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Faster First-Order Methods for Stochastic
Non-Convex Optimization on Riemannian

Manifolds
Pan Zhou, Xiao-Tong Yuan, Member, IEEE, Shuicheng Yan, Fellow, IEEE , Jiashi Feng

Abstract—First-order non-convex Riemannian optimization algorithms have gained recent popularity in structured machine learning
problems including principal component analysis and low-rank matrix completion. The current paper presents an efficient Riemannian
Stochastic Path Integrated Differential EstimatoR (R-SPIDER) algorithm to solve the finite-sum and online Riemannian non-convex
minimization problems. At the core of R-SPIDER is a recursive semi-stochastic gradient estimator that can accurately estimate
Riemannian gradient under not only exponential mapping and parallel transport, but also general retraction and vector transport
operations. Compared with prior Riemannian algorithms, such a recursive gradient estimation mechanism endows R-SPIDER with higher
computational efficiency in first-order oracle complexity. Specifically, for finite-sum problems with n components, R-SPIDER is proved to
converge to an ε-accuracy stationary point within O

(
min

(
n+

√
n
ε2
, 1
ε3

))
stochastic gradient evaluations, beating the best-known

complexity O
(
n+ 1

ε4

)
; for online optimization, R-SPIDER is shown to converge with O

(
1
ε3

)
complexity which is, to the best of our

knowledge, the first non-asymptotic result for online Riemannian optimization. For the special case of gradient dominated functions, we
further develop a variant of R-SPIDER with improved linear rate of convergence. Extensive experimental results demonstrate the
advantage of the proposed algorithms over the state-of-the-art Riemannian non-convex optimization methods.

Index Terms—Riemannian Optimization, Stochastic Variance-Reduced Algorithm, Non-convex Optimization, Online Learning

F

1 INTRODUCTION

R IEMANNIAN optimization problems have received broad
interests in high-dimensional statistical learning [1]–[3],

signal processing [4], [5] and computer vision [6]–[8]. In this
paper, we are particularly interested in the following finite-sum or
online Riemannian non-convex minimization problem:

min
x∈M

f(x) :=

{
1
n

∑n
i=1 fi(x) (finite-sum);

E[f(x;π)] (online),
(1)

where f : M 7→ R is a smooth non-convex loss function on
a Riemannian manifold M. For the finite-sum problem, each
individual sample has an associated loss fi(x); while under the
online setting, the stochastic component f(x;π) is indexed by
a random variable π. Such a formulation encapsulates many
important structural data analysis problems including principle
component analysis (PCA) [9], independent component anal-
ysis [10], dictionary learning [1], [2], low-rank matrix/tensor
completion/recovery [3]–[6], [8], Gaussian mixture models [7],
to name a few. These wealth applications have boosted the
development of general-purpose algorithms for solving (1).

One classic method [11]–[13] is to view (1) as a constrained
optimization problem in the ambient Euclidean space. Accordingly,
the optimizer, such as stochastic gradient descent [12], [13],
alternatively minimizes the objective f(x) without the constraint
and projects the current solution onto the RiemannianM. But in
large-scale optimization problems, computing the projection onto
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Computer Engineering, National University of Singapore, Singapore (email:
pzhou@u.nus.edu, eleyans@nus.edu.sg, elefjia@nus.edu.sg).

• X.-T. Yuan (�) is with the School of Automation at Nanjing University of
Information Science & Technology, China (email: xtyuan1980@gmail.com).

certain manifolds (e.g., the one for positive-definite matrices) is
rather expensive [14], limiting the usage of such methods.

As an appealing alternative, the Riemannian optimization meth-
ods [14]–[20] have recently gained wide attention. In contrast to
the Euclidean-projection based methods that alternatively perform
variable update and projection, the Riemannian methods directly
move the iterative solution along a geodesic path towards the
optimum and thus better preserve the geometric structure of the
problem [14], [16]. Riemannian gradient descent (R-GD) is a
classic example. At each iteration, it moves the iteration along
the geodesic path decided by the Riemannian gradient ∇f(xk)
and enjoys provable sublinear rate of convergence for geodesically
convex problems [16]. Later, to avoid the expensive full gradi-
ent computation in R-GD, stochastic Riemannian optimization
algorithms [14], [17]–[20] were developed that leverage the decom-
posable structure of problem (1) to compute gradient efficiently.
For instance, Bonnabel et al. [17] proposed Remannian stochastic
GD (R-SGD) that only evaluates gradient of one (or a mini-batch
of) randomly selected sample for variable update per iteration.
Afterwards, more stable and efficient variance-reduced Riemannian
algorithms are developed. For instance, Riemannian stochastic
variance-reduced gradient (R-SVRG) algorithm [14], [20] and
Riemannian stochastic recursive gradient (R-SRG) algorithm [18]
respectively adapt the variance-reduced techniques [21]–[23] into
R-SGD for solving problem (1) more efficiently.

1.1 Motivation

Recently, Fang et al. [24] proposed the Stochastic Path Integrated
Differential EstimatoR (SPIDER) method for non-convex finite-
sum/online optimization in Euclidean space, which has provably
substantially lower first-order oracle complexity than SVRG [21]
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and SRG [22], [23], and is confirmed to be nearly optimal
in certain large-scale learning settings. Inspired by this record-
braking advance, we are interested in the potential of generalizing
SPIDER to Riemannian manifold to beat the prior state-of-the-
art non-convex Riemannian optimization algorithms including R-
SVRG [14], [20] and R-SRG [18] in computational complexity.

In addition to improving the first-order oracle complexity, we
are simultaneously interested in analyzing non-convex Riemannian
optimization methods with general retraction and vector transport
operations beyond exponential mapping and parallel transport
which are only effective on a limited number of manifolds. For an
instance, parallel transport has no closed-form expression in Stiefel
and fixed-rank manifolds and thus is computationally daunting in
these cases [18]. In contrast, the QR based vector transport can han-
dle these two manifolds more efficiently [4]. As another example,
rigging transport is more preferable when the dimension d of the
sub-mannifold of anm-dimensional Euclidean space is much larger
than the codimension (m− d) [25]. For non-convex optimization
over Grassmann manifolds, Fig. 1 demonstrates the advantage of
our algorithm implementation with polar retraction/transport over
the implementation with exponential mapping and parallel transport:
both implementations have similar first-order oracle computational
efficiency while the former is considerably more efficient than
the latter in overall computation time. Therefore, it is desirable to
provide a unified convergence analysis of non-convex Riemannian
optimization methods implemented with computationally efficient
retraction and vector transport instead of the more restrictive
exponential mapping and parallel transport.

1.2 Overview of our algorithm and results
In this paper, we propose the Riemannian Stochastic Path Integrated
Differential EstimatoR (R-SPIDER) to efficiently solve the non-
convex Riemannian minimization problem (1) under general retrac-
tion and vector transport. Inspired by SPIDER, R-SPIDER employs
a recursive estimation to track the history full gradients with
significantly reduced computational cost. Specifically, for a proper
positive integer p, at each iteration k with mod (k, p) ≡ 0,
R-SPIDER first samples a large data batch S1 and estimates the
initial full Riemannian gradient ∇f(xk) as ṽk = ∇fS1(xk)
= 1
|S1|

∑
i∈S1 fi(xk). Then at each of the next p− 1 iterations, it

samples a smaller mini-batch S2 and estimates ∇f(xk):

ṽk = ∇fS2(xk)− Γxk
xk−1

(∇fS2(xk−1)− ṽk−1) , (2)

where the vector transport Γzx (y) (as defined in Section 2)
transports y from the tangent space at x to that at the point
z. Next, the variable is updated via the normalized gradient decent
xk+1 = Rxk

(
− ηk ṽk

‖ṽk‖
)

where the retraction Rx(y) (as defined
in Section 2) moves x to Expx (y) along a geodesic curve decided
by y. By carefully setting the learning rate ηk and mini-batch
sizes of S1 and S2, R-SPIDER only requires a necessary number
of samples for accurately estimating Riemannian gradient and
sufficiently decreasing the objective at each iteration. Consequently,
R-SPIDER achieves sharper bounds of incremental first order
oracle (IFO, see Definition 3) complexity than state-of-the-arts as
summarized in Table 1.

