the counterfactual loss is the average over the 5 sets; (3) we replace

the factual syntax with a fixed type, e.g., a type of padding instead of a random type

from all types; (4) in each generating process, we only replace 50% of the factual

syntax.

Comparing (1) with the result of “SAN-Black,Blue” in Table 5.3, we can see

that (1) does not work. We believe that randomly changing connections in G−, e.g.,

an edge is created from the first token to the last token in a long passage, may have a

significant effect to Ĥ−, it is undesirable for further optimization of counterfactual

loss. Results from (2) and (4) suggest that the number of the generated counterfac-

tual syntax and ratio of randomizing do not play an important role in COSY. It is

also discovered that randomizing with all types is better than simple replacement

with a fixed type.
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5.4 Conclusion

We study how to effectively plug in syntactic information for cross-lingual under-

standing. Specifically, we propose a novel counterfactual-syntax-based approach to

emphasize the importance of syntax in cross-lingual models. We conduct exten-

sive experiments on three cross-lingual benchmarks, and show that our approach

can outperform the SOTA methods without additional dataset. For future work, we

will combine our approach with other orthogonal methods, e.g., meta-learning, to

further improve its effectiveness.
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Chapter 6

Translate-Train Embracing

Translationese Artifacts

6.1 Introduction

Cross-lingual transfer has drawn wide attention in recent years [57, 93]. It aims

to reuse NLP models trained on a source language for the task of a target lan-

guage. The most intuitive method is transfer learning, i.e., leveraging pre-trained

multilingual language models (LMs) such as mBERT [25] and XLM-R [20]. These

pre-trained LMs encode different languages into a joint space of multilingual rep-

resentations [175, 83], and they perform well especially for zero-shot cross-lingual

tasks [175, 83]. Another method orthogonal to this is called translate-train [57, 30].

It translates training data from the source language into the target language and uses

the translated texts for training. This work focuses on this method.

Translate-train mitigates the language gap between the source and the target

languages in multilingual inference tasks in a straightforward manner, as it directly

generates the needed target training samples. This generation process uses a pre-

learned translator, which introduces artifacts in the translated texts (i.e., transla-

tionese1). In other words, translationese often exhibits features such as stylistic ones

1We refer original texts written by humans as originals and the translated texts as translationese
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Figure 6.1: QA performance of using original and translated texts (translationese)
as training data on TyDiQA dataset. “EM” stands for Exact Match.

that are different from originals and thus can mislead model training [143, 162, 9].

Figure 6.1 shows the quantitative comparison using different training data (origi-

nals vs. translationese) but originals for testing. Taking English as example, we

train one model with originals English data and another model with translationese

English data generated by back-translation. The test data is originals English data.

It is clear that using models trained with translationese is significantly inferior.

In this chapter, we aim to tackle this issue by studying the learnability and trans-

ferrability of the artifact patterns in translationese. We conduct experiments to first

investigate if such patterns are recognizable or transferrable by deep learning mod-

els. Specifically, we train a binary classifier to distinguish originals from trans-

lationese using the training data of only one language. We then test it on other

languages. Our intuition are the following: 1) If the model converges, then it means

we can learn the patterns of the artifacts. 2) If the trained model recognizes the

translationese of other languages, then it means the model can transfer the learned

patterns between different languages. Our results in Figure 6.2 validate both: 1) the

model converges well and achieves 97% accuracy on the training language, and 2)

for simplicity.
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Figure 6.2: The XLM-R [20] classification results of distinguishing the transla-
tionese for different languages on TyDiQA [19] when using the classifiers trained
with only English pairs (originals and translationese), or randomly initialized (with-
out any training).

it also performs reasonably well on other languages (77% ∼ 91%).

