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Towards Understanding Convergence and
Generalization of AdamW

Pan Zhou, Xingyu Xie, Zhouchen Lin, Fellow, IEEE, Shuicheng Yan, Fellow, IEEE

Abstract—AdamW modifies Adam by adding a decoupled weight decay to decay network weights per training iteration. For adaptive
algorithms, this decoupled weight decay does not affect specific optimization steps, and differs from the widely used ℓ2-regularizer which
changes optimization steps via changing the first- and second-order gradient moments. Despite its great practical success, for AdamW,
its convergence behavior and generalization improvement over Adam and ℓ2-regularized Adam (ℓ2-Adam) remain absent yet. To solve
this issue, we prove the convergence of AdamW and justify its generalization advantages over Adam and ℓ2-Adam. Specifically, AdamW
provably converges but minimizes a dynamically regularized loss that combines vanilla loss and a dynamical regularization induced by
decoupled weight decay, thus yielding different behaviors with Adam and ℓ2-Adam. Moreover, on both general nonconvex problems and
PŁ-conditioned problems, we establish stochastic gradient complexity of AdamW to find a stationary point. Such complexity is also
applicable to Adam and ℓ2-Adam, and improves their previously known complexity, especially for over-parametrized networks. Besides,
we prove that AdamW enjoys smaller generalization errors than Adam and ℓ2-Adam from the Bayesian posterior aspect. This result, for
the first time, explicitly reveals the benefits of decoupled weight decay in AdamW. Experimental results validate our theory.

Index Terms—Analysis of AdamW, Convergence of AdamW, Generalization of AdamW, Adaptive gradient algorithms

✦

1 INTRODUCTION

ADAPTIVE gradient algorithms, e.g., Adam [1], have become
the most popular optimizers to train deep networks because of

their faster convergence speed than SGD [2], with many successful
applications in computer vision [3], [4] and natural language
processing [5], etc. Similar to the precondition in the second-order
algorithms [6], adaptive algorithms precondition the landscape
curvature of loss objective to adjust the learning rate for each
gradient coordinate. This precondition often helps these adaptive
algorithms achieve faster convergence speed than their non-adaptive
counterparts, e.g., SGD which uses a single learning rate for all
gradient coordinates. Unfortunately, this precondition also brings
negative effect. That is, adaptive algorithms usually suffer from
worse generalization performance than SGD [7]–[10].

As a leading adaptive gradient approach, AdamW [11] greatly
improves the generalization performance of adaptive algorithms on
vision transformers (ViTs) [12] and CNNs [13], [14]. The core of
AdamW is a decoupled weight decay. Specifically, AdamW uses an
exponential moving average to estimate the first-order moment mk

and second-order moment nk like Adam, and then updates network
weights xk+1=xk−ηmk/

√
nk+δ−ηλkxk with a learning rate

η, a weight decay parameter λk, and a small constant δ. One
can observe that AdamW decouples the weight decay from the
optimization steps w.r.t. the loss function, since the weight decay is
always −ηλkxk no matter what the loss and optimization step are.
This decoupled weight decay becomes ℓ2-regularization for SGD,
but differs from ℓ2-regularization for adaptive algorithms. Thanks
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to its effectiveness, AdamW has been widely used in network
training. But there remain many mysteries about AdamW yet.
Firstly, it is not clear whether AdamW can theoretically converge
or not, and if yes, what convergence rate it can achieve. Moreover,
for the generalization superiority of AdamW over the widely used
Adam and ℓ2-regularized Adam (ℓ2-Adam), the theoretical reasons
are rarely investigated though heavily desired.
Contributions: To resolve these issues, we provide a new view-
point to understand the convergence and generalization behaviors
of AdamW. Particularly, we theoretically prove the convergence of
AdamW, and also justify its superior generalization to (ℓ2)-Adam.
Our main contributions are highlighted below.

Firstly, we prove that AdamW can converge but minimizes
a dynamically regularized loss that combines the vanilla loss
and a dynamical regularization induced by the decoupled weight
decay. Interestingly, this dynamical regularization differs from
the commonly used ℓ2-regularization, and thus yields the differ-
ent behaviors between AdamW and ℓ2-Adam. For convergence
speed, on general nonconvex problems, AdamW finds an ϵ-
accurate first-order stationary point within stochastic gradient
complexity O(c2.5∞ ϵ−4) when using constant learning rate and
O(c1.25∞ ϵ−4 log( 1ϵ )) with decaying learning rate, where c∞ is
the ℓ∞-norm upper bound of stochastic gradient. When ignoring
logarithm terms, both complexities match the lower complexity
bound O(ϵ−4) in [15]. These complexities are applicable to Adam
and ℓ2-Adam, and improve their previously known complexities
O(c∞

√
dϵ−4) and O(c∞

√
dϵ−4 log( 1ϵ )) when respectively using

constant and decaying learning rate [16]–[18], as c∞ is often
much smaller than the network parameter dimension d. On PŁ-
conditioned nonconvex problems, our established complexity of
AdamW also enjoys similar advantages.

Next, we theoretically show the benefits of the decoupled
weight decay in AdamW to the generalization performance from
the Bayesian posterior aspect. Specifically, we show that a proper
decoupled weight decay λk > 0 helps AdamW achieve smaller
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generalization error, indicating the superiority of AdamW over
vanilla Adam that corresponds to λk = 0. We further analyze ℓ2-
regularized Adam, and observe that AdamW often enjoys smaller
generalization error bound than ℓ2-regularized Adam. To our best
knowledge, this work is the first one that explicitly shows the
superiority of AdamW over Adam and its ℓ2-regularized version.

2 RELATED WORK

Convergence Analysis. Adaptive gradient algorithms, e.g., Adam,
have become the default optimizers in deep learning because of
their fast convergence speed. Accordingly, many works investigate
their convergence to deepen their understanding. On convex
problems, Adam-type algorithms, e.g., Adam and AMSGrad [19],
enjoy the regret O(

√
T ) under the online learning setting with

training iteration number T . For nonconvex problems, Adam-type
algorithms have the stochastic gradient complexity O

(
c∞

√
dϵ−4

)

to find an ϵ-accurate stationary point [18], [20]. RMSProp and
Padam [17] are proved to have the complexity O

(√
c∞dϵ−4

)
[16],

and Adabelief [21] has O
(
c62ϵ

−4
)

complexity, where c2 is the
ℓ2-norm upper bound of stochastic gradient. But the convergence
behaviors of AdamW remains unclear, though it is the dominant
optimizer for vision transformers [12] and CNNs [13].
Generalization Analysis. Most works, e.g., [22]–[24], analyze
the generalization of an algorithm through studying its stochastic
differential equations (SDEs) because of the similar convergence
behaviors of an algorithm and its SDE. For instance, by formu-
lating SGD into Brownian- or Lévy-driven SDEs, SGD always
provably tends to converge to flat minima and thus enjoys good
generalization [9], [24]. Recently, for weight decay, the works [25]–
[27] intuitively claim that for layers followed by normalizations,
e.g., BatchNormalization [28], weight decay increases the effective
learning rate by reducing the scale of the network weights, and
higher learning rates give larger gradient noise which often
acts a stochastic regularizer. But Zhou et al. [29] argued the
benefits of weight decay to the layers without normalization,
e.g., fully-connected networks, and further empirically found the
regularization effects of weight decay to the last fully-connected
layer of a network. Unfortunately, none of them explicitly show the
generalization benefits of weight decay in AdamW. Here we borrow
the aforementioned SDE tool and PAC Bayesian framework [30]
to explicitly analyze the generalization effects of decoupled weight
decay of AdamW and also its superiority over ℓ2-Adam.

3 NOTATION AND PRELIMINARILY

AdamW & ℓ2-Adam. We first briefly recall the steps of AdamW,
Adam and ℓ2-Adam to solve the stochastic nonconvex problem:

minx∈Rd F (x) := Eξ∼D[f(x, ξ)], (1)

where loss f is differentiable and nonconvex, sample ξ is drawn
from a distribution D. To solve problem (1), at the k-th iteration,
AdamW estimates the current gradient ∇F (xk) as the minibatch
gradient gk = 1

b

∑b
i=1∇f(xk; ξi), and updates the variable x

with three constants β1 ∈ [0, 1], β2 ∈ [0, 1] and δ > 0:

mk = (1− β1)mk + β1gk, nk = (1− β2)nk + β2g
2
k,

xk+1 = xk − ηmk/
√

nk+δ − ηλkxk, (2)

where m0 = g0, n0 = g2
0 , and all operations (e.g., product,

division) involved vectors are element-wise. Here we allow λk to
evolve along iteration number k, as in practice, an evolving λk often

shows better performance than a fixed one [4], [31]–[33]. See de-
tailed AdamW in Algorithm 1 of Appendix B. AdamW differs from
vanilla Adam in the third step of Eqn. (2). Specifically, AdamW
decouples weight decay from the optimization steps, as weight
decay is always −ηλkxk no matter what the loss and optimization
step are. But ℓ2-Adam adds a conventional weight decay λkxk

into the gradient estimation gk=
1
b

∑b
i=1∇f(xk; ξi)+λkxk, then

updates mk and nk in (2), and xk+1 = xk − ηmk/
√
nk+δ.

The decoupled weight decay in AdamW often achieves better
generalization than ℓ2-Adam on many networks, e.g., [12], [14].
Analysis Assumptions. Here we introduce necessary assumptions
for analysis, which are commonly used in [1], [8], [19], [34]–[36].

Assumption 1 (L-smoothness). The function f(·, ·) is L-smooth
w.r.t. the parameter, if ∃L > 0, for ∀x1,x2 and ξ ∼ D, we have

∥∇f(x1, ζ)−∇f(x2, ζ)∥2 ≤ L ∥x1 − x2∥2 .
Assumption 2 (Gradient assumption). The gradient estimation gk
is unbiased, and its magnitude and variance are bounded:

E[gk] = ∇F (xk), ∥gk∥∞ ≤ c∞, E[∥∇F (xk)− gk∥22] ≤ σ2.

When a nonconvex problem satisfies Assumptions 1 and 2,
the lower bound of the stochastic gradient complexity (a.k.a.
IFO complexity) to find an ϵ-accurate first-order stationary point
is Ω(ϵ−4) [15]. Next, we introduce Polyak-Łojasiewicz (PŁ)
condition which is widely used in deep network analysis, since as
observed or proved in [37]–[40], deep neural networks often satisfy
PŁ condition at least around a local minimum.

Assumption 3 (PŁ Condition). Let x∗∈argminx F (x). We say
a function F (x) satisfies µ-PŁ condition if it satisfies 2µ(F (x)−
F (x∗))≤∥∇F (x)∥22 (∀x), where µ is a universal constant.

4 CONVERGENCE ANALYSIS

Here we first use a specific least square problem to compare the
convergence behavior of AdamW and ℓ2-Adam. Next, we study
the convergence of AdamW on general nonconvex problems and
show its performance improvement on PŁ-conditioned problems.

4.1 Results on Specific Least Square Problems
Here we first use a specific least square problem (3) to analyze the
different convergence performance of AdamW and ℓ2-Adam:

minx∈R F (x) := Eξ∼N (0,1)
1

2
∥ax− ξ∥22, (3)

where a ̸= 0 is a constant. Then we state our main results in
Theorem 1 whose proof can be found in Appendix G.1.

Theorem 1. Suppose that stochastic gradient gk is unbiased,
E[∥gk∥2] ≤ τ , and E∥x0 − x∗∥2 ≤ ∆. Then with learning rate
ηk = O( 1k ) and λk = λ = O(

√
k), the sequence {xk} generated

by AdamW obeys:

E[∥xk − x∗∥2] ≤
(
1− 1/

√
k
) 3k

2 Λ +
τ

k
1
2+α

,

where α>0, Λ=η0+∆. With learning rate ηk=O( 1√
k
) and λk

=λ=O(
√
k), the sequence {xk} generated by ℓ2-Adam obeys:

E[∥xk − x∗∥2] ≤
(
1− 1/

√
k
) k

2 Λ +
2τ

k
1
2

.