For the finite-sum setting of problem (1) with general non-
convex functions, the IFO complexity of R-SPIDER with vector
transport to achieve E [‖∇f(x)‖] ≤ ε isO

(
min

(
n+Θ

√
n

ε2 , Lσε3
))

which matches the lower IFO complexity bound in Euclidean
space [24] and is also faster than R-SRG by a factor of O

(
1
ε

)
.
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Fig. 1: Comparison between R-SPIDER using exponential mapping
and parallel transport (R-SPIDER-Exp for short) and R-SPIDER
using polar retraction and vector transport (R-SPIDER-Rec) on
the low-rank matrix completion problem. R-SPIDER-Rec and
its learning-rate adaptive version, R-SPIDER-A-Rec, respectively
achieve very similar IFO complexity as R-SPIDER-Exp and R-
SPIDER-A-Exp, but run much faster than R-SPIDER-Exp and
R-SPIDER-A-Exp in terms of the algorithm execution time.

Such results are missing in R-SVRG. Under the particular parallel
transport, the IFO complexity bounds of R-SRG and R-SVRG are
O
(
n + L2

ε4

)
and O

(
n + ζn2/3

ε2

)
, respectively. It can be verified

that R-SPIDER improves over R-SRG by a factor of O
(

1
ε

)
and

R-SVRG by a factor O
(
n1/6

)
.

When f(x) is a τ -gradient dominated function with finite-sum
structure, R-SPIDER with vector transport enjoys the IFO com-
plexity of O

(
min

((
n + τΘ

√
n
)

log
(

1
ε

)
, τΘσ

ε

))
. So compared

with R-SRG with complexity bound O
((
n + τ2Θ2

)
log
(

1
ε

))
,

R-SPIDER is more efficient in large-sample-moderate-accuracy
settings, e.g., in cases when n dominates 1/ε. This conclusion also
holds for parallel transport. Compared with R-SVRG, R-SPIDER
improves the complexity bound by a factor of O

(
n1/6

)
.

For the online version of problem (1), we respectively establish
the IFO complexity bounds O

(
κσ
ε3

)
and O

(
τκσ
ε

)
for generic non-

convex and gradient dominated problems, where κ = Θ under
vector transport and κ = L for parallel transport. To our best
knowledge, these non-asymptotic convergence results are novel
to non-convex online Riemannian optimization. Comparatively,
Bonnabel et al. [17] only provided asymptotic convergence analysis
of R-SGD: the iterating sequence generated by R-SGD converges
to a critical point when the iteration number approaches to infinity.

Finally, our analysis reveals as a byproduct that R-SPIDER
provably benefits from mini-batching. Specifically, our theoretic
results imply linear speedups in parallel computing setting for large
mini-batch sizes. We are not aware of any similar linear speedup
results in the prior Riemannian stochastic algorithms.

This paper is an extension of our previous work [26] which
analyzes the convergence behavior of R-SPIDER under the parallel
transport for solving problem (1). Compared with its short version,
this paper makes the following changes. 1) For both non-convex
and gradient dominated problems, it extends R-SPIDER from
exponential mapping and parallel transport to the general retraction
and vector transport, and thus endows R-SPIDER applicable to
more general kinds of manifolds. 2) For gradient dominated
problems, improved theoretical results are obtained by allowing to
use larger constant learning rate and constant mini-batch sizes, in
contrast to the small optimization-accuracy-dependent step size and
the algorithm-iteration-dependent mini-batch sizes in the previous
work. 3) Experimental results under different retraction and vector
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TABLE 1: Comparison of IFO complexity for different Riemannian first-order stochastic optimization algorithms on the noncovnex
problem (1) under finite-sum and online settings. The ε-accuracy solution is measured by the expected gradient norm E [‖∇f(x)‖] ≤ ε.
Suppose Θ = max(LR,

√
L2
H +G2θ2). Here LR bounds the second derivative of f(Rx(tξ)) w.r.t. t where ‖ξ‖ = 1. LH is the upper

bound of the spectral norm ‖∇2fi(x)‖. L is the gradient Lipschitz constant of fi(x) under exponential mapping. θ is the difference
constant between vector transport and parallel transport. G, σ and ζ respectively denote the upper bound of gradient norm, the gradient
variance and the curvature parameter of the Riemannian manifold. See details of these parameters in Section 2.

Non-convex Problem (retraction and vector transport) Non-convex Problem (exponential mapping and parallel transport)
general non-convex τ -gradient dominated general non-convex τ -gradient dominated

Finite-sum

R-SRG [18] O
(

min
(
n+ Θ2

ε4

))
O

(
(n+ τ2Θ2) log

(
1
ε

))
O

(
n+ L2

ε4

)
O

(
(n+ τ2L2) log

(
1
ε

))
R-SVRG [14] — — O

(
n+ ζn

2
3

ε2

)
O

(
(n+ τLζ

1
2 n

2
3 ) log

(
1
ε

))
this work O

(
min

(
n+ Θ

√
n

ε2
,Θσ
ε3

))
O

(
min

((
n+τΘ

√
n
)

log
(

1
ε

)
, τΘσ
ε

))
O

(
min

(
n+ L

√
n

ε2
,Lσ
ε3

))
O

(
min

((
n+τL

√
n
)

log
(

1
ε

)
, τLσ
ε

))
Online this work O

(
Θσ
ε3

)
O

(
τΘσ
ε

)
O

(
Lσ
ε3

)
O

(
τLσ
ε

)

transport settings are provided to better testify the computational
efficiency of R-SPIDER.

1.3 Related work
Riemannian optimization can be traced back to the work [27]
which first provided comprehensive background and concepts of
this topic. Then based on [27], Absil et al. [28] further detailed the
Riemannian concepts and developed many Riemannian algorithms,
e.g. Riemannian trust region approach. Recently, Zhang et al. [16]
first established the sublinear rate of convergence of R-GD on
geodesically convex problems. Later the Nesterov momentum
methods [29] were applied to accelerate the convergence rate of
R-GD for geodesically convex functions [15], [30]. To boost the
efficiency of R-GD by leveraging the decomposable structure of
problem, Bonnabel et al. [17] proposed R-SGD and showed the
first asymptotic convergence analysis for Riemannian optimization.
Though with good efficiency for each iteration, R-SGD converges
slowly as it uses decaying learning rate for convergence guarantee
due to its gradient variance. Then to tackle this issue, R-SVRG
algorithm [14] was developed as an extension of SVRG [21] to
Riemannian optimization. Benefiting from the variance-reduced
technique, R-SVRG converges more stably and faster than R-
SGD. Inspired by the variance-reduced SRG approach [22], [23],
R-SRG [18] applies a similar recursion form as in (2) for full
Riemannian gradient estimation, and the core difference between
R-SRG and ours lies in that R-SPIDER is equipped with gradient
normalization while R-SRG is not. There is also a rich body
of algorithms customized for specific Riemannian optimization
problems, e.g. dictionary learning [1], [2], low-rank matrix/tensor
completion [3], [6], [8], Gaussian mixture models [7].

While the conference version [26] of this paper was under
review, we were informed the concurrent work by Zhang et
al. [31] which also generalizes SPIDER to non-convex Riemannian
stochastic optimization. Despite sharing similar ideas, our work
has the following advantages in algorithm and theory over [31]:

• Our algorithms and analysis are applicable to general
retraction and vector transport, while [31] only analyzes the
convergence behavior under more restrictive exponential
mapping and parallel transport which could be inefficient
on some kinds of manifolds, such as Stiefel and fixed-rank
manifolds [18].