Based on the above intuitions and validations, we propose an approach named

Translationese Embracing Artifacts (TEA) and implement it using the domain map-

ping technique [195]. TEA explicitly learns the mapping function from originals to

translationese using the source language containing pairwise training data (orig-

inals and the corresponding translationese). It minimizes the distance between

the mapped representation of originals and the representation of the correspond-

ing translationese (e.g., generated by back-translation) [144]. It then applies this

function on the inference of target languages which do not have any originals for

training. For evaluation, we conduct experiments on the multiligual QA tasks using

the TyDiQA dataset [19]2. Our results show that TEA outperforms translate-train

baselines as well as the related methods of mitigating translationese in machine

2Note that our approach is generic and can be implemented into tackling other multilingual NLP
tasks.
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translation [104, 165].

6.2 Our Approach (TEA)

Let x, a question-passage pair, represents the input, and y is the output label se-

quence that indicates the start and end positions of the answer span in the passage.

X denotes the domain of x and Y is the set of answers. The input x comes from

different languages, and it can be either originals or translationese during training.

Specifically, we use Xsrc, orig to denote the domain of source language originals, and

define Xtrgt, orig and Xtrgt, trans in a similar way. We further use back-translation [144]

to generate source language translationese, denoted by Xsrc, trans, for the purpose of

modeling the difference between originals and translationese.

The goal is to learn a mapping f : Xtrgt, orig → Y , i.e., taking target language

originals as input. However, during training, we only haveDsrc, orig ∈ Xsrc, orig×Y and

Dtrgt, trans ∈ Xtrgt, trans×Y . The challenge is that a mapping function f learned from

eitherDsrc, orig orDtrgt, trans may not work well forXtrgt, orig. Based on the observations

from Figure 6.2, we could learn to mitigate the translationese artifacts for target

languages by a original-to-translationese mapping trained with the source language.

We therefore break down X to Y into following steps:

Multilingual Projection (MP): First, input x is projected into a language-agnostic

multilingual space by using a pre-trained multilingual LM. We use Xml to denote

the projected multilingual space, and fMP is a multilingual projection (i.e., LM) that

maps an input x in any language into Xml.

Original-to-Translationese Projection (OTP): Suppose Xml consists of two sub-

spaces: Xml = Xml, orig
⋃
Xml, trans, where Xml, orig and Xml, trans denote the multilin-

gual representations of any originals and translationese, respectively. To closing the

gap between originals and translationese, we define an original-to-translationese

projection function fOTP : Xml, orig → Xml, trans to convert the representation of a

piece of originals to its corresponding representation of translationese.
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Language-Agnostic QA (QA): The last step is a language-agnostic classifier for

QA task itself. We use fQA : Xml, trans → Y to denote this function.

Given an input x, depending on whether it is from originals or translationese,

we use different compositions of the functions above to map x to y:

y =

 fQA ◦ fOTP ◦ fMP(x) x ∈ X*, orig,

fQA ◦ fMP(x) x ∈ X*, trans.
(6.1)

Here ◦ represents the composition of two functions, i.e., f ◦ g(x) = f(g(x)), and ∗

denotes source language or target languages. More concretely, for (x,y) ∈ Dsrc, orig,

we use Xsrc, orig
fMP−−→ Xml, orig

fOTP−−→ Xml, trans
fQA−−→ Y; for (x,y) ∈ Dtrgt, trans, we use

Xtrgt, trans
fMP−−→ Xml, trans

fQA−−→ Y .

As suggested in Section 6.1, we make use of the source language translationese

to learn the fOTP. Specifically, for (x,y) ∈ Dsrc, orig, we represents x′ ∈ Xsrc, trans as

its corresponding translationese, i.e., generated by back-translation [144] through

a pivot language. Let {(x,x′)} ∈ Dsrc, pairs denotes all the pairs of originals and

translationese in the source language. Then, we minimize the similarity between

fOTP(fMP(x)) and fMP(x′) to optimize fOTP.