Theorem 1 shows that AdamW enjoys a faster convergence
speed than ℓ2-Adam on the least square problem in (3). Specifically,
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the first convergence term
(
1− 1/

√
k
) 3k

2 Λ in AdamW converges

much faster than the corresponding term
(
1 − 1/

√
k
) k

2 Λ in ℓ2-
Adam. For the second term τ

k
1
2
+α

in AdamW, it improves the
corresponding term in ℓ2-Adam by a factor of 2kα (α > 0). This
comparison shows the superiority of AdamW over ℓ2-Adam, and
thus partially explains their different convergence behaviors.

4.2 Results on Nonconvex Problems
Now we move on to the general and also PŁ conditioned nonconvex
problems. We first define a dynamic surrogate function Fk(x) at
the k-th iteration which is indeed the combination of the vanilla
loss F (x) in Eqn. (1) and a dynamic regularization λ

2 ∥x∥2vk
:

Fk(x) = F (x) +
λk

2
∥x∥2vk

= Eζ [f(θ; ζ)] +
λk

2
∥x∥2vk

, (4)

where vk=
√
nk + δ and ∥x∥vk

=
√
⟨x,vk ⊙ x⟩ with element-

wise product ⊙. To minimize (4), one can approximate vanilla loss
F (x) by its Taylor expansion, and compute xk+1:

xk+1≈argminxF (xk)+⟨∇F (xk),x− xk⟩+
1

2η
∥x− xk∥2vk

+
λk

2
∥x∥2vk

=
1

1 + λkη

(
xk − η∇F (xk)/vk

)
.

Then considering η is very small in practice, one can approximate
1

1+λkη
≈1−λkη, and the factor λkη

2 for the term F (xk)/vk is
too small and can be ignored compared with η. Finally, in stochastic
setting, one can use the gradient estimation mk to estimate full
gradient ∇F (xk), and thus achieves xk+1 = (1 − λkη)xk −
ηmk/vk which accords with the update (2) of AdamW. From this
process, one can also observe that the dynamic regularizer λ

2 ∥x∥2vk

is induced by the decoupled weight decay −λkηxk in AdamW. In
the following, we will show that AdamW indeed minimizes the
dynamic function Fk(x) instead of the vanilla loss F (x).

4.3 Results on General Nonconvex Problems
Following many works which analyze adaptive gradient algo-
rithms [16], [18], [21], [41], [42], we first provide the convergence
results of AdamW by using a constant learning rate η.

Theorem 2. Suppose that Assumptions 1 and 2 hold. Let x∗ ∈
argminx F (x), ∆=F (x0)−F (x∗), η≤ δ1.25bϵ2

6(c2∞+δ)0.75σ2L , β1≤
δ0.5bϵ2

3(c2∞+δ)0.5σ2 and β2∈ (0, 1) for all iterations, and λk = λ(1 −
β2c

2
∞

δ )k with a constant λ. After T =O
(
max

( c2.5∞ L∆σ2

δ1.25bϵ4 ,
c2∞σ4

δb2ϵ4

))

iterations, the sequence {xk}Tk=0 of AdamW in Eqn. (2) obeys

1

T

T−1∑

k=0

E
[
∥∇Fk(xk)∥22

]
≤ϵ2, 1

T

T−1∑

k=0

E
[
∥xk − xk+1∥2vk

]
≤ η2ϵ2

4
,

1

T

T−1∑

k=0

E
[
∥mk−∇F (xk)∥22

]
≤8ϵ2. (5)

Moreover, the total stochastic gradient complexity to achieve (5) is
O
(
max

( c2.5∞ L∆σ2

δ1.25ϵ4 ,
c2∞σ4

δbϵ4

))
.

See its proof in Appendix G.2. Theorem 2 shows the
convergence of AdamW on the nonconvex problems. Within
T = O

(
max

( c2.5∞ L∆σ2

δ1.25bϵ4 ,
c2∞σ4

δb2ϵ4

))
iterations, the average gradient

1
T

∑T−1
k=0 E

[
∥∇Fk(xk)∥22

]
is smaller than ϵ2, indicating the con-

vergence of AdamW. Now we show small ∥∇Fk(xk)∥2 guarantees
small ∥∇F (xk)∥2 in Corollary 1 with proof in Appendix G.3.

Corollary 1. Assume that ∥vk∥2 ≤ ρ′∥∇F (xk)∥2 with a
constant ρ′ > 0, and 1 > λkρ

′∥xk∥∞. We have ∥∇F (xk)∥2 ≤
1

1−λkρ′∥xk∥∞
∥∇Fk(xk)∥2.

The assumptions in Corollary 1 are mild. As nk is the moving
average of stochastic square version of full gradient ∇F (xk), one
can assume ∥nk∥2≤ρ∥∇F (xk)∥22, especially for the late training
phase where xk is updated very slowly. Indeed, this assumption is
validated in Adam analysis works, e.g., [9]. Specifically, since δ is
extremely small in vk =

√
nk+δ, one can find a constant ρ′ ≈ ρ

so that ∥vk∥2 ≤ ∥∇F (xk)∥2. For assumption 1>λkρ
′∥xk∥∞,

it is mild, since a) λk is often very small in practice, e.g., 10−4,
and b) the magnitude ∥xk∥∞ of network parameter is not large as
observed and proved in [43] because of the auto-adaptive tradeoff
among the parameter magnitude at different layers. Also, we
empirically find ∥xk∥∞≈8.0 in the well-trained ViT-small across
different training epoch numbers. Indeed, for ρ′, Zhou et al. [9]
empirically finds it around 1.0 on CNNs (see their Fig. 2).

The second inequality in Eqn. (5) guarantees the small distance
between two neighboring solutions xk and xk+1, also showing
the good convergence behaviors of AdamW. The last inequality
in Eqn. (5) reveals that the exponential moving average (EMA)
mk of all historical stochastic gradient is close to the full gradient
∇F (xk) and explains the success of EMA gradient estimation.

Besides, in Theorem 2, to find an ϵ-accurate first-order
stationary point (ϵ-ASP), the stochastic gradient complexity of
AdamW is O

(
c2.5∞ ϵ−4

)
which matches the lower bound Ω(ϵ−4)

in [15] (up to constant factors). Moreover, AdamW enjoys lower
complexity than Adabelief [21] of O

(
c62ϵ

−4
)

and LAMB [44] of
O
(
c2
√
dϵ−4

)
, especially on over-parameterized networks, where

c2 upper bounds the ℓ2-norm of stochastic gradient. This is because
for the d-dimensional gradient, its ℓ∞-norm c∞ is often much
smaller than its ℓ2-norm c2, and can be

√
d× smaller for the best

case. Appendix D discusses the proof technique differences among
ours and the above works. One can extend the results in Theorem 2
to ℓ2-Adam. See the proof of Corollary 2 in Appendix G.4.

Corollary 2. With the same parameter settings in Theorem 2, to
achieve (5), the total stochastic gradient complexity of Adam and
ℓ2-Adam is O

(
max

( c2.5∞ L∆σ2

δ1.25ϵ4 ,
c2∞σ4

δbϵ4

))
.

Corollary 2 shows that the complexity of Adam and ℓ2-Adam is
O
(
c2.5∞ ϵ−4

)
, and is superior than the previously known complexity

O(c∞
√
dϵ−4) of Adam-type optimizers analyzed in [16]–[18],

e.g., (ℓ2-)Adam, AdaGrad [34], AdaBound [8]. Though sharing
the same complexity with Adam and ℓ2-Adam, AdamW separates
the ℓ2-regularizer with the loss objective via the decoupled weight
decay whose generalization benefits have been validated empirically
in many works, e.g., [12], and theoretically in our Sec. 5.

Now we investigate the convergence performance of AdamW
when using a decayed learning rate ηk. Compared with the constant
learning rate, this decay strategy is more widely used in practice,
but is rarely investigated in other optimization analysis (e.g., [16],
[21], [44]) except for [18]. Theorem 2 states our main results.

Theorem 3. Suppose that Assumptions 1 and 2 hold. Let ηk =
γδ0.75

2(c2∞+δ)0.25L
√
k+1

, β1k = γ√
k+1

, β2k = β2 ∈ (0, 1) with γ =

max
(
1,

c0.25∞ L0.5∆0.5

δ0.125σ

)
, and λk = λ(1− β2c

2
∞

δ )k with a constant
λ for the k-th training iteration. To achieve the results in Eqn. (5)
with η replaced by η1, the stochastic gradient complexity of AdamW
in Eqn. (2) is O

(
max

( c1.25∞ L0.5∆0.5σ
δ0.625ϵ4 log

(
1
ϵ

)
, c∞σ2

δ0.5ϵ4 log
(
1
ϵ

)))
.
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See its proof in Appendix G.5. Theorem 3 shows that with de-
caying learning rate ηk=

1√
k+1

, AdamW converges and shares al-
most the same results in Theorem 2 where it uses constant learning
rate. To achieve ϵ-ASP, the complexity of AdamW with decaying
learning rate is O

(
max

( c1.25∞ L0.5∆0.5σ
δ0.625ϵ4 log

(
1
ϵ

)
, c∞σ2

δ0.5ϵ4 log
(
1
ϵ

)))

and slightly differs from the one O
(
max

( c2.5∞ L∆σ2

δ1.25ϵ4 ,
c2∞σ4

δbϵ4

))
of

AdamW using constant learning rate. By comparing each complex-
ity term, decaying learning rate respectively improves the constant
one by factors c1.25∞ L0.5∆0.5σ

δ0.625 log−1( 1ϵ ) and c2∞σ2

δ0.5 log−1( 1ϵ ). Con-

sider that c1.25∞ L0.5∆0.5σ
δ0.625 and c∞σ2

δ0.5 are often large than log( 1ϵ ),
as the ℓ1-norm upper bound c∞ of stochastic gradient is often
not small and δ is very small, e.g., 10−4 by default, decaying
learning rate is superior than constant one which accords with the
practical observations. When 1) λk=0 or 2) the loss F (x) is a ℓ2-
regularized loss, Theorem 3 still holds. So the stochastic complexity
in Theorem 3 is applicable to ℓ2-Adam. Guo et al. [18] proved the
complexity O

(
max

( c2.5∞ L2σ2

δ2.5ϵ4 log
(
1
ϵ

)
,
c2∞σ4

δ2ϵ4 log
(
1
ϵ

)))
of Adam-

type algorithms, e.g., Adam and ℓ2-Adam, with decaying learning
rate, which but is inferior than the complexity in this work, since
as aforementioned, δ is often very small.

4.4 Results on PŁ-conditioned Nonconvex Problems
In this work, we are also particularly interested in the nonconvex
problems under PŁ condition, since as observed or proved in [37],
[38], deep learning models often satisfy PŁ condition at least
around a local minimum. For this special nonconvex problem, we
follow [18], and divide the whole optimization into K stages.
Specifically, for constant learning rate setting, AdamW uses
learning rate ηk in the whole k-th stage; while for decayed
learning rate setting, it uses a decayed ηki

for the k-th stage
which satisfies ηki

< ηkj
if i > j, where ηki

denotes the
learning rate of the i-th iteration of the k-th stage. Moreover,
for both learning rate settings, at the k-th stage, AdamW is allowed
to run Tk iterations for achieving E [Fk(xk)− Fk(x∗)] ≤ ϵk,
where x∗ ∈ argminx F (x), xk is the output of the k-stage and
ϵk = 1

2k
[F0(x0) − F0(x∗)] denotes the optimization accuracy.

See detailed Algorithm 2 in Appendix B. At below, we provide the
convergence results of AdamW under both settings of constant or
decayed learning rate in Theorem 4 with proof in appendix G.6.