• Our theoretical computational complexity for general non-
convex problem isO

(
min

(
n+L

√
n

ε2 ,Lσε3
))

and is superior to

the complexityO
(
n+L

√
n

ε2

)
in [31] for large-scale problem,

namely n > O( 1
ε2 ). For gradient-dominated problems, our

work enjoys similar advantages.
• Our algorithm uses a constant mini-batch size S2 and

can select it from 1 to O(min(
√
n, 1

ε )), while Zhang et.
al. [31] adopt an algorithm-iteration-dependent mini-batch
size S2 which may be very large.

In the meanwhile, the superiority of our proposed R-SPIDER
algorithms to the prior state-of-the-arts is not only supported
by strong theoretical guarantees but also confirmed by extensive
numerical evidences.

2 PRELIMINARIES

Throughout this paper, we assume that the Riemannian manifold
(M, g) is a real smooth manifoldM equipped with a Riemannian
metric g. We denote the induced inner product 〈y, z〉 of any two
vectors y and z in the tangent space TxM at the point x as
〈y, z〉 = g(y, z), and denote the norm ‖y‖ as ‖y‖ =

√
g(y,y).

Let ∇fi(x) be the stochastic Riemannian gradient of fi(x) and
also be a unbiased estimate to the full Riemannian gradient∇f(x),
i.e. Ei[∇fi(x)] = ∇f(x).

To retract the variable x into the manifoldM, we need to define
the retraction Rx. The retraction Rx : TxM → M maps y ∈
TxM to Rx(z) ∈M with a local rigidity condition that preserves
the gradients at x [28], [32]. Namely, for all x ∈ M and z ∈
TxM, the curve t→ Rx(tz) is tangent to z at t = 0. R−1

x denotes
the inverse operation of the retraction Rx and satisfies that if
Rx(z) = y, then R−1

x (y) ' z. Exponentially mapping, denoted
as Expx, is a classical instance of retraction. The exponential
mapping Expx (y) maps y ∈ TxM to z ∈M such that there is a
geodesic γ(t) with γ(0) = x, γ(1) = z and γ̇(0) = d

dtγ(t) = y.
Here the geodesic γ(t) is a constant speed curve γ : [0, 1] →
M which is locally distance minimized. If there exists a unique
geodesic between any two points onM, then the exponential map
has an inverse mapping Exp−1

x : M → TxM and the geodesic
is the unique shortest path with the geodesic distance d (x, z)
= ‖Exp−1

x (z) ‖ = ‖Exp−1
z (x) ‖ between x, z ∈ M. See more

specifical ways of constructing retractions in [28], [32]–[34].
To utilize the historical and current Riemannian gradients, we

need to transport the historical gradients into the tangent space of
the current point such that these gradients can be linearly combined
in one tangent space. For this purpose, we need to define vector
transport Γzx : TM⊕ TM → TM, (ξ,y) 7→ Γξ(y) which is
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associated with the retraction Rx(ξ) = z with ξ,y ∈ TxM. It
satisfies 1) Γξ(y) ∈ TRx(ξ)M, 2) Γ0x(ξ) = ξ for all ξ ∈ TxM
and 3) Γzx is a linear mapping, i.e. Γξ(ay1 + by2) = aΓξ(y1) +
bΓξ(y2). Intuitively, both Γzx(y) and Γξ represent vector transport
from x to z such that Rx(ξ) = z and ξ ∈ TxM. Parallel transport
Pzx is a kind of vector transport. Pzx : TxM→ TzM maps y ∈
TxM to Pzx(y) ∈ TzM while preserving the inner product and
norm, i.e., 〈y1,y2〉 = 〈Pzx(y1), Pzx(y2)〉 and ‖y‖ = ‖Pzx(y)‖ for
∀y1,y2,y ∈ TxM. Similar to [18], [25], [35], we only analyze
the isometric vector transport, namely ‖Γzx(y)‖ = ‖y‖.

Before imposing necessary assumptions on the objective f(x),
we first define upper-bounded Hessian, based on which smooth
property on f(x) can be defined.

Definition 1 (Upper-Bounded Hessian [18]). A function f(x) is
said to have upper-bounded Hessian in U ⊂ M associated with
retraction Rx, if there exists a constant L such that d

2f(Rx(tξ))
dt2 ≤

L for all x ∈ U , ξ ∈ TxM with ‖ξ‖ = 1 and t such that
Rx(sξ) ∈ U for ∀s ∈ [0, t].

Then we impose on the loss components fi(x) the assumption
of upper-bounded Hessian which is also required in [18], [25], [35]
for analyzing vector transport.

Assumption 1 (Upper-bounded Hessian). Assume each loss fi(x)
are twice continuously differentiable. For retraction Rx, each fi(x)
has upper-bounded Hessian with parameter LR in Definition 1. We
also assume each individual Hessian ∇2fi(x) is directly bounded
as ‖∇2fi(x)‖ ≤ LH .

The variation of Assumption 1 is Lipschitz property on gradient
∇fi(x) (or smooth condition on the individual objective fi(x))
and is also conventionally assumed in analyzing Riemannian
stochastic gradient algorithms with parallel transport [14], [31].

Assumption 2 (Geodesically L-gradient-Lipschitz under Ex-
ponential Mapping). Each loss fi(x) is geodesically L-
gradient Lipschitz such that Ei‖∇fi(x) − Pxy (∇fi(y))‖2 ≤
L2‖Exp−1

x (y) ‖2.

Next, we avoid a bad case in Riemannian optimization. Namely,
the sequence {xk} may converge to an optimum x∗, while
the connecting retraction {Rxk

(ξk)} does not converge where
xk+1 = Rxk

(ξk) [25], [35]. To see this, in the unit sphere
with the exponential retraction, we can have xk+1 = xk with
‖ξk‖ = 2π. To resolve this issue, following [18], [25], [35], we
assume the neighborhood U ⊂M of an optimum x∗ is a totally
retractive neighborhood, namely {Rxk

(ξk)} ∈ U , formally stated
in Assumption 3.

Assumption 3 (Totally Retractive Neighborhood). Suppose the
sequence {xk} generated by algorithm stay continuously in a
small totally retractive neighborhood U ⊂M of an optimum x∗,
namely {Rxk

(ξk)} ∈ U with xk+1 = Rxk
(ξk).

For analysis, we also impose certain assumptions on the
retraction and vector transport commonly used in [18], [25], [35].

Assumption 4 (Retraction and Transport Properties). For re-
traction Rx, suppose there are two constants cR and cE such
that 1) ‖R−1

x (y) − Exp−1
x (y) ‖2 ≤ cR‖R−1

x (y) ‖2 and 2)
‖R−1
x (y) ‖ ≤ cE‖z‖ if Rx(z) = y.

For vector transport Γ, assume it satisfies ‖Γξ−ΓRx(ξ)‖ ≤ c0‖ξ‖
and ‖Γ−1

ξ − Γ−1
Rx(ξ)

‖ ≤ c0‖ξ‖ for all x and z belonging
in a neighborhood U of a point x, where Rx(ξ) = z, c0 is

Algorithm 1 R-SPIDER (x0, ε, η, p, |S1|, |S2|)
1: Input: initialization x0, accuracy ε, learning rate η, iteration

interval p, mini-batch sizes |S1| and |S2|.
2: for k = 0 to K − 1 do
3: if mod(k, p)= 0 then
4: Draw mini-batch S1 and compute ṽk = ∇fS1(xk);
5: else
6: Draw mini-batch S2 and compute ∇fS2(xk);
7: ṽk = ∇fS2(xk)− Γxk

xk−1
(∇fS2(xk−1)− ṽk−1);

8: end if
9: xk+1 = Rxk

(
−ηk ṽk

‖ṽk‖

)
;

10: end for
11: Output: x̃ which is chosen uniformly at random from
{xk}K−1

k=0 .

a constant, and ΓRx
denotes the differentiated retraction, i.e.