In summary, the loss function consists of the following three components:

L =
∑

(x,y)∈Dsrc, orig

l(fQA ◦ fOTP ◦ fMP(x),y)

+
∑

(x,y)∈Dtrgt, trans

l(fQA ◦ fMP(x),y)

+
∑

(x,x′)∈Dsrc, pairs

cos(fOTP(fMP(x)), fMP(x′)),

(6.2)

where l(·, ·) is standard cross entropy loss and cos(·, ·) is the cosine similarity func-

tion.

Model Details. For fMP, we use multilingual pre-trained LM, XLM-R [20]. For

fOTP, we utilize a self-attention layer as in transformer [160] followed by a linear

layer. fQA is also implemented by a linear layer following a standard way [25].
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6.3 Experiments

Dataset. We conduct experiments on the TyDiQA dataset [19]. TyDiQA is the only

existing large-scale multilingual benchmark dataset where test data is original text

written by humans. Specifically, we evaluate our approach on the gold-passage sub-

task of TyDiQA, which includes 9 languages. We set English as the source language

and others as target languages and report the performance on the target languages.

During training, we utilize translated training data in all target languages for joint

training. We use Exact Match (EM) and F1 scores as our evaluation metrics.

Implementation. We use the pre-trained multilingual language model, XLM-

R [20], as our backbone. Translations of the English training data for target lan-

guages are from XTREME [57] and translationese English is translated by Google

Cloud Translation3.

Method Design ar bn fi id ko ru sw te avg

STT F 40.4/67.6 47.8/64.0 53.2/70.5 61.9/77.4 10.9/31.9 42.1/67.0 48.1/66.1 43.6/70.1 43.5/64.3
FILTER F 50.8/72.8 56.6/70.5 57.2/73.3 59.8/76.8 12.3/33.1 46.6/68.9 65.7/77.4 50.4/69.9 49.9/67.8
STT∗ F 58.0/76.6 54.6/70.2 59.0/74.8 64.7/80.2 48.0/61.6 49.5/ 71.2 58.7/74.6 57.0/76.2 56.2/73.2
TAG∗ T 56.9/76.4 55.5/70.0 59.4/75.2 64.4/79.6 48.6/61.7 49.1/70.4 60.7/76.0 57.8/76.4 56.5/73.2
TST∗ T 58.4/75.5 60.2/72.2 58.3/74.4 65.5/78.9 49.3/62.6 49.0/69.7 63.5/76.7 56.2/76.1 57.6/73.3
GRL∗ T 57.6/75.6 58.4/72.6 59.7/74.8 65.3/79.9 49.6/62.2 49.1/70.4 62.9/76.9 58.2/77.0 57.6/73.7
TEA T 56.5/76.1 60.2/74.9 60.9/76.5 63.6/79.3 48.6/61.4 51.5/72.0 66.7/78.9 60.7/78.7 58.6/74.7

Table 6.1: Main results (Exact Match / F1 scores) on TyDiQA. All methods are with
XLM-R as backbone. The “Design” column indicates whether the design of this
method considers translationese artifacts. The columns “ar” to “te” represent dif-
ferent target languages. The “avg” column denotes the average performance across
the 8 target languages. ∗ indicates our implementation.

Baselines. We compare our model with the following baselines: (1) Standard

Translate-Train (STT) [25], which is a standard fine-tuning approach for translate-

train. (2) FILTER [30], which is an advanced translate-train method that fully uti-

lizes the parallel data. (3) Tagging (TAG) [104], which distinguishes originals and

translationese by adding a tag to each. (4) Two-Stage Training (TST) [165], which

is another approach to address the gap between translationese and originals. It first

uses the combination of them for training followed by another round of training

3https://cloud.google.com/translate
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only on originals. (5) Gradient Reversal Layer (GRL) [34], which is a general DA

method.