Theorem 4. Suppose Assumptions 1 and 2 hold, and x∗ ∈
argminx F (x). Assume the loss Fk(xk) in (4) and Fk(x∗) satisfy
the PŁ condition in Assumption 3.
1) For constant learning rate setting, assume a constant learning
rate ηk ≤ δ1.25µbϵk

12(c2∞+δ)0.75σ2L , constant β1k ≤ δ0.5µbϵk
6(c2∞+δ)0.5σ2 , β2k ∈

(0, 1) and λk=λ(1− β2c
2
∞

δ )k at the k-th stage. We have:
1.1) For the k-th stage, AdamW runs at most Tk =

O
(
max

( c2.5∞ Lσ2

µ2δ1.25bϵk
,
c2∞σ2

µδbϵk

))
iterations to achieve E [Fk(xk)

−Fk(x∗)] ≤ ϵk, where the output xk is uniformly randomly
selected from the sequence {xki

}Tk
i=1 at the k-th stage.

1.2) For K stages, the total stochastic complexity is
O
(
max

( c2.5∞ Lσ2

µ2δ1.25ϵ ,
c2∞σ2

µδϵ

))
to achieve

min1≤k≤K E [Fk(xk)− Fk(x∗)] ≤ ϵ. (6)

2) For decaying learning rate setting, let ηki
≤ γδ0.75

2(c2∞+δ)0.25L
√
i+1

,

β1ki ≤ γ√
i+1

, β2ki =β2k∈(0, 1), λki =λ(1−β2c
2
∞

δ )i at the i-th it-

eration of the k-th stage with γ=max
(
1,

(c2∞+δ)0.125L0.5b0.5ϵ0.5k

δ0.125σ

)
.

2.1) For the k-th stage, AdamW runs at most Tk = O
( c2.5∞ Lσ2

µ2δ1.25bϵ

)

iterations to achieve E [Fk(xk)−Fk(x∗)] ≤ ϵk, where the
output xk is randomly selected from the sequence {xki}Tk

i=1 at
the k-th stage according to the distribution

{ ηki∑Tk
j=1 ηkj

}Tk

i=1
.

2.2) The total complexity is O
( c2.5∞ Lσ2

µ2δ1.25ϵ

)
to achieve (6).

Theorem 4 shows that AdamW can converge under both con-
stant and decaying learning rate settings. Moreover, by comparison,
to achieve ϵ-ASP in Eqn. (6), the decaying learning rate has the
total complexity O

( c2.5∞ Lσ2

µ2δ1.25ϵ

)
, and could be better than the constant

learning rate whose complexity is O
(
max

( c2.5∞ Lσ2

µ2δ1.25ϵ ,
c2∞σ2

µδϵ

))
. It

should be also noted that the complexity of AdamW on this
special nonconvex problems (i.e. with PŁ condition) enjoys lower
complexity than the one on the general nonconvex problems,
since PŁ condition ensures a convexity-alike landscape of the
loss objective and thus can be optimized faster.

5 GENERALIZATION ANALYSIS

5.1 Generalization Results
Analysis on hypothesis posterior. As shown in the classical
PACBayesian framework [30], [45] there is strong relations
between the generalization error bound and the hypothesis posterior
learned by an algorithm. So we first analyze the hypothesis posterior
learned by AdamW, and then investigate the generalization error
of AdamW. Specifically, following [9], [22]–[24], [46], we study
the corresponding stochastic differential equations (SDEs) of an
algorithm to investigate its posterior and generalization behaviors
because of the similar convergence behaviors of an algorithm and
its SDE. Firstly, the updating rule of AdamW can be formulated as

xt+1 = xt − ηQt∇F (xt)− ηλxt + ηQtut, (7)

where ut=∇F (xt)−mt is gradient noise, Qt=diag
(
n

− 1
2

t

)

is a diagonal matrix. In Eqn. (7), the small δ in Eqn. (2) is ignored
for convenience which does not affect our following results. Then
following [23], [47], [48], we assume the gradient noise ut obeys
Gaussian distribution N (0,Cxt

) because of the Central Limit
theory. Accordingly, one can write the SDE of AdamW as

dxt = −Qt∇F (xt)dt− λxtdt+Qt (2Σt)
1
2 dζt,

where dζt∼N (0, Idt) and Σt=
η
2Cxt

. Here Cxt
is defined as

Cxt
=
1

b

[ 1
n

∑n

i=1
∇f(xt; ζi)∇f(xt; ζi)

⊤−∇F (xt)∇F (xt)
⊤
]
,

where n is the training sample number, and b is minibatch size. For
analysis, we make some necessary assumptions.

Assumption 4. a) Assume Cxt can approximate the Fisher matrix
Fxt =

1
n

∑n
i=1 ∇F (xt; ζi)∇F (xt; ζi)

⊤, i.e., Cxt ≈ Fxt . b)
Assume Fxt can approximate the Hessian matrix Hxt near a
minimum, i.e., Fxt ≈ Hxt . c) Suppose n′

t+1 = (1 − β2)n
′
t +

β2gtg
⊤
t (virtual sequence) with n′

0 = g0g
⊤
0 is a good estimation

to Fxt
, i.e., n′

t+1 ≈ Fxt
.

Assumption 4 is widely used. Specifically, we follow [23], [47],
[48], and approximate Cxt ≈ Fxt , since we analyze the local
convergence around an optimum, leading to 1) ∇F (xt) ≈ 0 and
2) a dominated variance of gradient noise. Assumption 4 b) is used
in [24], [49] for analysis, and holds when xt is around a minimum.
Since most works analyze the generalization performance of an
algorithm around a local minimum, e.g., [9], [23], [24], [46], [47],
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[47], [48], [50], Assumption 4 b) holds in their setting and thus
is mild. For Assumption 4 c), Staib et al. [51] proved that the
matrix-based second-order moment n′

t is a good estimation to the
Fisher matrix Fxt

after running a certain iteration number. Please
refer to the theoretical details of Assumption 4 in Appendix E.
Then we can derive the hypothesis posterior learnt by AdamW.

Lemma 5. Assume the loss can be approximated by a second-order
Taylor approximation, i.e., F (x)≈F (x∗)+ 1

2 (x−x∗)⊤H∗(x−
x∗) where H∗ is systemic. With Assumption 4, the solution xt of
AdamW obeys a Gaussian distribution N (x∗,MAdamW) where the
covariance matrix MAdamW=E

[
xtx

⊤
t

]
is defined as

MAdamW =
η

2b
(QH∗ + λI)−1QH∗Q.

where Q=diag[H
− 1

2

∗(11),H
− 1

2

∗(22),· · ·,H
− 1

2

∗(dd)] is diagonal matrix.

See its proof in Appendix H.1. Lemma 5 tells that AdamW can
converge to a solution which concentrates around the minimum x∗.
This also guarantees the good convergence behaviors of AdamW
but from an SDE aspect. From the covariance matrix MAdamW,
one can see that all singular values of MAdamW become smaller
when increases and is large enough to ensure QH∗ + λI ⪰ 0.
This indicates that proper weight decay in AdamW can stabilize
the algorithm, and benefits its convergence to the minimizer x∗.

Generalization analysis. Based on the above posterior analysis,
we employ the PAC Bayesian framework [30] to explicitly analyze
the generalization performance of AdamW. Given an algorithm
A and a training dataset Dtr whose samples ξ are drawn from
an unknown distribution D, one often trains a model to obtain
a posterior hypothesis x drawn from a hypothesis distribution
P∼N (x∗,MAdamW) in Lemma 5. Then we denote the expected
risk w.r.t. the hypothesis distribution P as Eξ∼D,x∼P [f(x, ξ)] and
the empirical risk w.r.t. the distribution P as Eξ∈Dtr,x∼P [f(x, ξ)].
In practice, one often assumes that the prior hypothesis satisfies
Gaussian distribution Ppre ∼N (0, ρI) [13], [50], [52], since we
do not know any information on the posterior hypothesis. Based on
Lemma 5, we can derive the generalization error bound of AdamW.

Theorem 6. Assume that x0 satisfies Ppre∼N (0, ρI). Then with
at least probability 1 − τ (τ ∈ (0, 1)), the expected risk for the
posterior hypothesis x∼P of AdamW learned on training dataset
Dtr∼D with n samples holds

Eξ∼D,x∼P [f(x, ξ)]− Eξ∈Dtr,x∼P [f(x, ξ)] ≤ΦAdamW,

where ΦAdamW =
√
8√
n
(ērrAdamW + c0)

1
2 with ērrAdamW =

− log det(MAdamW) + η
2ρbTr(MAdamW) + d log 2bρ

η , c0 =
1
2ρ∥x∗∥2− d

2 +2 ln
(
2n
τ

)
. Here det(M) and tr(M) denote the

determinant and trace of matrix M respectively.

See its proof in Appendix H.2. Theorem 6 shows that the
generalization error of AdamW is upper bounded by O( 1√

n
) (up to

other factors) which matches the error bound in [53]–[56] derived
from the PAC theory or stability aspects. When λ is large, the
first term − log det(MAdamW) in MAdamW becomes larger since
the singular values of MAdamW become small, and leads to small
det(MAdamW), while the second term η

2ρbTr(MAdamW) is small.
But for small λ, the first term − log det(MAdamW) is small, while
the second term becomes large. Though it is hard to precisely
decide the best λ, from the above discussion, at least we know that
tuning λ can yield smaller generalization error, partly explaining
the better performance of AdamW over vanilla Adam (λ = 0).

5.2 Comparison with ℓ2-regularized Adam

Now we compare AdamW with ℓ2-Adam. To diminish the effects of
historical gradient to the current optimization and also analyze the
effects of current gradient to the behaviors of adaptive algorithms,
many works, e.g., [57], [58], set β1=1 in (2) to focus on concurrent
optimization process of adaptive algorithms. Here we follow this
setting to investigate ℓ2-Adam with updating rule:

xt+1 = xt − ηQt(∇F (xt) + λxt) + ηQtut,

where ut=∇F (xt) −mt and Qt= diag(n
− 1

2
t ) have the same

meanings in Eqn. (7). Then one can write the SDE of ℓ2-Adam:

dxt = −Qt(∇F (xt) + λxt)dt+Qt (2Σt)
1
2 dζt,

where dζt ∼ N (0, Idt), Σt =
η
2Cxt

and Cxt
is given above.

Theorem 7. Assume x0 satisfies Ppre ∼N (0, ρI). With at least
probability 1 − τ and a constant c0 in Theorem 6, the expected
risk for the posterior hypothesis x∼Pℓ2-Adam of ℓ2-Adam learned
on training dataset Dtr∼D with n samples can be upper bounded:

Eξ∼D,x∼Pℓ2 -Adam [f(x, ξ)]− Eξ∈Dtr,x∼P [f(x, ξ)] ≤Φℓ2-Adam,

where Φℓ2-Adam =
√
8√
n
(ērrℓ2-Adam + c0)

1
2 with ērrℓ2-Adam =

− log det(MAdamW) +
η

2ρbTr(Mℓ2-Adam)+d log 2bρ
η .

See its proof in Appendix H.3. Theorem 7 shows the general-
ization error bound O

(
1√
n

)
of ℓ2-Adam. Moreover, when λ = 0,

AdamW and ℓ2-Adam are exactly the same, and their error bounds
are also the same as shown in Theorems 6 and 7.

Next, we compare the generalization error bounds of AdamW
and ℓ2-Adam. To this end, we follow the similar spirit in [9] and
approximate Q ≈ H

− 1
2∗ to simplify ΦAdamW and Φℓ2-Adam in the

Corollary 3 whose proof can be found in Appendix H.4.

Corollary 3. Assume Q ≈ H
− 1

2∗ . Then we have

ΦAdamW≈
√
8√
n
(errAdamW+c0)

1
2 , Φℓ2-Adam≈

√
8√
n
(errℓ2-Adam+c0)

1
2,

where errAdamW =
∑d

i=1 h(x
(i)
AdamW) with x

(i)
AdamW =2η−1ρb(σ

1
2
i +

λ), errℓ2-Adam =
∑d

i=1 h(x
(i)
ℓ2-Adam) with x

(i)
ℓ2-Adam =2η−1ρb(σ

1
2
i +

λσ
− 1

2
i ). Here h(x) = log x+ 1

x .