ΓRx(ξ)(y) = DRx(ξ)[y] for all ξ,y ∈ TxM.

Since the retraction Rx and its inverse operation R−1
x (z) are

usually first-order approximations to the exponential mapping
Expx and its inverse optation Exp−1

x (z) respectively, the required
assumption can well characterize such relation [18], [28]. Besides,
the property of Γ is satisfied for Γ ∈ C0, as derived from the Taylor
expansion [18], [25]. Then we assume the stochastic Riemannian
gradient and its variance can be bounded as in [14], [18], [31].

Assumption 5 (Bounded Stochastic Riemannian Gradient and
Variance). The gradient of each loss fi(x) is bounded, namely
‖∇fi(x)‖ ≤ G, and its variance is also upper bounded as
Ei‖∇fi(x)−∇f(x)‖22 ≤ σ2.

We further introduce the following concept of τ -gradient
dominated function [36], [37] which will also be investigated
in this paper.

Definition 2 (τ -Gradient Dominated Functions). f(x) is said to
be a τ -gradient dominated function if it satisfies f(x)− f(x∗) ≤
τ‖∇f(x)‖2 for any x ∈M, where τ is a universal constant and
x∗ = argminx∈M f(x) is the global minimizer of f(x) on the
manifoldM.

The following incremental first order oracle (IFO) complexity
is usually adopted as the computational complexity measurement
for evaluating stochastic optimization algorithms [14], [18]–[20].

Definition 3 (IFO Complexity). For f(x) in problem (1), an IFO
takes in an index i ∈ [n] and a point x, and returns the pair
(fi(x),∇fi(x)).

The IFO complexity can well reflect the overall computational
performance of a first-order Riemannian algorithm, since objective
value and gradient evaluation usually dominate the per-iteration
computation.

3 RIEMANNIAN SPIDER ALGORITHM

We first elaborate on the Riemannian SPIDER algorithm, and
then analyze its convergence performance for general non-convex
problems. For gradient dominated problems, we further develop a
variant of R-SPIDER with a linear convergence rate.

3.1 Algorithm
The R-SPIDER method is outlined in Algorithm 1. At its core, R-
SPIDER customizes SPIDER to recursively estimate/track the full
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Riemannian gradient in a computationally economic way. For each
cycle of p iterations, R-SPIDER first samples a large data batch
S1 by with-replacement sampling and views the gradient estimate
ṽk = ∇fS1(xk) = 1

|S1|
∑
i∈S1 fi(xk) as the snapshot gradient.

For the next forthcoming p− 1 iterations, R-SPIDER only samples
a smaller mini-batch S2 and estimates the full Riemannian gradient
∇f(xk) as ṽk = ∇fS2(xk) − Γxk

xk−1
(∇fS2(xk−1)− ṽk−1).

Here the vector transport Γxk
xk−1

is applied to ensure that the
Riemannian gradients can be linearly combined in a common
tangent space. Then R-SPIDER performs normalized gradient
descent to update xk+1 = Expxk

(
−ηk ṽk

‖ṽk‖
)

until the termination
of the algorithm.

The idea of recursive Riemannian gradient estimation has also
been exploited by R-SRG [18]. Although sharing a similar spirit
in full gradient approximation, R-SPIDER departs notably from
R-SRG: at each iteration, R-SPIDER normalizes the gradient
ṽk and thus is able to well control the distance between xk
and xk+1 by properly controlling the stepsize ηk, while R-SRG
directly updates the variable without gradient normalization. It
turns out that this normalization step is key to achieving faster
convergence speed for non-convex problem in R-SPIDER, since
it helps reduce the variance of stochastic gradient estimation
by properly controlling the distance between xk and xk+1 (see
Lemma 1). As a consequence, at each iteration, R-SPIDER only
needs to sample a necessary number of data points to estimate
Riemannian gradient and decrease the objective sufficiently (see
Theorems 1 and 2). In this way, R-SPIDER achieves lower overall
computational complexity for solving problem (1).

3.2 Analysis for General Non-convex Problem

Here we first introduce a key lemma which is a basis for the
following analysis and then focus on analyzing the computational
complexity of Algorithm 1 on general non-convex problem (1).

3.2.1 Bounded Gradient Estimation Error
The vanilla SPIDER is known to achieve nearly optimal iteration
complexity bounds for stochastic non-convex optimization in
Euclidean space [24]. We here show that R-SPIDER generalizes
such an appealing property of SPIDER to Riemannian manifolds.
We first present the following key lemma which guarantees
sufficiently accurate Riemannian gradient estimation for R-SPIDER.
We denote I{E} as the indicator function: if the event E is true,
then I{E} = 1; otherwise, I{E} = 0.

Lemma 1 (Bounded Gradient Estimation Error for General
Retraction and Vector Transport). Suppose Assumptions 1 and
3 ∼ 5 hold. Let k0 = bk/pc and k̃0 = k0p. The estimation error
between the full Riemannian gradient ∇f(xk) and its estimate
ṽk in Algorithm 1 with general retraction and vector transport is
bounded as

E
[
‖ṽk −∇f(xk)‖2 | xk̃0 , · · · ,xk̃0+p−1

]
≤ I{|S1|<n}

σ2

|S1|
+

Λ2

|S2|
∑k̃0+p−1

i=k̃0
‖R−1
xi

(xi+1) ‖2,
(3)

where Λ =
√

2(θ2G2 + 2(1 + cR)L2
H) with the parameters LH ,

cR and G in Assumptions 1 and 3 ∼ 5 and a positive constant θ.

The proof of Lemma 1 can be found in Section B.1 in the
supplementary material. Lemma 1 tells that by properly selecting
the mini-batch sizes |S1| and |S2|, the accuracy of gradient

estimate ṽk can be controlled. Benefiting from the normaliza-
tion step, we have ‖R−1

xk
(xk+1) ‖ ≤ cE‖Exp−1

xk
(xk+1) ‖ =

cEηk. As a result, the gradient estimation error can be
bounded as E

[
‖ṽk − ∇f(xk)‖2 | xk̃0 , · · · ,xk̃0+p−1

]
≤

I{|S1|<n}
σ2

|S1| +
c2EΛ2

|S2|
∑k̃0+p−1

i=k̃0
η2
i , which is key to analyze the

rate-of-convergence of R-SPIDER with retraction and vector
transport. When using the exponential mapping and parallel
transport, based on Lemma 1 we can derive a similar gradient
estimation error bound in Corollary 1.

Corollary 1 (Bounded Gradient Estimation Error for Exponential
Mapping and Parallel Transport). Suppose that each component
loss fi(x) is geodesically L-gradient-Lipschitz under exponen-
tial mapping in Assumptions 2 and the stochastic gradient has
bounded variance in Assumption 5. The estimation error between
the full Riemannian gradient ∇f(xk) and its estimate ṽk in
Algorithm 1 with exponential mapping and parallel transport is
bounded as in Eqn. (3) with ‖R−1

xi
(xi+1) ‖2 and Λ replaced by

‖Exp−1
xi

(xi+1) ‖2 and L, respectively.

Please refer to the proof of Corollary 1 in Sec. B.2 in the
supplementary material. For exponential mapping and parallel
transport, bounding the gradient estimation error requires the L-
smoothness property of each individual loss fi(x) and the bounded-
variance assumption of stochastic Riemannian gradient, and relax
the conditions required in Lemma 1. This is because compared
with general retraction and vector transport, exponential mapping
and parallel transport are more specifical and enjoys many good
properties, e.g. their isometric properties and the properties in
Assumption 4, helping avoid many aforementioned assumptions.