Main results. The comparison between our approach and the baselines is summa-

rized in Table 6.1. We can observe the following: (1) Our TEA outperforms all

baselines. For instance, TEA surpasses STT by 2.4% (EM) and 1.5% (F1) on aver-

age. This demonstrates the effectiveness of our method. (2) Methods considering

translationese artifacts generally perform better than methods without such design,

which reinforces the importance of mitigating translationese artifacts. (3) Com-

pared to other baselines for translationese artifacts, TEA still shows its superiority.

We highlight that our OTP module for explicit projection is better than implicit DA

approaches, e.g., TAG only uses different tag to distinguish the translationese from

originals.

Settings EM F1

STT 56.2 73.2
(1) STT+Xsrc, trans 56.6 73.2
(2) STT+params 56.3 73.5
(3) TOP 57.9 74.1
(4) MLP in OTP 56.7 73.3
(5) MSE loss 58.0 73.9
Full method 58.6 74.7

Table 6.2: Ablation study on TyDiQA. We report the average EM and F1 perfor-
mance on the 8 target languages.

Ablation studies. We conduct in-depth ablation studies to analyze TEA. Specif-

ically, we explore the following settings: (1) Since we use 11% more data in

TEA (unlabeled Xsrc, trans) compared to STT, here we add labeled Xsrc, trans in STT.

(2) Since we use additional 0.38% parameters (OTP) in our method compared to

STT, here we add the same OTP module in STT. (3) We replace the Original-to-

Translationese Projection (OTP) by Translationese-to-Original Projection (TOP).

(4) We replace the self-attention layer in OTP with a multi-layer perceptron (MLP).

(5) We replace the cosine similarity function in loss with mean square function.

The results are summarized in Table 6.2. Compared to the variants, our full
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method performs best over all settings. (1)/(2) incorporate additional data/parame-

ters, which demonstrates the improvement of our method is not caused by the two

factors. (3) proves that TOP still mitigates the artifacts, but OTP obtaining better

performance. We argue that it is because most of the training data is translationese.

(4) and (5) demonstrate the effectiveness of our loss function and architecture.

Settings Language Family EM F1

Scottish (gd) Indo-European 58.8 74.0
Korean (ko) Koreanic 57.8 74.0
Chinese (zh) Sino-Tibetan 57.6 73.8
German (de) Indo-European 58.6 74.7

Table 6.3: Experiment results of utilizing different language as pivot language for
generating Xsrc, trans.

Pivot Languages Analysis. Here we study the effect of pivot language used in

generating Xsrc, trans. Specifically, we select four pivot languages, i.e., German (de)4,

Scottish (gd), Korean (ko) and Chinese (zh), for evaluation. We fix our approach

and only replace the Xsrc, trans used in OTP. The results are reported in Table 6.3. We

observe that pivot languages from Indo-European family is superior to that from

other language families. We think this is because other target language training data

in translate-train are translated from English and English is from Indo-European

family.

6.4 Conclusion

We aim to mitigate the translationese artifacts when training translate-train models.

After varifying the transferability of the translationese patterns across languages, we

propose the TEA approach that learns to mitigate artifacts using a source language

and to facilitate the inference on unseen target languages. Our approach is simple

and generic and our results on multilingual QA shows its efficiency.

4German (de) is the default pivot language in this work.
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Chapter 7

Conclusion and Future Work

In the previous chapters, we elaborate on the necessity of mitigating the gap in

the out-of-distribution scenario for natural language processing tasks, and propose

methods for two scenarios, i.e., adversarial robustness and cross-lingual transfer,

which show obvious improvement and outperform state-of-the-art results on differ-

ent natural language understanding tasks.