Then we only need to compare the different terms,
i.e., errAdamW and errℓ2-Adam. For h(x), since h′(x)= x−1

x2 , h(x)
will increase when x∈ (1,+∞). Meanwhile, generally, we have
x
(i)
ℓ2-Adam >x

(i)
AdamW > 1 for most i ∈ [d] due to three reasons. 1)

Most of the singular values {σi}di=1 of Hessian matrix in deep
networks are much smaller than one which is well observed in
many works, e.g., fully connected networks, AlexNet, VGG and
ResNet [49], [59]–[61] and our experimental results on ResNet50
and ViT-small in Fig. 1. 2) The learning rate when reaching the
minimum is set to be very small in practice. 3) The minibatch size b
is often thousand to train a modern network, and the variance ρ for
the initialization distribution Ppre∼N (0, ρI) is often of the order
O(1/

√
di) [62], where di is input dimension. These factors indicate

x
(i)
ℓ2-Adam>x

(i)
AdamW>1. So the generalization error term errAdamW

is smaller than errℓ2-Adam, testified by our experimental results on
ResNet50 and ViT-small in Sec. 6. So AdamW often enjoys better
generalization performance than ℓ2-Adam, also validated in Sec. 6.
Appendix C intuitively discusses the generalization benefits of
coordinate-adaptive regularization in AdamW.
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D (decreasing
weight decay), and `2-Adam. See more visualization results, e.g. ResNet18, in Fig. 3 of Appendix A.

TABLE 1: Generalization of AdamW (constant weight decay), AdamW-D (decaying weight decay), and `2-Adam on ImageNet.

model ResNet18 ResNet50 ViT-small
train epoch 90 100 100 200 300
optimizer AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2

err in bound 3.43 3.40 3.85 3.42 3.41 3.78 3.62 3.63 3.75 3.58 3.57 3.72 3.47 3.45 3.70

test acc. (%) 67.9 70.1 67.2 77.0 77.1 76.5 76.1 75.9 75.3 79.2 79.3 77.6 79.8 80.0 78.5

(a) ResNet18 (b) ViT-small
Fig. 2: Training and test curves comparison of `2-Adam, AdamW and AdamW-D on ImageNet. See more results in Appendix A.

x
(i)
adam+`2 >x

(i)
adamw >1 for most i 2 [d] due to the following reasons.

1) Most of the singular values {�i}d
i=1 of Hessian matrix in deep

networks are much smaller than one which is well observed in
many works, e.g. fully connected networks, AlexNet, VGG and
ResNet [51], [61]–[63] and our experimental results on ResNet50
and ViT-small in Fig. 1. 2) The learning rate when reaching the
minimum is often set to be very small in practice. 3) The minibatch
size b is of order of thousand to train a modern network, and
the variance ⇢ for the Gaussian initialization distribution Ppre ⇠
N (0, ⇢I) is often at the order of O(1/

p
di) [64], where di denotes

the input dimension. So these factors indicate x
(i)
adam+`2 >x

(i)
adamw >1.

So the generalization error term erradamw of AdamW is smaller
than erradam+`2 of `2-Adam, testified by our experimental results on
ResNet18, ResNet50 and ViT-small in Sec. 6. So AdamW enjoys
better generalization performance than `2-Adam, also validated in
Sec. 6. Appendix C intuitively discusses the generalization benefits
of coordinate-adaptive regularization in AdamW.

6 EXPERIMENTS

Investigation on singular values of Hessian. We first respec-
tively use AdamW and `2-Adam to train two popular network
architectures on ImageNet [65], i.e. ResNet50 [11] and vision
transformer small (ViT-small) [3] for both 100 epochs. Then we
adopt the method in [66] to estimate the singular values of these two
trained networks. Here AdamW uses a constant weight decay �k,
while AdamW-D adopts an exponentially-decaying weight decay
�k = c1 ·�k with two constants c1 > 0 and � 2 (0, 1). Fig. 1 plots

the spectral density of these singular values on both training and test
data of ImageNet, and shows that there are more than 99% singular
values that are in the range [0, 1] and are much smaller than one.
This also accords with the observations on AlexNet [67], VGG [52]
and ResNet [11] in [51], [61]–[63]. All these observations support
the results in Sec. 5.2.
Investigation on generalization. To compute the key general-
ization error terms erradamw =

Pd
i=1h(x

(i)
adamw) and erradam+`2

=
Pd

i=1h(x
(i)
adam+`2) in Theorems 6 and 7, one needs to explicitly

compute the full Hessian for matrix multiplication which however is
prohibitively computable. So here we compute their approximations
erradamw and erradam+`2 in Corollary 3, and thus compare the
generalization error bounds of AdamW and `2-Adam. For more
comprehension, we also test erradamw-d of AdamW-D, where
erradamw-d shares the same formulation with erradamw but performs
computation on the models trained by AdamW-D with the above
exponentially-decaying weight decay �k.

Then we receptively train three models, namely, ResNet18,
ResNet50 and ViT-small, on ImageNet by using AdamW, AdamW-
D and `2-Adam, and well tune the hyper-parameters of these three
optimizers, e.g. learning rate and weight decay (regularization)
parameter �. Note, here `2-Adam includes Adam by setting �=
0. Next, we compute erradamw, erradamw-d and erradam+`2 on the
test dataset of ImageNet, since test dataset can better reveal the
generalization ability of an algorithm. Table 1 shows that on all test
cases, erradamw and erradamw-d are often smaller than erradam+`2 by
a remarkable margin. erradamw-d has similar values with erradamw.
These results empirically support the superior generalization error
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D (decreasing
weight decay), and `2-Adam. See more visualization results, e.g. ResNet18, in Fig. 3 of Appendix A.

TABLE 1: Generalization of AdamW (constant weight decay), AdamW-D (decaying weight decay), and `2-Adam on ImageNet.

model ResNet18 ResNet50 ViT-small
train epoch 90 100 100 200 300
optimizer AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2

err in bound 3.43 3.40 3.85 3.42 3.41 3.78 3.62 3.63 3.75 3.58 3.57 3.72 3.47 3.45 3.70

test acc. (%) 67.9 70.1 67.2 77.0 77.1 76.5 76.1 75.9 75.3 79.2 79.3 77.6 79.8 80.0 78.5

(a) ResNet18 (b) ViT-small
Fig. 2: Training and test curves comparison of `2-Adam, AdamW and AdamW-D on ImageNet. See more results in Appendix A.

x
(i)
adam+`2 >x

(i)
adamw >1 for most i 2 [d] due to the following reasons.

1) Most of the singular values {�i}d
i=1 of Hessian matrix in deep

networks are much smaller than one which is well observed in
many works, e.g. fully connected networks, AlexNet, VGG and
ResNet [51], [61]–[63] and our experimental results on ResNet50
and ViT-small in Fig. 1. 2) The learning rate when reaching the
minimum is often set to be very small in practice. 3) The minibatch
size b is of order of thousand to train a modern network, and
the variance ⇢ for the Gaussian initialization distribution Ppre ⇠
N (0, ⇢I) is often at the order of O(1/

p
di) [64], where di denotes

the input dimension. So these factors indicate x
(i)
adam+`2 >x

(i)
adamw >1.

So the generalization error term erradamw of AdamW is smaller
than erradam+`2 of `2-Adam, testified by our experimental results on
ResNet18, ResNet50 and ViT-small in Sec. 6. So AdamW enjoys
better generalization performance than `2-Adam, also validated in
Sec. 6. Appendix C intuitively discusses the generalization benefits
of coordinate-adaptive regularization in AdamW.

6 EXPERIMENTS

Investigation on singular values of Hessian. We first respec-
tively use AdamW and `2-Adam to train two popular network
architectures on ImageNet [65], i.e. ResNet50 [11] and vision
transformer small (ViT-small) [3] for both 100 epochs. Then we
adopt the method in [66] to estimate the singular values of these two
trained networks. Here AdamW uses a constant weight decay �k,
while AdamW-D adopts an exponentially-decaying weight decay
�k = c1 ·�k with two constants c1 > 0 and � 2 (0, 1). Fig. 1 plots

the spectral density of these singular values on both training and test
data of ImageNet, and shows that there are more than 99% singular
values that are in the range [0, 1] and are much smaller than one.
This also accords with the observations on AlexNet [67], VGG [52]
and ResNet [11] in [51], [61]–[63]. All these observations support
the results in Sec. 5.2.
Investigation on generalization. To compute the key general-
ization error terms erradamw =

Pd
i=1h(x

(i)
adamw) and erradam+`2

=
Pd

i=1h(x
(i)
adam+`2) in Theorems 6 and 7, one needs to explicitly

compute the full Hessian for matrix multiplication which however is
prohibitively computable. So here we compute their approximations
erradamw and erradam+`2 in Corollary 3, and thus compare the
generalization error bounds of AdamW and `2-Adam. For more
comprehension, we also test erradamw-d of AdamW-D, where
erradamw-d shares the same formulation with erradamw but performs
computation on the models trained by AdamW-D with the above
exponentially-decaying weight decay �k.

Then we receptively train three models, namely, ResNet18,
ResNet50 and ViT-small, on ImageNet by using AdamW, AdamW-
D and `2-Adam, and well tune the hyper-parameters of these three
optimizers, e.g. learning rate and weight decay (regularization)
parameter �. Note, here `2-Adam includes Adam by setting �=
0. Next, we compute erradamw, erradamw-d and erradam+`2 on the
test dataset of ImageNet, since test dataset can better reveal the
generalization ability of an algorithm. Table 1 shows that on all test
cases, erradamw and erradamw-d are often smaller than erradam+`2 by
a remarkable margin. erradamw-d has similar values with erradamw.
These results empirically support the superior generalization error
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D (decreasing
weight decay), and `2-Adam. See more visualization results, e.g. ResNet18, in Fig. 3 of Appendix A.

TABLE 1: Generalization of AdamW (constant weight decay), AdamW-D (decaying weight decay), and `2-Adam on ImageNet.

model ResNet18 ResNet50 ViT-small
train epoch 90 100 100 200 300
optimizer AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2

err in bound 3.43 3.40 3.85 3.42 3.41 3.78 3.62 3.63 3.75 3.58 3.57 3.72 3.47 3.45 3.70

test acc. (%) 67.9 70.1 67.2 77.0 77.1 76.5 76.1 75.9 75.3 79.2 79.3 77.6 79.8 80.0 78.5

(a) ResNet18 (b) ViT-small
Fig. 2: Training and test curves comparison of `2-Adam, AdamW and AdamW-D on ImageNet. See more results in Appendix A.

x
(i)
adam+`2 >x

(i)
adamw >1 for most i 2 [d] due to the following reasons.

1) Most of the singular values {�i}d
i=1 of Hessian matrix in deep

networks are much smaller than one which is well observed in
many works, e.g. fully connected networks, AlexNet, VGG and
ResNet [51], [61]–[63] and our experimental results on ResNet50
and ViT-small in Fig. 1. 2) The learning rate when reaching the
minimum is often set to be very small in practice. 3) The minibatch
size b is of order of thousand to train a modern network, and
the variance ⇢ for the Gaussian initialization distribution Ppre ⇠
N (0, ⇢I) is often at the order of O(1/

p
di) [64], where di denotes

the input dimension. So these factors indicate x
(i)
adam+`2 >x

(i)
adamw >1.

So the generalization error term erradamw of AdamW is smaller
than erradam+`2 of `2-Adam, testified by our experimental results on
ResNet18, ResNet50 and ViT-small in Sec. 6. So AdamW enjoys
better generalization performance than `2-Adam, also validated in
Sec. 6. Appendix C intuitively discusses the generalization benefits
of coordinate-adaptive regularization in AdamW.