3.2.2 Complexity Analysis for Finite-sum Setting

We first consider problem (1) under finite-sum setting. By properly
selecting parameters, we prove that at each iteration, the sequence
{xk} produced by Algorithm 1 can lead to sufficient decrease of
the objective loss f(x) when ‖ṽk‖ is large. Based on this results,
we further derive the iteration number of Algorithm 1 for computing
an ε-accuracy solution. The result is formally summarized in
Theorem 1.

Theorem 1. Suppose Assumptions 1 and 3 ∼ 5 hold. Let
s = min

(
n, 16σ2

ε2

)
, Λ =

√
2(θ2G2 + 2(1 + cR)L2

H), Θ =

max(LR,Λ), p = n0s
1
2 , ηk = min

(
ε

2Θn0
, ‖ṽk‖4Θn0

)
, |S1| = s,

|S2| =
4c2Es

1
2

n0
and n0 ∈ [1, 4c2Es

1
2 ]. Then for finite-sum

problem (1), the sequence {xk} produced by Algorithm 1 with
retraction and vector transport satisfies

E [f(xk+1)− f(xk)] ≤ − ε

64Θn0
(12E[‖ṽk‖]− 7ε) .

Moreover, to achieve E[‖∇f(x̃)‖] ≤ ε, Algorithm 1 will termi-
nate at most

(
14Θn0∆

ε2

)
iterations in expectation and the IFO

complexity of Algorithm 1 is O
(

min
(
n+ Θ∆

√
n

ε2 , Θ∆σ
ε3

))
, where

∆ = f(x0)− f(x∗) with x∗ = argminx∈M f(x).

See Appendix C.1 for a complete proof. We discuss the
theoretical implications of Theorem 1. First, Theorem 1 shows that
by one iteration loop of Algorithm 1, the objective value f(xk)
monotonously decreases in expectation when E[‖ṽk‖] is large,
e.g. E[‖ṽk‖] ≥ 7ε

12 . By comparison, Kasai et al. [18] only proved
the sublinear convergence rate of the gradient norm E[‖∇f(x)‖2]
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in R-SRG and did not reveal any convergence behavior of the
objective f(x).

Second, Theorem 1 also indicates that Algorithm 1 only needs
to run at most

(
14Θn0∆

ε2

)
iteration to compute an ε-accuracy

solution x̃, i.e. E[‖∇f(x̃)‖] ≤ ε. This means the convergence
rate of R-SPIDER is at the order of O

(
Θn0∆
ε2

)
. By observing this

convergence rate, Theorem 1 further yields as a byproduct the
benefits of mini-batching to R-SPIDER. Indeed, by controlling
the parameter n0 in R-SPIDER, the mini-batch size |S2| at
each iteration can range from 1 to O

(
min

(
4
√
n, 16σ

ε

))
. Also,

it can be seen from Theorem 1 that larger mini-batch size allows
more aggressive step size ηk and thus leads to less necessary
iterations to achieve an ε-accuracy solution. More specifically,
the convergence rate bound O

(
Θn0∆
ε2

)
indicates that at least in

theory, increasing the mini-batch sizes in R-SPIDER provides linear
speedups in parallel computing environment. In contrast, these
important benefits of mini-batching are not explicitly analyzed in
the existing Riemannian stochastic gradient algorithms [14], [18].

Thirdly, the IFO complexity of R-SPIDER for non-convex
finite-sum problems is at the order of O

(
min

(
n + Θ

√
n

ε2 , Θσ
ε3

))
.

Kasai et al. [18] proved that the IFO complexity of R-SRG is
at the order of O

(
n + Θ2

ε4

)
to obtain an ε-accuracy solution. By

comparison, one can observe that R-SPIDER is at least faster than
R-SRG by a factor of 1

ε . This is because the normalization step in
R-SPIDER allows us to well control the gradient estimation error
and thus avoids sampling too many redundant samples at each
iteration, resulting in sharper IFO complexity.

Then we consider the special cases of retraction and vector
transport, namely exponential mapping and parallel transport.
Based on Theorem 1, we can derive similar results as stated in
Corollary 2. Appendix C.2 provides its detailed proof.

Corollary 2. Suppose that the each component loss fi(x) is
geodesically L-gradient-Lipschitz under exponential mapping in
Assumptions 2 and the stochastic gradient has bounded variance
in Assumption 5. With the parameter setting s= min

(
n, 16σ2

ε2

)
,

p = n0s
1
2 , ηk = min

(
ε

2Ln0
, ‖ṽk‖4Ln0

)
, |S1| = s, |S2| = 4s

1
2

n0
and

n0 ∈ [1, 4s
1
2 ], for finite-sum problem (1) the sequence {xk}

produced by Algorithm 1 with exponential mapping and parallel
transport satisfies

E [f(xk+1)− f(xk)] ≤ − ε

64Ln0
(12E[‖ṽk‖]− 7ε) .

Moreover, to achieve E[‖∇f(x̃)‖] ≤ ε, Algorithm 1 will termi-
nate at most

(
14Ln0∆

ε2

)
iterations in expectation and the IFO

complexity of Algorithm 1 is O
(

min
(
n+ L∆

√
n

ε2 , L∆σ
ε3

))
, where

∆ = f(x0)− f(x∗) with x∗ = argminx∈M f(x).

From Corollary 2, one can observe that similar to retraction and
vector transport, Algorithm 1 equipped with exponential mapping
and parallel transport can reduce the objective sufficiently in each
iteration when the gradient E[‖ṽk‖] is large. But compared with
Theorem 1, Corollary 2 requires milder conditions due to the
good properties of exponential mapping and vector transport. See
detailed discussion below Corollary 1. Besides, Corollary 2 also
shows the benefits of mini-batching to R-SPIDER under the parallel
computation setting.

For the IFO complexity O
(

min
(
n + L

√
n

ε2 , Lσε3
))

of R-
SPIDER, it matches the state-of-the-art complexity bounds for
general non-convex optimization problems in Euclidean space [24],
[38]. Indeed, under the L-gradient-Lipschitz assumption on each

component loss fi(x), Fang et al. [24] proved that the lower
IFO complexity bound for finite-sum problem (1) in Euclidean
space is O

(
n + L

√
n

ε2

)
when the number n of the component

function obeys n ≤ O
(
L2

ε4

)
. In the sense that Euclidean space

is a special case of Riemannian manifold, our IFO complexity
O
(
n + L∆

√
n

ε2

)
for finite-sum problem (1) under the gradient-

Lipschitz assumption is nearly optimal. If we further assume
the gradient variance is bounded by σ2 as in Assumption 5, we
can establish tighter IFO complexity O

(
1
ε2 min

(√
n, 1

ε

))
. This

is because when the sample number n satisfies n ≥ 16σ2

ε2 , by
sampling |S1| = 16σ2

ε2 and |S2| = 16σ
n0ε

, the gradient estimation

error already satisfies E[‖ṽk −∇f(xk)‖2] ≤ ε2

8 . Accordingly, if
1
K

∑K−1
k=0 E‖ṽk‖ ≤ 0.5ε which is actually achieved after K it-

erations, then E[‖f(x̃)‖] = 1
K

∑K−1
k=0 E‖∇f(xk)‖ ≤ 1

K

∑K−1
k=0

[E‖∇f(xk)− ṽk‖+ E‖ṽk‖] ≤ ε. So here it is only necessary
to sample |S1| = 16σ2

ε2 data points instead of the entire set of n
samples.