For adversarial robustness, we propose two methods. First, we concentrate on

the question answering task, especially, multiple-choice question answering and

span-extraction question answering. We discover that the question answering model

may take the shortcut, i.e., spurious correlation, for the prediction instead of com-

prehensive reasoning. Towards a robust question answering model, we formulate

the inference process using the structural causal model and argue that the robust

reasoning is equivalent to the indirect effect of the input variables, e.g., passage and

question. Thus we propose counterfactual variable control (CVC) to measure the

indirect effect implemented on the deep models. We evaluate CVC on 7 different

adversarial sets on four question answering datasets with different backbones. The

results demonstrate the effectiveness. Second, we explore a more general and chal-

lenging setting for adversarial robustness, i.e., unknown bias, without the help of

reweighting with the bias model. We adopt intervention from causal inference to

mitigate the bias, i.e., confounder. Two difficulties are that the confounder may be
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unobserved and multi-factorial. To this end, we propose bottom-up automatic in-

tervention (BAI), which consists of two components: automatic stratification and

bottom-up intervention, to counter each difficulty. We apply BAI on three bench-

marks under the OOD setting and outperform state-of-the-art methods.

For cross-lingual transfer, we have one study for zero-shot and few-shot cross-

lingual transfer and another study for translate-train cross-lingual transfer. Under

zero-shot and few-shot settings, we resort to the universal syntax for language-

agnostic features, specifically, universal POS tags and universal dependency rela-

tions. To further facilitate the usage of augmented syntactic feature in multilin-

gual pretrained language models, we propose a counterfactual training method to

guide the model to focus on the augmented features named COunterfactual SYntax

(COSY). We evaluate COSY on three multilingual benchmarks from two natural

language understanding tasks, i.e., question answering and natural language infer-

ence. The experimental results show that COSY outperforms other state-of-the-art

methods with fewer parameters and training steps. Our second piece of work dives

into the translate-train setting for cross-lingual transfer. Translate-train serves as

the data augmentation for target languages by translating the data in the source

language to the target language. We discover that such translated data, i.e., transla-

tionese, may hamper the model’s performance on data directly written by humans,

i.e., original text. To address this problem, we first empirically show that the gap

between translationese and originals is transferable across languages. Then we pro-

pose a domain mapping method named Translationese Embracing Artifacts (TEA)

to close the gap. We test TEA on a human-written question answering dataset and

observe strong performance against other translate-train and translationese-aware

methods.

In summary, we design novel approaches to address different OOD scenarios in

adversarial robustness and cross-lingual transfer. We hope that this dissertation will

attract more attention to OOD scenarios rather than only focusing on the IID test set

and inspire more work in the future.
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We also list several possible directions worth exploring in the future below.

One direction is to apply more advanced causal inference methods in NLP to

solve complex OOD problems. Currently, the development of causal inference in

NLP is still in its infancy. Most of the methods rely on simple counterfactual or in-

tervention formulation. How to effectively apply other causal inference techniques

in NLP is underexplored. For example, (i) judging whether the prediction is fair in

certain OOD scenario based on the definition of counterfactual fairness [78, 106],

e.g., gender and race bias in the text. (ii) automatically building the causal graph

for natural language processing. There is already a large body of work on identi-

fying the causal structure for real-world data or system [68, 51]. In NLP, we want

to point out two possibilities of usage. One is to automatically explore the causal

structure within the text itself, e.g., extracting the causal relationship between facts

and knowledge [99]. Second, automatically figuring out the causal structure of the

data generation process or the inference process, e.g., Figure 3.2 and Figure 4.2.

Second, some special designs for the mixture of different types of OOD are

also interesting for further exploration. For example, when we need to use mul-

tilingual NLP tasks in cross-border business for community question answering,

we may have the Chinese data from the Zhihu platform and the target deployment

place of the system is the Reddit platform. In this case, two OOD scenarios are

mixed, i.e., cross-domain transfer and cross-lingual transfer. One may say that we

could directly apply the existing cross-domain or cross-lingual transfer method to

address this scenario. However, the performance may deteriorate even more since

the gap is relatively larger compared to the case in this dissertation. How to disen-

tangle the mixed OOD types and reconstruct them for diverse requirements could

be indispensable for these applications.

There are still many open questions in the area of mitigating the gap of OOD

for NLP tasks. Hope the aforementioned directions could inspire more interesting

works in this direction.
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