6 EXPERIMENTS

Investigation on singular values of Hessian. We first respec-
tively use AdamW and `2-Adam to train two popular network
architectures on ImageNet [65], i.e. ResNet50 [11] and vision
transformer small (ViT-small) [3] for both 100 epochs. Then we
adopt the method in [66] to estimate the singular values of these two
trained networks. Here AdamW uses a constant weight decay �k,
while AdamW-D adopts an exponentially-decaying weight decay
�k = c1 ·�k with two constants c1 > 0 and � 2 (0, 1). Fig. 1 plots

the spectral density of these singular values on both training and test
data of ImageNet, and shows that there are more than 99% singular
values that are in the range [0, 1] and are much smaller than one.
This also accords with the observations on AlexNet [67], VGG [52]
and ResNet [11] in [51], [61]–[63]. All these observations support
the results in Sec. 5.2.
Investigation on generalization. To compute the key general-
ization error terms erradamw =

Pd
i=1h(x

(i)
adamw) and erradam+`2

=
Pd

i=1h(x
(i)
adam+`2) in Theorems 6 and 7, one needs to explicitly

compute the full Hessian for matrix multiplication which however is
prohibitively computable. So here we compute their approximations
erradamw and erradam+`2 in Corollary 3, and thus compare the
generalization error bounds of AdamW and `2-Adam. For more
comprehension, we also test erradamw-d of AdamW-D, where
erradamw-d shares the same formulation with erradamw but performs
computation on the models trained by AdamW-D with the above
exponentially-decaying weight decay �k.

Then we receptively train three models, namely, ResNet18,
ResNet50 and ViT-small, on ImageNet by using AdamW, AdamW-
D and `2-Adam, and well tune the hyper-parameters of these three
optimizers, e.g. learning rate and weight decay (regularization)
parameter �. Note, here `2-Adam includes Adam by setting �=
0. Next, we compute erradamw, erradamw-d and erradam+`2 on the
test dataset of ImageNet, since test dataset can better reveal the
generalization ability of an algorithm. Table 1 shows that on all test
cases, erradamw and erradamw-d are often smaller than erradam+`2 by
a remarkable margin. erradamw-d has similar values with erradamw.
These results empirically support the superior generalization error
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D (decreasing
weight decay), and `2-Adam. See more visualization results, e.g. ResNet18, in Fig. 3 of Appendix A.

TABLE 1: Generalization of AdamW (constant weight decay), AdamW-D (decaying weight decay), and `2-Adam on ImageNet.

model ResNet18 ResNet50 ViT-small
train epoch 90 100 100 200 300
optimizer AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2

err in bound 3.43 3.40 3.85 3.42 3.41 3.78 3.62 3.63 3.75 3.58 3.57 3.72 3.47 3.45 3.70

test acc. (%) 67.9 70.1 67.2 77.0 77.1 76.5 76.1 75.9 75.3 79.2 79.3 77.6 79.8 80.0 78.5

(a) ResNet18 (b) ViT-small
Fig. 2: Training and test curves comparison of `2-Adam, AdamW and AdamW-D on ImageNet. See more results in Appendix A.
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(i)
adamw >1 for most i 2 [d] due to the following reasons.

1) Most of the singular values {�i}d
i=1 of Hessian matrix in deep

networks are much smaller than one which is well observed in
many works, e.g. fully connected networks, AlexNet, VGG and
ResNet [51], [61]–[63] and our experimental results on ResNet50
and ViT-small in Fig. 1. 2) The learning rate when reaching the
minimum is often set to be very small in practice. 3) The minibatch
size b is of order of thousand to train a modern network, and
the variance ⇢ for the Gaussian initialization distribution Ppre ⇠
N (0, ⇢I) is often at the order of O(1/

p
di) [64], where di denotes

the input dimension. So these factors indicate x
(i)
adam+`2 >x

(i)
adamw >1.

So the generalization error term erradamw of AdamW is smaller
than erradam+`2 of `2-Adam, testified by our experimental results on
ResNet18, ResNet50 and ViT-small in Sec. 6. So AdamW enjoys
better generalization performance than `2-Adam, also validated in
Sec. 6. Appendix C intuitively discusses the generalization benefits
of coordinate-adaptive regularization in AdamW.

6 EXPERIMENTS

Investigation on singular values of Hessian. We first respec-
tively use AdamW and `2-Adam to train two popular network
architectures on ImageNet [65], i.e. ResNet50 [11] and vision
transformer small (ViT-small) [3] for both 100 epochs. Then we
adopt the method in [66] to estimate the singular values of these two
trained networks. Here AdamW uses a constant weight decay �k,
while AdamW-D adopts an exponentially-decaying weight decay
�k = c1 ·�k with two constants c1 > 0 and � 2 (0, 1). Fig. 1 plots

the spectral density of these singular values on both training and test
data of ImageNet, and shows that there are more than 99% singular
values that are in the range [0, 1] and are much smaller than one.
This also accords with the observations on AlexNet [67], VGG [52]
and ResNet [11] in [51], [61]–[63]. All these observations support
the results in Sec. 5.2.
Investigation on generalization. To compute the key general-
ization error terms erradamw =

Pd
i=1h(x

(i)
adamw) and erradam+`2

=
Pd

i=1h(x
(i)
adam+`2) in Theorems 6 and 7, one needs to explicitly

compute the full Hessian for matrix multiplication which however is
prohibitively computable. So here we compute their approximations
erradamw and erradam+`2 in Corollary 3, and thus compare the
generalization error bounds of AdamW and `2-Adam. For more
comprehension, we also test erradamw-d of AdamW-D, where
erradamw-d shares the same formulation with erradamw but performs
computation on the models trained by AdamW-D with the above
exponentially-decaying weight decay �k.

Then we receptively train three models, namely, ResNet18,
ResNet50 and ViT-small, on ImageNet by using AdamW, AdamW-
D and `2-Adam, and well tune the hyper-parameters of these three
optimizers, e.g. learning rate and weight decay (regularization)
parameter �. Note, here `2-Adam includes Adam by setting �=
0. Next, we compute erradamw, erradamw-d and erradam+`2 on the
test dataset of ImageNet, since test dataset can better reveal the
generalization ability of an algorithm. Table 1 shows that on all test
cases, erradamw and erradamw-d are often smaller than erradam+`2 by
a remarkable margin. erradamw-d has similar values with erradamw.
These results empirically support the superior generalization error
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D
(decreasing weight decay), `2-Adam (constant weight decay) and `2-Adam-D (decreasing weight decay). See more visualization
results, e.g., ResNet18, in Fig. 7 of Appendix A.
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D (decreasing
weight decay), and `2-Adam. See more visualization results, e.g. ResNet18, in Fig. 3 of Appendix A.

TABLE 1: Generalization of AdamW (constant weight decay), AdamW-D (decaying weight decay), and `2-Adam on ImageNet.

model ResNet18 ResNet50 ViT-small
train epoch 90 100 100 200 300
optimizer AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2

err in bound 3.43 3.40 3.85 3.42 3.41 3.78 3.62 3.63 3.75 3.58 3.57 3.72 3.47 3.45 3.70

test acc. (%) 67.9 70.1 67.2 77.0 77.1 76.5 76.1 75.9 75.3 79.2 79.3 77.6 79.8 80.0 78.5

(a) ResNet18 (b) ViT-small
Fig. 2: Training and test curves comparison of `2-Adam, AdamW and AdamW-D on ImageNet. See more results in Appendix A.
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1) Most of the singular values {�i}d
i=1 of Hessian matrix in deep

networks are much smaller than one which is well observed in
many works, e.g. fully connected networks, AlexNet, VGG and
ResNet [51], [61]–[63] and our experimental results on ResNet50
and ViT-small in Fig. 1. 2) The learning rate when reaching the
minimum is often set to be very small in practice. 3) The minibatch
size b is of order of thousand to train a modern network, and
the variance ⇢ for the Gaussian initialization distribution Ppre ⇠
N (0, ⇢I) is often at the order of O(1/
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di) [64], where di denotes

the input dimension. So these factors indicate x
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adamw >1.

So the generalization error term erradamw of AdamW is smaller
than erradam+`2 of `2-Adam, testified by our experimental results on
ResNet18, ResNet50 and ViT-small in Sec. 6. So AdamW enjoys
better generalization performance than `2-Adam, also validated in
Sec. 6. Appendix C intuitively discusses the generalization benefits
of coordinate-adaptive regularization in AdamW.

6 EXPERIMENTS

Investigation on singular values of Hessian. We first respec-
tively use AdamW and `2-Adam to train two popular network
architectures on ImageNet [65], i.e. ResNet50 [11] and vision
transformer small (ViT-small) [3] for both 100 epochs. Then we
adopt the method in [66] to estimate the singular values of these two
trained networks. Here AdamW uses a constant weight decay �k,
while AdamW-D adopts an exponentially-decaying weight decay
�k = c1 ·�k with two constants c1 > 0 and � 2 (0, 1). Fig. 1 plots

the spectral density of these singular values on both training and test
data of ImageNet, and shows that there are more than 99% singular
values that are in the range [0, 1] and are much smaller than one.
This also accords with the observations on AlexNet [67], VGG [52]
and ResNet [11] in [51], [61]–[63]. All these observations support
the results in Sec. 5.2.
Investigation on generalization. To compute the key general-
ization error terms erradamw =

Pd
i=1h(x

(i)
adamw) and erradam+`2

=
Pd

i=1h(x
(i)
adam+`2) in Theorems 6 and 7, one needs to explicitly

compute the full Hessian for matrix multiplication which however is
prohibitively computable. So here we compute their approximations
erradamw and erradam+`2 in Corollary 3, and thus compare the
generalization error bounds of AdamW and `2-Adam. For more
comprehension, we also test erradamw-d of AdamW-D, where
erradamw-d shares the same formulation with erradamw but performs
computation on the models trained by AdamW-D with the above
exponentially-decaying weight decay �k.

Then we receptively train three models, namely, ResNet18,
ResNet50 and ViT-small, on ImageNet by using AdamW, AdamW-
D and `2-Adam, and well tune the hyper-parameters of these three
optimizers, e.g. learning rate and weight decay (regularization)
parameter �. Note, here `2-Adam includes Adam by setting �=
0. Next, we compute erradamw, erradamw-d and erradam+`2 on the
test dataset of ImageNet, since test dataset can better reveal the
generalization ability of an algorithm. Table 1 shows that on all test
cases, erradamw and erradamw-d are often smaller than erradam+`2 by
a remarkable margin. erradamw-d has similar values with erradamw.
These results empirically support the superior generalization error
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D (decreasing
weight decay), and `2-Adam. See more visualization results, e.g. ResNet18, in Fig. 3 of Appendix A.

TABLE 1: Generalization of AdamW (constant weight decay), AdamW-D (decaying weight decay), and `2-Adam on ImageNet.

model ResNet18 ResNet50 ViT-small
train epoch 90 100 100 200 300
optimizer AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2

err in bound 3.43 3.40 3.85 3.42 3.41 3.78 3.62 3.63 3.75 3.58 3.57 3.72 3.47 3.45 3.70

test acc. (%) 67.9 70.1 67.2 77.0 77.1 76.5 76.1 75.9 75.3 79.2 79.3 77.6 79.8 80.0 78.5

(a) ResNet18 (b) ViT-small
Fig. 2: Training and test curves comparison of `2-Adam, AdamW and AdamW-D on ImageNet. See more results in Appendix A.
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(i)
adamw >1 for most i 2 [d] due to the following reasons.

1) Most of the singular values {�i}d
i=1 of Hessian matrix in deep

networks are much smaller than one which is well observed in
many works, e.g. fully connected networks, AlexNet, VGG and
ResNet [51], [61]–[63] and our experimental results on ResNet50
and ViT-small in Fig. 1. 2) The learning rate when reaching the
minimum is often set to be very small in practice. 3) The minibatch
size b is of order of thousand to train a modern network, and
the variance ⇢ for the Gaussian initialization distribution Ppre ⇠
N (0, ⇢I) is often at the order of O(1/

p
di) [64], where di denotes

the input dimension. So these factors indicate x
(i)
adam+`2 >x

(i)
adamw >1.