Compared with R-SRG [18] having the IFO complexity O
(
n+

L2

ε4

)
, R-SPIDER is more computationally efficient by an improved

factor O
(

1
ε

)
. Zhang et al. [14] showed that R-SVRG has the

IFO complexity O
(
n + ζ1/2n2/3

ε2

)
, where ζ ≥ 1 denotes the

curvature parameter. Therefore, R-SPIDER improves over R-SVRG
by a factor at least n1/6 in terms of IFO complexity. Note, the
curvature parameter ζ does not appear in our bounds, as we have
avoided using the trigonometry inequality which characterizes the
trigonometric geometric in Riemannian manifold [14], [16], [17].

3.2.3 Complexity Analysis for Online Setting
Next we consider the online setting of problem (1). Similar to
finite-sum setting, we prove in Theorem 2 that the objective f(x)
can be sufficiently decreased when the gradient norm is not too
small.

Theorem 2. Suppose Assumptions 1 and 3 ∼ 5 hold. Let
Λ =

√
2(θ2G2 + 2(1 + cR)L2

H), Θ = max(LR,Λ), p = σn0

ε ,

ηk = min
(

ε
2Θn0

, ‖ṽk‖4Θn0

)
, |S1| = 16σ2

ε2 , S2 =
4c2Eσ
εn0

and
n0 ∈ [1, 4c2Eσ/ε]. Then for problem (1) under online setting,
the sequence {xk} produced by Algorithm 1 using retraction and
vector transport satisfies

E [f(xk+1)− f(xk)] ≤ − ε

64Θn0
(12E[‖ṽk‖]− 7ε) .

Moreover, to achieve E[‖∇f(x̃)‖] ≤ ε, Algorithm 1 will ter-
minate at most

(
14Θn0∆

ε2

)
iterations in expectation and the

IFO complexity is O
(

Θσ∆
ε3

)
, where ∆ = f(x0) − f(x∗) with

x∗ = argminx∈M f(x).

See Appendix D.1 for a proof of this result. Bonnabel et al.
[17] have also analyzed R-SGD under online setting, but only with
asymptotic convergence guarantee obtained. By comparison, we
for the first time establish non-asymptotic complexity bounds for
Riemannian online non-convex optimization. Then for exponential
mapping and parallel transport, we can also derive similar results as
in Theorem 2. We defer the proof of Corollary 3 to Appendix D.2.

Corollary 3. Suppose that the each component loss fi(x) is
geodesically L-gradient-Lipschitz under exponential mapping in
Assumptions 2 and the stochastic gradient has bounded variance
in Assumption 5. Let p = σn0

ε , ηk = min
(

ε
2Ln0

, ‖ṽk‖4Ln0

)
, |S1| =

16σ2

ε2 , S2 = 4σ
εn0

and n0 ∈ [1, 4σ/ε]. Then for problem (1) under



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, MARCH 2019 7

online setting, the sequence {xk} produced by Algorithm 1 with
exponential mapping and parallel transport satisfies

E [f(xk+1)− f(xk)] ≤ − ε

64Ln0
(12E[‖ṽk‖]− 7ε) .

Moreover, to achieve E[‖∇f(x̃)‖] ≤ ε, Algorithm 1 will ter-
minate at most

(
14Ln0∆

ε2

)
iterations in expectation and the

IFO complexity is O
(
Lσ∆
ε3

)
, where ∆ = f(x0) − f(x∗) with

x∗ = argminx∈M f(x).

Algorithm 2 Riemannian Gradient Dominated SPIDER (R-GD-
SPIDER)

1: Input: initial point x̃0, initial accuracy ε0, learning rate η0,
mini-batch sizes |S0

1 | and |S0
2 |, iteration interval p0, final

accuracy ε
2: for t = 1 to T do
3: x̃t = R-SPIDER(x̃t−1, εt−1, ηt, pt, |St1|, |St2|).
4: Set εt=0.5εt−1, and ηt, pt, |St1|, |St2| properly.
5: end for
6: Output: x̃t

3.3 On gradient dominated functions
We now turn to a special case of problem (1) with gradient
dominated loss function as defined in Definition 2. For instance, the
strongly geodesically convex (SGC) functions1 are gradient dom-
inated. Some non-strongly convex problems, e.g. ill-conditioned
linear prediction and logistic regression [39], and Riemannian non-
convex problems, e.g. PCA [14], also belong to gradient dominated
functions. Please refer to [37], [39] for more instances of gradient
dominated functions. To better fit gradient dominated functions,
we develop the Riemannian gradient dominated SPIDER (R-GD-
SPIDER) as a multi-stage variant of R-SPIDER. A high-level
description of R-GD-SPIDER is outlined in Algorithm 2. The
basic idea is to use more aggressive learning rates in early stage of
processing and gradually shrink the learning rate in later stage. With
the help of such a simulated annealing process, R-GD-SPIDER
exhibits linear convergence behavior for btoh finite-sum and online
problems.

3.3.1 Complexity Analysis for Finite-Sum Setting
Here we show that R-GD-SPIDER enjoys linear convergence rate,
as formally stated in Theorem 3.

Theorem 3. Suppose that function f(x) is τ -gradient dom-
inated, the retraction and vector transport used in Algo-
rithm 2 satisfy Assumptions 1 and 3 ∼ 5. For finite-sum set-
ting, at the t-th iteration, set ε0 =

√
∆

2
√
τ

, εt = ε0
2t , Θ =

max(
√

2(θ2G2 + 2(1 + cR)L2
H), LR), ηt,k =

‖ṽt,k‖
2n0Θ , st =

min
(
n, 22σ2

ε2t

)
, pt = n0s

1
2
t , |St1| = st and |St2| =

2c2Es
1
2
t

n0
,

Kt = 72n0Θ∆t

ε2t
, where n0 ∈ [1, 2c2Es

1
2
t ].

(1) The sequence {x̃t} produced by Algorithm 2 satisfies

E [f(x̃t)− f(x∗)] ≤
∆

4t
and E[‖∇f(x̃t)‖] ≤

1

2t

√
∆

τ
,

1. A strongly geodesically convex function satisfies f(y) ≥ f(x) +〈
∇f(x),Exp−1

x (y)
〉
+µ

2
‖Exp−1

x (y) ‖2,∀x,y ∈M, for som µ > 0, which
immediately implies f(x) − f(x∗) ≤ 1

2µ
‖∇f(x)‖2 by Cauchy-Schwarz

inequality.

where ∆ = f(x̃0)− f(x∗) with x∗ = argminx∈M f(x).
(2) To achieve E[‖∇f(x̃t)‖] ≤ ε, the IFO complexity is
O
(
min

(
(n+ τΘ

√
n) log

(
1
ε

)
, τΘσ

ε

))
.

Please refer to Appendix E.1 for the proof of Theorem 3. The
main message conveyed by Theorem 3 is that R-GD-SPIDER
enjoys a linear rate of convergence and its IFO complexity
is at the order of O

(
min

(
(n+ τΘ

√
n) log

(
1
ε

)
, τΘσ

ε

))
. For

R-SRG [18], its IFO complexity is O
(
(n+ τ2Θ2) log

(
1
ε

))
.

Therefore, in terms of IFO complexity, R-GD-SPIDER is superior
to R-SRG when the optimization accuracy ε is moderately small at
a huge data size n. Next, based on Theorem 3, we derive similar
results on exponential mapping and parallel transport as stated in
Corollary 4 with proof in Appendix E.2.

Corollary 4. Suppose that function f(x) is τ -gradient domi-
nated, the each component loss fi(x) is geodesically L-gradient-
Lipschitz under exponential mapping in Assumptions 2 and the
stochastic gradient has bounded variance in Assumption 5. Then
for exponential mapping and parallel transport, by using the same
parameter setting in Theorem 3 but with Θ replaced by L, the linear
convergence results of the objective f(x̃t) and its gradient∇f(x̃t)
in Theorem 3 still holds. Moreover, to achieve E[‖∇f(x̃t)‖]≤ ε,
the IFO complexity is O

(
min

(
(n+ τL

√
n) log

(
1
ε

)
, τLσε

))
.

For R-SVRG with τ -gradient dominated functions, Zhang et
al. [14] also established a linear convergence rate and an IFO
complexity bound O

(
(n+ τLζ

1
2n

2
3 ) log

(
1
ε

) )
. As a comparison,

our R-GD-SPIDER makes an improvement over R-SVRG in
IFO complexity by a factor of n

1
6 . For R-SRG [18], when the

optimization accuracy ε is moderately small at a huge data size n
R-GD-SPIDER enjoys similar advantages as discussed above.

3.3.2 Complexity Analysis for Online Setting
Turning to the online setting, R-GD-SPIDER also converges
linearly, as formally stated in Theorem 4. See its proof in
Appendix F.1.

Theorem 4. Suppose that f(x) is τ -gradient dominated, the
retraction and vector transport used in Algorithm 2 satisfy Assump-
tions 1 and 3 ∼ 5. For online setting, at the t-th iteration, let ε0 =√

∆
2
√
τ

, εt = ε0
2t , Θ = max(

√
2(θ2G2 + 2(1 + cR)L2

H), LR),

ηt,k =
‖ṽt,k‖
2n0Θ , st = 22σ2

ε2t
, pt = n0s

1
2
t , |St1| = st and

|St2| =
2c2Es

1
2
t

n0
, Kt = 72n0Θ∆t

ε2t
, where n0 ∈ [1, 2c2Es

1
2
t ].

(1) The sequence {x̃t} produced by Algorithm 2 satisfies

E [f(x̃t)− f(x∗)] ≤
∆

4t
and E[‖∇f(x̃t)‖] ≤

1

2t

√
∆

τ
,

where ∆ = f(x̃0)− f(x∗) with x∗ = argminx∈M f(x).
(2) To achieve E[‖∇f(x̃t)‖] ≤ ε, the IFO complexity isO

(
τΘσ
ε

)
.

Then we also show the results on exponential mapping and
parallel transport in Corollary 5. The proof of can be found in
Appendix F.2.

Corollary 5. Suppose that function f(x) is τ -gradient domi-
nated, the each component loss fi(x) is geodesically L-gradient-
Lipschitz under exponential mapping in Assumptions 2 and the
stochastic gradient has bounded variance in Assumption 5. Then
for exponential mapping and parallel transport, by using the same
parameter setting in Theorem 4 but with Θ replaced by L, the linear
convergence results of the objective f(x̃t) and its gradient∇f(x̃t)
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in Theorem 4 still holds. Moreover, to achieve E[‖∇f(x̃T )‖]≤ε,
the IFO complexity is O

(
τLσ
ε

)
.

The non-asymptotic convergence result in Theorem 4 and
Corollary 5 are new to online Riemannian gradient dominated
optimization.

4 EXPERIMENTS

In this section, we first introduce the testing problems and
then develop a learning-rate-adaptive R-SPIDER algorithm. Next,
we compare R-SPIDER with several state-of-the-art Rieman-
nian stochastic gradient algorithms, including R-SGD [17], R-
SVRG [14], [19], R-SRG [18] and R-SRG+ [18]. For all the
considered algorithms, we tune their hyper-parameters optimally.
Finally, we investigate the computational efficiency of the proposed
R-SPIDER algorithm when it is equipped with 1) exponential
mapping and parallel transport and 2) retraction and vector
transport. We run simulations on ten datasets, including six datasets
from LibSVM1 (a9a, satimage, covtype, protein, ijcnn1 and
epsilon), three face datasets (YaleB [40], AR [41] and PIE [42])
and one recommendation dataset (MovieLens-1M2). The statistics
of these datasets are summarized in Table 2. From it we can
observe that these datasets are different from each other due to
their feature dimension, training samples, and class numbers, etc.
Thus, those testing datasets can well investigate the performance
of the proposed algorithms.

4.1 Testing problems and experimental settings
We evaluate all the considered algorithms on two widely studied
Riemannian manifold learning problems: the k-PCA problem and
the low-rank matrix completion (LRMC) problem.
The k-PCA problem and experiment setting. Given n data
points, k-PCA is formulated as the following problem of quadratic
minimization over Stiefel manifold:

min
U∈St(k,d)

1

n

n∑
i=1

a>i UU
Tai,

where ai ∈ Rd denotes the i-th sample vector and St(k, d) =
{U ∈ Rd×k | U>U = I} denotes the Stiefel manifold. For this
problem, the columns of the ground truth U∗ are known to be
the top k eigenvectors of the data covariance matrix which can
be estimated using singular value decomposition (SVD). We thus
can use f(U∗) as optimal value f∗ for sub-optimality estimation
in Fig.2 and 3. In this group of experiments, we compute the
first twenty leading eigenvectors on six datasets from LibSVM,
including a9a, covtype, epsilon, ijcnn, protein and satimage.

Since the parallel transport has no closed-form solution on
Stiefel manifold, here we only present the vector transport
associated with QR based retraction [28], [43]. The retraction
is defined as

Rx(ξ) = QR(x+ ξ),

where QR(x) denotes the Q factor in the QR decomposition
x = QR with Q ∈ St(k, d) and an upper triangular matrix R.
Then its vector transport is defined as

Γyx (z) = z − ysym(yTz),

where sym(x) = 1
2 (x+ xT ).

1. https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
2. https://grouplens.org/datasets/movielens/1m/

TABLE 2: Descriptions of the ten testing datasets.

#class#sample#feature #class#sample#feature

a9a 2 32,561 123 satimage 6 4,435 36
covtype 2 581,012 54 YaleB 38 2,414 2,016
epsilon 2 40,000 2,000 AR 100 2,600 1,200
ijcnn 2 49,990 22 PIE 64 11,554 1,024
protein 3 14,895 357 MovieLens-1M — 6,040 3,706

The LRMC problem and experiment setting. When given an
incomplete observation of a low-rank matrix A ∈ Rd×n, LRMC
aims at exactly or approximately recovering the full matrix A. The
mathematical formulation is minU∈Gr(k,d),G∈Rk×n ‖PΩ(A) −
PΩ(UG)‖2, where the Grassmann manifold Gr(k, d) denotes the
set of all k-dimensional linear subspaces of Rd, and the set Ω of
locations corresponds to the observed entries, namely (i, j) ∈ Ω if
Aij is observed. PΩ is a linear operator that extracts entries in Ω
and fills the entries not in Ω with zeros. When each column Ai in
the matrix A denotes a sample vector, the LRMC problem can be
expressed equivalently as

min
U∈Gr(k,d),Gi∈Rk

1

n

n∑
i=1

‖PΩi
(Ai)− PΩi

(UGi)‖2.

Since there is no ground truth for the optimum, we run Riemannian
GD sufficiently long until the gradient satisfies ‖∇f(x)‖/‖x‖ ≤
10−8 with x = [U ,G], and then use the output as an approximate
optimal value f∗ for sub-optimality estimation in Fig.1, 6, 4
and 5. We test the considered algorithms on three face datasets
(YaleB [40], AR [41] and PIE [42]) and one recommendation
dataset (MovieLens-1M), considering these data approximately lie
on a union of low-rank subspaces [18], [44]. For face images, we
randomly sample 30% pixels in each image as the observations
and set k = 30. For MovieLens-1M, we use its one million ratings
for 3,952 movies from 6,040 users as the observations and set
k = 100.