So the generalization error term erradamw of AdamW is smaller
than erradam+`2 of `2-Adam, testified by our experimental results on
ResNet18, ResNet50 and ViT-small in Sec. 6. So AdamW enjoys
better generalization performance than `2-Adam, also validated in
Sec. 6. Appendix C intuitively discusses the generalization benefits
of coordinate-adaptive regularization in AdamW.

6 EXPERIMENTS

Investigation on singular values of Hessian. We first respec-
tively use AdamW and `2-Adam to train two popular network
architectures on ImageNet [65], i.e. ResNet50 [11] and vision
transformer small (ViT-small) [3] for both 100 epochs. Then we
adopt the method in [66] to estimate the singular values of these two
trained networks. Here AdamW uses a constant weight decay �k,
while AdamW-D adopts an exponentially-decaying weight decay
�k = c1 ·�k with two constants c1 > 0 and � 2 (0, 1). Fig. 1 plots

the spectral density of these singular values on both training and test
data of ImageNet, and shows that there are more than 99% singular
values that are in the range [0, 1] and are much smaller than one.
This also accords with the observations on AlexNet [67], VGG [52]
and ResNet [11] in [51], [61]–[63]. All these observations support
the results in Sec. 5.2.
Investigation on generalization. To compute the key general-
ization error terms erradamw =

Pd
i=1h(x

(i)
adamw) and erradam+`2

=
Pd

i=1h(x
(i)
adam+`2) in Theorems 6 and 7, one needs to explicitly

compute the full Hessian for matrix multiplication which however is
prohibitively computable. So here we compute their approximations
erradamw and erradam+`2 in Corollary 3, and thus compare the
generalization error bounds of AdamW and `2-Adam. For more
comprehension, we also test erradamw-d of AdamW-D, where
erradamw-d shares the same formulation with erradamw but performs
computation on the models trained by AdamW-D with the above
exponentially-decaying weight decay �k.

Then we receptively train three models, namely, ResNet18,
ResNet50 and ViT-small, on ImageNet by using AdamW, AdamW-
D and `2-Adam, and well tune the hyper-parameters of these three
optimizers, e.g. learning rate and weight decay (regularization)
parameter �. Note, here `2-Adam includes Adam by setting �=
0. Next, we compute erradamw, erradamw-d and erradam+`2 on the
test dataset of ImageNet, since test dataset can better reveal the
generalization ability of an algorithm. Table 1 shows that on all test
cases, erradamw and erradamw-d are often smaller than erradam+`2 by
a remarkable margin. erradamw-d has similar values with erradamw.
These results empirically support the superior generalization error
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D (decreasing
weight decay), and `2-Adam. See more visualization results, e.g. ResNet18, in Fig. 3 of Appendix A.

TABLE 1: Generalization of AdamW (constant weight decay), AdamW-D (decaying weight decay), and `2-Adam on ImageNet.

model ResNet18 ResNet50 ViT-small
train epoch 90 100 100 200 300
optimizer AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2

err in bound 3.43 3.40 3.85 3.42 3.41 3.78 3.62 3.63 3.75 3.58 3.57 3.72 3.47 3.45 3.70

test acc. (%) 67.9 70.1 67.2 77.0 77.1 76.5 76.1 75.9 75.3 79.2 79.3 77.6 79.8 80.0 78.5

(a) ResNet18 (b) ViT-small
Fig. 2: Training and test curves comparison of `2-Adam, AdamW and AdamW-D on ImageNet. See more results in Appendix A.
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adamw >1 for most i 2 [d] due to the following reasons.

1) Most of the singular values {�i}d
i=1 of Hessian matrix in deep

networks are much smaller than one which is well observed in
many works, e.g. fully connected networks, AlexNet, VGG and
ResNet [51], [61]–[63] and our experimental results on ResNet50
and ViT-small in Fig. 1. 2) The learning rate when reaching the
minimum is often set to be very small in practice. 3) The minibatch
size b is of order of thousand to train a modern network, and
the variance ⇢ for the Gaussian initialization distribution Ppre ⇠
N (0, ⇢I) is often at the order of O(1/
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di) [64], where di denotes

the input dimension. So these factors indicate x
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adam+`2 >x

(i)
adamw >1.

So the generalization error term erradamw of AdamW is smaller
than erradam+`2 of `2-Adam, testified by our experimental results on
ResNet18, ResNet50 and ViT-small in Sec. 6. So AdamW enjoys
better generalization performance than `2-Adam, also validated in
Sec. 6. Appendix C intuitively discusses the generalization benefits
of coordinate-adaptive regularization in AdamW.

6 EXPERIMENTS

Investigation on singular values of Hessian. We first respec-
tively use AdamW and `2-Adam to train two popular network
architectures on ImageNet [65], i.e. ResNet50 [11] and vision
transformer small (ViT-small) [3] for both 100 epochs. Then we
adopt the method in [66] to estimate the singular values of these two
trained networks. Here AdamW uses a constant weight decay �k,
while AdamW-D adopts an exponentially-decaying weight decay
�k = c1 ·�k with two constants c1 > 0 and � 2 (0, 1). Fig. 1 plots

the spectral density of these singular values on both training and test
data of ImageNet, and shows that there are more than 99% singular
values that are in the range [0, 1] and are much smaller than one.
This also accords with the observations on AlexNet [67], VGG [52]
and ResNet [11] in [51], [61]–[63]. All these observations support
the results in Sec. 5.2.
Investigation on generalization. To compute the key general-
ization error terms erradamw =

Pd
i=1h(x

(i)
adamw) and erradam+`2

=
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i=1h(x
(i)
adam+`2) in Theorems 6 and 7, one needs to explicitly

compute the full Hessian for matrix multiplication which however is
prohibitively computable. So here we compute their approximations
erradamw and erradam+`2 in Corollary 3, and thus compare the
generalization error bounds of AdamW and `2-Adam. For more
comprehension, we also test erradamw-d of AdamW-D, where
erradamw-d shares the same formulation with erradamw but performs
computation on the models trained by AdamW-D with the above
exponentially-decaying weight decay �k.

Then we receptively train three models, namely, ResNet18,
ResNet50 and ViT-small, on ImageNet by using AdamW, AdamW-
D and `2-Adam, and well tune the hyper-parameters of these three
optimizers, e.g. learning rate and weight decay (regularization)
parameter �. Note, here `2-Adam includes Adam by setting �=
0. Next, we compute erradamw, erradamw-d and erradam+`2 on the
test dataset of ImageNet, since test dataset can better reveal the
generalization ability of an algorithm. Table 1 shows that on all test
cases, erradamw and erradamw-d are often smaller than erradam+`2 by
a remarkable margin. erradamw-d has similar values with erradamw.
These results empirically support the superior generalization error
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D (decreasing
weight decay), and `2-Adam. See more visualization results, e.g. ResNet18, in Fig. 3 of Appendix A.

TABLE 1: Generalization of AdamW (constant weight decay), AdamW-D (decaying weight decay), and `2-Adam on ImageNet.

model ResNet18 ResNet50 ViT-small
train epoch 90 100 100 200 300
optimizer AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2

err in bound 3.43 3.40 3.85 3.42 3.41 3.78 3.62 3.63 3.75 3.58 3.57 3.72 3.47 3.45 3.70

test acc. (%) 67.9 70.1 67.2 77.0 77.1 76.5 76.1 75.9 75.3 79.2 79.3 77.6 79.8 80.0 78.5

(a) ResNet18 (b) ViT-small
Fig. 2: Training and test curves comparison of `2-Adam, AdamW and AdamW-D on ImageNet. See more results in Appendix A.
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adamw >1 for most i 2 [d] due to the following reasons.
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i=1 of Hessian matrix in deep

networks are much smaller than one which is well observed in
many works, e.g. fully connected networks, AlexNet, VGG and
ResNet [51], [61]–[63] and our experimental results on ResNet50
and ViT-small in Fig. 1. 2) The learning rate when reaching the
minimum is often set to be very small in practice. 3) The minibatch
size b is of order of thousand to train a modern network, and
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N (0, ⇢I) is often at the order of O(1/
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So the generalization error term erradamw of AdamW is smaller
than erradam+`2 of `2-Adam, testified by our experimental results on
ResNet18, ResNet50 and ViT-small in Sec. 6. So AdamW enjoys
better generalization performance than `2-Adam, also validated in
Sec. 6. Appendix C intuitively discusses the generalization benefits
of coordinate-adaptive regularization in AdamW.

6 EXPERIMENTS

Investigation on singular values of Hessian. We first respec-
tively use AdamW and `2-Adam to train two popular network
architectures on ImageNet [65], i.e. ResNet50 [11] and vision
transformer small (ViT-small) [3] for both 100 epochs. Then we
adopt the method in [66] to estimate the singular values of these two
trained networks. Here AdamW uses a constant weight decay �k,
while AdamW-D adopts an exponentially-decaying weight decay
�k = c1 ·�k with two constants c1 > 0 and � 2 (0, 1). Fig. 1 plots

the spectral density of these singular values on both training and test
data of ImageNet, and shows that there are more than 99% singular
values that are in the range [0, 1] and are much smaller than one.
This also accords with the observations on AlexNet [67], VGG [52]
and ResNet [11] in [51], [61]–[63]. All these observations support
the results in Sec. 5.2.
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=
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(i)
adam+`2) in Theorems 6 and 7, one needs to explicitly

compute the full Hessian for matrix multiplication which however is
prohibitively computable. So here we compute their approximations
erradamw and erradam+`2 in Corollary 3, and thus compare the
generalization error bounds of AdamW and `2-Adam. For more
comprehension, we also test erradamw-d of AdamW-D, where
erradamw-d shares the same formulation with erradamw but performs
computation on the models trained by AdamW-D with the above
exponentially-decaying weight decay �k.

Then we receptively train three models, namely, ResNet18,
ResNet50 and ViT-small, on ImageNet by using AdamW, AdamW-
D and `2-Adam, and well tune the hyper-parameters of these three
optimizers, e.g. learning rate and weight decay (regularization)
parameter �. Note, here `2-Adam includes Adam by setting �=
0. Next, we compute erradamw, erradamw-d and erradam+`2 on the
test dataset of ImageNet, since test dataset can better reveal the
generalization ability of an algorithm. Table 1 shows that on all test
cases, erradamw and erradamw-d are often smaller than erradam+`2 by
a remarkable margin. erradamw-d has similar values with erradamw.
These results empirically support the superior generalization error
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D
(decreasing weight decay), `2-Adam (constant weight decay) and `2-Adam-D (decreasing weight decay). See more visualization
results, e.g., ResNet18, in Fig. 7 of Appendix A.

Fig. 2: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D
(decreasing weight decay), `2-Adam (constant weight decay) and `2-Adam-D (decreasing weight decay). See more visualization
results, e.g., ResNet18, in Fig. 7 of Appendix A.
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D (decreasing
weight decay), and `2-Adam. See more visualization results, e.g. ResNet18, in Fig. 3 of Appendix A.

TABLE 1: Generalization of AdamW (constant weight decay), AdamW-D (decaying weight decay), and `2-Adam on ImageNet.

model ResNet18 ResNet50 ViT-small
train epoch 90 100 100 200 300
optimizer AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2

err in bound 3.43 3.40 3.85 3.42 3.41 3.78 3.62 3.63 3.75 3.58 3.57 3.72 3.47 3.45 3.70

test acc. (%) 67.9 70.1 67.2 77.0 77.1 76.5 76.1 75.9 75.3 79.2 79.3 77.6 79.8 80.0 78.5

(a) ResNet18 (b) ViT-small
Fig. 2: Training and test curves comparison of `2-Adam, AdamW and AdamW-D on ImageNet. See more results in Appendix A.

x
(i)
adam+`2 >x

(i)
adamw >1 for most i 2 [d] due to the following reasons.

1) Most of the singular values {�i}d
i=1 of Hessian matrix in deep

networks are much smaller than one which is well observed in
many works, e.g. fully connected networks, AlexNet, VGG and
ResNet [51], [61]–[63] and our experimental results on ResNet50
and ViT-small in Fig. 1. 2) The learning rate when reaching the
minimum is often set to be very small in practice. 3) The minibatch
size b is of order of thousand to train a modern network, and
the variance ⇢ for the Gaussian initialization distribution Ppre ⇠
N (0, ⇢I) is often at the order of O(1/

p
di) [64], where di denotes

the input dimension. So these factors indicate x
(i)
adam+`2 >x

(i)
adamw >1.

So the generalization error term erradamw of AdamW is smaller
than erradam+`2 of `2-Adam, testified by our experimental results on
ResNet18, ResNet50 and ViT-small in Sec. 6. So AdamW enjoys
better generalization performance than `2-Adam, also validated in
Sec. 6. Appendix C intuitively discusses the generalization benefits
of coordinate-adaptive regularization in AdamW.

6 EXPERIMENTS

Investigation on singular values of Hessian. We first respec-
tively use AdamW and `2-Adam to train two popular network
architectures on ImageNet [65], i.e. ResNet50 [11] and vision
transformer small (ViT-small) [3] for both 100 epochs. Then we
adopt the method in [66] to estimate the singular values of these two
trained networks. Here AdamW uses a constant weight decay �k,
while AdamW-D adopts an exponentially-decaying weight decay
�k = c1 ·�k with two constants c1 > 0 and � 2 (0, 1). Fig. 1 plots

the spectral density of these singular values on both training and test
data of ImageNet, and shows that there are more than 99% singular
values that are in the range [0, 1] and are much smaller than one.
This also accords with the observations on AlexNet [67], VGG [52]
and ResNet [11] in [51], [61]–[63]. All these observations support
the results in Sec. 5.2.
Investigation on generalization. To compute the key general-
ization error terms erradamw =

Pd
i=1h(x

(i)
adamw) and erradam+`2

=
Pd

i=1h(x
(i)
adam+`2) in Theorems 6 and 7, one needs to explicitly

compute the full Hessian for matrix multiplication which however is
prohibitively computable. So here we compute their approximations
erradamw and erradam+`2 in Corollary 3, and thus compare the
generalization error bounds of AdamW and `2-Adam. For more
comprehension, we also test erradamw-d of AdamW-D, where
erradamw-d shares the same formulation with erradamw but performs
computation on the models trained by AdamW-D with the above
exponentially-decaying weight decay �k.

Then we receptively train three models, namely, ResNet18,
ResNet50 and ViT-small, on ImageNet by using AdamW, AdamW-
D and `2-Adam, and well tune the hyper-parameters of these three
optimizers, e.g. learning rate and weight decay (regularization)
parameter �. Note, here `2-Adam includes Adam by setting �=
0. Next, we compute erradamw, erradamw-d and erradam+`2 on the
test dataset of ImageNet, since test dataset can better reveal the
generalization ability of an algorithm. Table 1 shows that on all test
cases, erradamw and erradamw-d are often smaller than erradam+`2 by
a remarkable margin. erradamw-d has similar values with erradamw.
These results empirically support the superior generalization error
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D (decreasing
weight decay), and `2-Adam. See more visualization results, e.g. ResNet18, in Fig. 3 of Appendix A.

TABLE 1: Generalization of AdamW (constant weight decay), AdamW-D (decaying weight decay), and `2-Adam on ImageNet.

model ResNet18 ResNet50 ViT-small
train epoch 90 100 100 200 300
optimizer AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2

err in bound 3.43 3.40 3.85 3.42 3.41 3.78 3.62 3.63 3.75 3.58 3.57 3.72 3.47 3.45 3.70

test acc. (%) 67.9 70.1 67.2 77.0 77.1 76.5 76.1 75.9 75.3 79.2 79.3 77.6 79.8 80.0 78.5

(a) ResNet18 (b) ViT-small
Fig. 2: Training and test curves comparison of `2-Adam, AdamW and AdamW-D on ImageNet. See more results in Appendix A.

x
(i)
adam+`2 >x

(i)
adamw >1 for most i 2 [d] due to the following reasons.

1) Most of the singular values {�i}d
i=1 of Hessian matrix in deep

networks are much smaller than one which is well observed in
many works, e.g. fully connected networks, AlexNet, VGG and
ResNet [51], [61]–[63] and our experimental results on ResNet50
and ViT-small in Fig. 1. 2) The learning rate when reaching the
minimum is often set to be very small in practice. 3) The minibatch
size b is of order of thousand to train a modern network, and
the variance ⇢ for the Gaussian initialization distribution Ppre ⇠
N (0, ⇢I) is often at the order of O(1/

p
di) [64], where di denotes

the input dimension. So these factors indicate x
(i)
adam+`2 >x

(i)
adamw >1.

So the generalization error term erradamw of AdamW is smaller
than erradam+`2 of `2-Adam, testified by our experimental results on
ResNet18, ResNet50 and ViT-small in Sec. 6. So AdamW enjoys
better generalization performance than `2-Adam, also validated in
Sec. 6. Appendix C intuitively discusses the generalization benefits
of coordinate-adaptive regularization in AdamW.

6 EXPERIMENTS

Investigation on singular values of Hessian. We first respec-
tively use AdamW and `2-Adam to train two popular network
architectures on ImageNet [65], i.e. ResNet50 [11] and vision
transformer small (ViT-small) [3] for both 100 epochs. Then we
adopt the method in [66] to estimate the singular values of these two
trained networks. Here AdamW uses a constant weight decay �k,
while AdamW-D adopts an exponentially-decaying weight decay
�k = c1 ·�k with two constants c1 > 0 and � 2 (0, 1). Fig. 1 plots

the spectral density of these singular values on both training and test
data of ImageNet, and shows that there are more than 99% singular
values that are in the range [0, 1] and are much smaller than one.
This also accords with the observations on AlexNet [67], VGG [52]
and ResNet [11] in [51], [61]–[63]. All these observations support
the results in Sec. 5.2.
Investigation on generalization. To compute the key general-
ization error terms erradamw =

Pd
i=1h(x

(i)
adamw) and erradam+`2

=
Pd

i=1h(x
(i)
adam+`2) in Theorems 6 and 7, one needs to explicitly

compute the full Hessian for matrix multiplication which however is
prohibitively computable. So here we compute their approximations
erradamw and erradam+`2 in Corollary 3, and thus compare the
generalization error bounds of AdamW and `2-Adam. For more
comprehension, we also test erradamw-d of AdamW-D, where
erradamw-d shares the same formulation with erradamw but performs
computation on the models trained by AdamW-D with the above
exponentially-decaying weight decay �k.

Then we receptively train three models, namely, ResNet18,
ResNet50 and ViT-small, on ImageNet by using AdamW, AdamW-
D and `2-Adam, and well tune the hyper-parameters of these three
optimizers, e.g. learning rate and weight decay (regularization)
parameter �. Note, here `2-Adam includes Adam by setting �=
0. Next, we compute erradamw, erradamw-d and erradam+`2 on the
test dataset of ImageNet, since test dataset can better reveal the
generalization ability of an algorithm. Table 1 shows that on all test
cases, erradamw and erradamw-d are often smaller than erradam+`2 by
a remarkable margin. erradamw-d has similar values with erradamw.
These results empirically support the superior generalization error
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D (decreasing
weight decay), and `2-Adam. See more visualization results, e.g. ResNet18, in Fig. 3 of Appendix A.

TABLE 1: Generalization of AdamW (constant weight decay), AdamW-D (decaying weight decay), and `2-Adam on ImageNet.

model ResNet18 ResNet50 ViT-small
train epoch 90 100 100 200 300
optimizer AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2

err in bound 3.43 3.40 3.85 3.42 3.41 3.78 3.62 3.63 3.75 3.58 3.57 3.72 3.47 3.45 3.70

test acc. (%) 67.9 70.1 67.2 77.0 77.1 76.5 76.1 75.9 75.3 79.2 79.3 77.6 79.8 80.0 78.5

(a) ResNet18 (b) ViT-small
Fig. 2: Training and test curves comparison of `2-Adam, AdamW and AdamW-D on ImageNet. See more results in Appendix A.

x
(i)
adam+`2 >x

(i)
adamw >1 for most i 2 [d] due to the following reasons.

1) Most of the singular values {�i}d
i=1 of Hessian matrix in deep

networks are much smaller than one which is well observed in
many works, e.g. fully connected networks, AlexNet, VGG and
ResNet [51], [61]–[63] and our experimental results on ResNet50
and ViT-small in Fig. 1. 2) The learning rate when reaching the
minimum is often set to be very small in practice. 3) The minibatch
size b is of order of thousand to train a modern network, and
the variance ⇢ for the Gaussian initialization distribution Ppre ⇠
N (0, ⇢I) is often at the order of O(1/

p
di) [64], where di denotes

the input dimension. So these factors indicate x
(i)
adam+`2 >x

(i)
adamw >1.

So the generalization error term erradamw of AdamW is smaller
than erradam+`2 of `2-Adam, testified by our experimental results on
ResNet18, ResNet50 and ViT-small in Sec. 6. So AdamW enjoys
better generalization performance than `2-Adam, also validated in
Sec. 6. Appendix C intuitively discusses the generalization benefits
of coordinate-adaptive regularization in AdamW.

6 EXPERIMENTS

Investigation on singular values of Hessian. We first respec-
tively use AdamW and `2-Adam to train two popular network
architectures on ImageNet [65], i.e. ResNet50 [11] and vision
transformer small (ViT-small) [3] for both 100 epochs. Then we
adopt the method in [66] to estimate the singular values of these two
trained networks. Here AdamW uses a constant weight decay �k,
while AdamW-D adopts an exponentially-decaying weight decay
�k = c1 ·�k with two constants c1 > 0 and � 2 (0, 1). Fig. 1 plots

the spectral density of these singular values on both training and test
data of ImageNet, and shows that there are more than 99% singular
values that are in the range [0, 1] and are much smaller than one.
This also accords with the observations on AlexNet [67], VGG [52]
and ResNet [11] in [51], [61]–[63]. All these observations support
the results in Sec. 5.2.
Investigation on generalization. To compute the key general-
ization error terms erradamw =

Pd
i=1h(x

(i)
adamw) and erradam+`2

=
Pd

i=1h(x
(i)
adam+`2) in Theorems 6 and 7, one needs to explicitly

compute the full Hessian for matrix multiplication which however is
prohibitively computable. So here we compute their approximations
erradamw and erradam+`2 in Corollary 3, and thus compare the
generalization error bounds of AdamW and `2-Adam. For more
comprehension, we also test erradamw-d of AdamW-D, where
erradamw-d shares the same formulation with erradamw but performs
computation on the models trained by AdamW-D with the above
exponentially-decaying weight decay �k.

Then we receptively train three models, namely, ResNet18,
ResNet50 and ViT-small, on ImageNet by using AdamW, AdamW-
D and `2-Adam, and well tune the hyper-parameters of these three
optimizers, e.g. learning rate and weight decay (regularization)
parameter �. Note, here `2-Adam includes Adam by setting �=
0. Next, we compute erradamw, erradamw-d and erradam+`2 on the
test dataset of ImageNet, since test dataset can better reveal the
generalization ability of an algorithm. Table 1 shows that on all test
cases, erradamw and erradamw-d are often smaller than erradam+`2 by
a remarkable margin. erradamw-d has similar values with erradamw.
These results empirically support the superior generalization error
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D (decreasing
weight decay), and `2-Adam. See more visualization results, e.g. ResNet18, in Fig. 3 of Appendix A.