Let us consider the Grassmann manifold in the LRMC problem.
Its exponential mapping is defined as

z = Expx (y) = xV cos(Σ)V T +U sin(Σ)V T ,

where y = UΣV T is the skinny SVD of y. Accordingly, the
inverse exponential mapping is computed as y = Exp−1

x (z) =
U arctan(Σ)V T where (I − xxT )z(xTzT )−1 = UΣV T .
Consequently, we can compute the parallel transport

Pzx(ŷ) = −xV sin(Σ)UT ŷ+U cos(Σ)UT ŷ+(I−UUT )ŷ,

where Exp−1
x (z) = UΣV T denotes the skinny SVD of

Exp−1
x (z). For the retraction Rx (z), we adopt the polar retraction

Rx (z) = polar(x+ z),

where polar(x + z) ∈ Gr(k, d) denotes the k × d orthonormal
factor of the polar decomposition of x+ z. It can be computed by
the skinny SVD, namely x+ z = UΣV T and polar(x+ z) =
UV T . Then based on such a retraction, the vector transport is
defined as

Γyx (z) = Projy(z) = (I − yyT )z

which denotes the orthogonal projection onto the orthogonal
complement of y. This polar retraction and vector transport is
commonly used for the Grassmann manifold optimization (see
Example 8.1.6 in [28] and Sec. 4.1 in [43]). By comparison, the
polar retraction and its vector transport are respectively much
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Fig. 2: Comparison among Riemannian stochastic gradient algorithms on the k-PCA problem.

simpler than the exponential mapping and the parallel transport,
and thus enjoy more appealing computational efficiency.

4.2 A practical implementation of R-SPIDER

To achieve the IFO complexity in Theorem 1, it is suggested
to set the learning rate as ηk = min

(
ε

2Θn0
, ‖ṽk‖4Θn0

)
where

ε is the desired optimization accuracy. However, since in the
initial epochs the computed point is far from the optimum
to problem (1), using a tiny learning rate could usually be
conservative. In contrast, by using a more aggressive learning
rate at the initial optimization stage, we can expect stable but
faster convergence behavior. Here for R-SPIDER we design a
decaying learning rate with formulation ηk = αb

k
p c · β and

call it “R-SPIDER-A”, where α and β are two constants. In our
experiments, α is selected from {0.8, 0.85, 0.9, 0.95, 0.99} and β
from {1× 10−2, 5× 10−2, 10−2, 5× 10−3, 10−3}.

4.3 Efficiency comparison among stochastic Rieman-
nian algorithms

We first compare R-SPIDER with state-of-the-art stochastic Rie-
mannian algorithms, including R-SGD [17], R-SVRG [14], [19],
R-SRG [18] and R-SRG+ [18], on the k-PCA and LRMC problems.
All the algorithms respectively adopts the QR based retraction and
the polar retraction in Section 4.1 for k-PCA and LRMC problems.

Results on the k-PCA problem. Fig. 2 shows the experimental
results on the k-PCA problem. From this group of results one can
observe that as the learning-rate-adaptive version of R-SPIDER,
R-SPIDER-A shows much faster convergence rate in terms of
both the IFO complexity and the algorithm running time. For
R-SPIDER, it also reveals satisfactory convergence performance:
it can quickly converge to a relatively high accuracy, e.g. 10−8.
R-SPIDER shows relatively flat convergence behavior in the initial
epochs. This is because it uses very small learning rate and also
normalizes the gradient, leading to very small steps towards to the
optimum. Then along with more iterations, the computed solution
becomes close to the optimum. As a result, the gradient begins to
vanish and those considered algorithms without normalization tend
to update the variable with small progress. By comparison, thanks
to the normalization step, R-SPIDER moves more rapidly along the
gradient descent direction and thus shows much faster convergence
rate. For R-SPIDER-A, in the initial epochs it adopts a relatively
more aggressive learning rate and then decreases the learning rate
along with more iterations. Such a mechanism allows it to converge
fast due to the large step size when the solution is far from the
optimum in the initial stage and the relatively small step size when
the solution is close to the optimum after sufficient iteration. As a
result, it exhibits the sharpest convergence behavior. Note, R-SGD
usually shows much slower convergence behaviors in terms of
algorithm running time than the IFO complexity, since it needs to
load the data from disk more frequently than other algorithms which
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Fig. 3: Comparison between R-SPIDER and R-SRG with adaptive learning rates on the k-PCA problem.
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Fig. 4: Comparison among Riemannian stochastic gradient algorithms on low-rank matrix completion problem.

is actually time-consuming. All these results show the superior
computational efficiency of our proposed algorithms, R-SPIDER
and R-SPIDER-A, on both the IFO complexity and algorithm
running time.

Then in Fig. 3, we compare R-SPIDER-A more closely with
R-SRG-A and R-SRG+A which are respectively the counterparts
of R-SRG and R-SRG+ with adaptive learning rate. In [18], both
R-SRG-A and R-SRG+A tune their learning rate ηk as ηk = α(1+
αλαbkp c), where k is the number of inner iterations, α and λα are
tunable hyper-parameters. By observing the experimental results in
Fig. 3, we can find that the algorithms using adaptive learning rate
usually outperform their vanilla counterparts, demonstrating the
effectiveness of such an implementation trick. Besides, R-SPIDER-
A consistently converges faster than R-SRG-A and R-SRG+A in
both the IFO complexity and the algorithm running time, testifying
the efficiency advantages of R-SPIDER-A.

Results on the LRMC problem. From Fig. 4, R-SPIDER-
A and R-SPIDER show very similar convergence behavior to
those in Fig. 2. More specifically, R-SPIDER-A achieves fastest
convergence rate, and R-SPIDER has similar convergence speed as
other algorithms in the initial epochs and then runs faster along with
more epochs. All these results confirm the superiority of R-SPIDER
and R-SPIDER-A. Moreover, we also compare R-SPIDER-A with

R-SRG-A and R-SRG+A in Fig. 5. The comparison results also
show the faster convergence rate of R-SPIDER-A over R-SRG-A
and R-SRG+A.

4.4 Efficiency comparison between parallel and vector
transports
We now turn to evaluate and compare the computational efficiency
between 1) R-SPIDER using exponential mapping and parallel
vector transport (R-SPIDER-Exp for short) and 2) R-SPIDER
with polar retraction and vector transport (R-SPIDER-Rec) on
the LRMC problem. Actually, we also compare the learning-rate-
adaptive R-SPIDER algorithms, namely R-SPIDER-A, under those
two transports. Fig. 1 and 6 summarize the experimental results,
from which one can observe that R-SPIDER-Rec usually exhibits
very similar convergence behavior to R-SPIDER-Exp in terms of
the IFO complexity, but it shows faster convergence rate from the
aspect of algorithm running time. The R-SPIDER-A algorithm
reveals very similar comparison results when respectively using
parallel and vector transports. This is because the polar retraction
and its vector transport can respectively well approximate the
exponential mapping and parallel transport, but the former ones are
respectively much computational efficient than the latter ones which
can be observed from their formulations in Section 4.1. Therefore,
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Fig. 5: Comparison among Riemannian stochastic gradient algorithms on low-rank matrix completion problem.
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Fig. 6: Comparison between (1) R-SPIDER equipped with exponential mapping and parallel transport (R-SPIDER-Exp) and (2)
R-SPIDER equipped with polar retraction and vector transport (R-SPIDER-Rec) on the LRMC problem.

the retraction and vector transport are usually more preferable
than exponential mapping and parallel transport in Riemannian
optimization.

5 CONCLUSIONS

We proposed R-SPIDER, which is an efficient stochastic Rieman-
nian gradient method for non-convex optimization on Riemannian
manifolds. Compared to existing first-order Riemannian algorithms,
when using general retraction and vector transport or the particular
exponential mapping and parallel transport, R-SPIDER provably
enjoys lower computational complexity bounds for finite-sum
minimization. For online optimization, similar non-asymptotic
bounds are established for R-SPIDER, which to our best knowledge
has not been addressed in previous study. For the special case
of gradient dominated functions, we further developed a variant
of R-SPIDER with improved linear rate of convergence. Finally,
extensive experimental results well justify the computational
superiority of R-SPIDER over the state-of-the-arts.
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