TABLE 1: Generalization of AdamW (constant weight decay), AdamW-D (decaying weight decay), and `2-Adam on ImageNet.

model ResNet18 ResNet50 ViT-small
train epoch 90 100 100 200 300
optimizer AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2

err in bound 3.43 3.40 3.85 3.42 3.41 3.78 3.62 3.63 3.75 3.58 3.57 3.72 3.47 3.45 3.70

test acc. (%) 67.9 70.1 67.2 77.0 77.1 76.5 76.1 75.9 75.3 79.2 79.3 77.6 79.8 80.0 78.5

(a) ResNet18 (b) ViT-small
Fig. 2: Training and test curves comparison of `2-Adam, AdamW and AdamW-D on ImageNet. See more results in Appendix A.

x
(i)
adam+`2 >x

(i)
adamw >1 for most i 2 [d] due to the following reasons.

1) Most of the singular values {�i}d
i=1 of Hessian matrix in deep

networks are much smaller than one which is well observed in
many works, e.g. fully connected networks, AlexNet, VGG and
ResNet [51], [61]–[63] and our experimental results on ResNet50
and ViT-small in Fig. 1. 2) The learning rate when reaching the
minimum is often set to be very small in practice. 3) The minibatch
size b is of order of thousand to train a modern network, and
the variance ⇢ for the Gaussian initialization distribution Ppre ⇠
N (0, ⇢I) is often at the order of O(1/

p
di) [64], where di denotes

the input dimension. So these factors indicate x
(i)
adam+`2 >x

(i)
adamw >1.

So the generalization error term erradamw of AdamW is smaller
than erradam+`2 of `2-Adam, testified by our experimental results on
ResNet18, ResNet50 and ViT-small in Sec. 6. So AdamW enjoys
better generalization performance than `2-Adam, also validated in
Sec. 6. Appendix C intuitively discusses the generalization benefits
of coordinate-adaptive regularization in AdamW.

6 EXPERIMENTS

Investigation on singular values of Hessian. We first respec-
tively use AdamW and `2-Adam to train two popular network
architectures on ImageNet [65], i.e. ResNet50 [11] and vision
transformer small (ViT-small) [3] for both 100 epochs. Then we
adopt the method in [66] to estimate the singular values of these two
trained networks. Here AdamW uses a constant weight decay �k,
while AdamW-D adopts an exponentially-decaying weight decay
�k = c1 ·�k with two constants c1 > 0 and � 2 (0, 1). Fig. 1 plots

the spectral density of these singular values on both training and test
data of ImageNet, and shows that there are more than 99% singular
values that are in the range [0, 1] and are much smaller than one.
This also accords with the observations on AlexNet [67], VGG [52]
and ResNet [11] in [51], [61]–[63]. All these observations support
the results in Sec. 5.2.
Investigation on generalization. To compute the key general-
ization error terms erradamw =

Pd
i=1h(x

(i)
adamw) and erradam+`2

=
Pd

i=1h(x
(i)
adam+`2) in Theorems 6 and 7, one needs to explicitly

compute the full Hessian for matrix multiplication which however is
prohibitively computable. So here we compute their approximations
erradamw and erradam+`2 in Corollary 3, and thus compare the
generalization error bounds of AdamW and `2-Adam. For more
comprehension, we also test erradamw-d of AdamW-D, where
erradamw-d shares the same formulation with erradamw but performs
computation on the models trained by AdamW-D with the above
exponentially-decaying weight decay �k.

Then we receptively train three models, namely, ResNet18,
ResNet50 and ViT-small, on ImageNet by using AdamW, AdamW-
D and `2-Adam, and well tune the hyper-parameters of these three
optimizers, e.g. learning rate and weight decay (regularization)
parameter �. Note, here `2-Adam includes Adam by setting �=
0. Next, we compute erradamw, erradamw-d and erradam+`2 on the
test dataset of ImageNet, since test dataset can better reveal the
generalization ability of an algorithm. Table 1 shows that on all test
cases, erradamw and erradamw-d are often smaller than erradam+`2 by
a remarkable margin. erradamw-d has similar values with erradamw.
These results empirically support the superior generalization error
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D
(decreasing weight decay), `2-Adam (constant weight decay) and `2-Adam-D (decreasing weight decay). See more visualization
results, e.g., ResNet18, in Fig. 7 of Appendix A.

Fig. 2: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D
(decreasing weight decay), `2-Adam (constant weight decay) and `2-Adam-D (decreasing weight decay). See more visualization
results, e.g., ResNet18, in Fig. 7 of Appendix A.
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D (decreasing
weight decay), and `2-Adam. See more visualization results, e.g. ResNet18, in Fig. 3 of Appendix A.

TABLE 1: Generalization of AdamW (constant weight decay), AdamW-D (decaying weight decay), and `2-Adam on ImageNet.

model ResNet18 ResNet50 ViT-small
train epoch 90 100 100 200 300
optimizer AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2

err in bound 3.43 3.40 3.85 3.42 3.41 3.78 3.62 3.63 3.75 3.58 3.57 3.72 3.47 3.45 3.70

test acc. (%) 67.9 70.1 67.2 77.0 77.1 76.5 76.1 75.9 75.3 79.2 79.3 77.6 79.8 80.0 78.5

(a) ResNet18 (b) ViT-small
Fig. 2: Training and test curves comparison of `2-Adam, AdamW and AdamW-D on ImageNet. See more results in Appendix A.

x
(i)
adam+`2 >x

(i)
adamw >1 for most i 2 [d] due to the following reasons.

1) Most of the singular values {�i}d
i=1 of Hessian matrix in deep

networks are much smaller than one which is well observed in
many works, e.g. fully connected networks, AlexNet, VGG and
ResNet [51], [61]–[63] and our experimental results on ResNet50
and ViT-small in Fig. 1. 2) The learning rate when reaching the
minimum is often set to be very small in practice. 3) The minibatch
size b is of order of thousand to train a modern network, and
the variance ⇢ for the Gaussian initialization distribution Ppre ⇠
N (0, ⇢I) is often at the order of O(1/

p
di) [64], where di denotes

the input dimension. So these factors indicate x
(i)
adam+`2 >x

(i)
adamw >1.

So the generalization error term erradamw of AdamW is smaller
than erradam+`2 of `2-Adam, testified by our experimental results on
ResNet18, ResNet50 and ViT-small in Sec. 6. So AdamW enjoys
better generalization performance than `2-Adam, also validated in
Sec. 6. Appendix C intuitively discusses the generalization benefits
of coordinate-adaptive regularization in AdamW.

6 EXPERIMENTS

Investigation on singular values of Hessian. We first respec-
tively use AdamW and `2-Adam to train two popular network
architectures on ImageNet [65], i.e. ResNet50 [11] and vision
transformer small (ViT-small) [3] for both 100 epochs. Then we
adopt the method in [66] to estimate the singular values of these two
trained networks. Here AdamW uses a constant weight decay �k,
while AdamW-D adopts an exponentially-decaying weight decay
�k = c1 ·�k with two constants c1 > 0 and � 2 (0, 1). Fig. 1 plots

the spectral density of these singular values on both training and test
data of ImageNet, and shows that there are more than 99% singular
values that are in the range [0, 1] and are much smaller than one.
This also accords with the observations on AlexNet [67], VGG [52]
and ResNet [11] in [51], [61]–[63]. All these observations support
the results in Sec. 5.2.
Investigation on generalization. To compute the key general-
ization error terms erradamw =

Pd
i=1h(x

(i)
adamw) and erradam+`2

=
Pd

i=1h(x
(i)
adam+`2) in Theorems 6 and 7, one needs to explicitly

compute the full Hessian for matrix multiplication which however is
prohibitively computable. So here we compute their approximations
erradamw and erradam+`2 in Corollary 3, and thus compare the
generalization error bounds of AdamW and `2-Adam. For more
comprehension, we also test erradamw-d of AdamW-D, where
erradamw-d shares the same formulation with erradamw but performs
computation on the models trained by AdamW-D with the above
exponentially-decaying weight decay �k.

Then we receptively train three models, namely, ResNet18,
ResNet50 and ViT-small, on ImageNet by using AdamW, AdamW-
D and `2-Adam, and well tune the hyper-parameters of these three
optimizers, e.g. learning rate and weight decay (regularization)
parameter �. Note, here `2-Adam includes Adam by setting �=
0. Next, we compute erradamw, erradamw-d and erradam+`2 on the
test dataset of ImageNet, since test dataset can better reveal the
generalization ability of an algorithm. Table 1 shows that on all test
cases, erradamw and erradamw-d are often smaller than erradam+`2 by
a remarkable margin. erradamw-d has similar values with erradamw.
These results empirically support the superior generalization error
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Fig. 3: Training and test curves comparison of `2-Adam, AdamW and AdamW-D on ImageNet. See more results in Appendix A.
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err in bound 3.43 / 3.40 3.85 / 3.82 3.42 / 3.41 3.78 / 3.77 3.62 / 3.63 3.75 / 3.76 3.58 / 3.57 3.72 / 3.71 3.47 / 3.45 3.70 / 3.69

test acc. (%) 67.9 / 70.1 67.2 / 67.4 77.0 / 77.1 76.5 / 76.4 76.1 / 75.9 75.3 / 75.4 79.2 / 79.3 77.6 / 77.7 79.8 / 80.0 78.5 / 78.6

TABLE 1: Generalization of AdamW (constant weight decay), AdamW-D (decaying weight decay), `2-Adam (constant weight decay)
and `2-Adam-D (decreasing weight decay) on ImageNet. AdamW/-D denotes AdamW/AdamW-D; Adam+`2/-D has the same meaning.
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D adopts exponentially-decaying weight decay �k =c1 · �k with
two constants c1 > 0 and � 2 (0, 1). Fig. 2 plots the spectral
density of these singular values on training/test data of ImageNet,
and shows that there more than 99% singular values are in the
range [0, 1] and are much smaller than one. This accords with the
observations on AlexNet, VGG and ResNet in [49], [59]–[61]. All
these observations support the results in Sec. 5.2.
Investigation on generalization. To compute the key general-
ization error terms i.e., ērradamw and ērradam+`2 in Theorems 6

and 7, one needs to explicitly compute the full Hessian for
matrix multiplication which however is prohibitively computable.
So we compute their approximations erradamw and erradam+`2 in
Corollary 3 to compare the generalization error bounds of AdamW
and `2-Adam. For more comprehension, we also test erradamw-d of
AdamW-D which shares the same formulation with erradamw but
performs computation on the models trained by AdamW-D with
the above exponentially-decaying weight decay �k.

Then we receptively use AdamW, AdamWD and `2-Adam to
train three models, i.e., ResNet18, ResNet50 and ViT-small, on
ImageNet, and well tune their hyper-parameters, e.g., learning rate
and weight decay parameter �k. Note, `2-Adam includes Adam
by setting �k = 0. Next, we compute erradamw, erradamw-d and
erradam+`2 on the test dataset of ImageNet, as test data can better
reveal the generalization ability of an algorithm. Table 1 shows that
on all test cases, erradamw and erradamw-d are smaller than erradam+`2
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values are in the range [0, 1] and are much smaller than one. This
accords with the observations on AlexNet, VGG and ResNet in [49],
[59]–[61]. All these observations support the results in Sec. 5.2.
Investigation on generalization. To compute the key generaliza-
tion error terms i.e., ērrAdamW and ērr`2-Adam in Theorems 6 and 7,
one needs to compute the full Hessian for matrix multiplication
that however is prohibitively computable. So we compute their
approximations errAdamW and err`2-Adam in Corollary 3 to compare
the generalization error bounds of AdamW and `2-Adam. For
comprehension, we also compute errAdamW-D of AdamW-D and
err`2-Adam-D of `2-Adam-D which respectively share the same for-
mulation with errAdamW and err`2-Adam but performs computation
on the models respectively trained by AdamW-D and `2-Adam-D
with the above exponentially-decaying weight decay �k.

Then we receptively use AdamW, AdamW-D, `2-Adam and
`2-Adam-D to train three models, i.e., ResNet18, ResNet50 and
ViT-small, on ImageNet, and well tune their hyper-parameters,
e.g., learning rate and weight decay parameter �k. Note, `2-

Adam includes Adam by setting �k = 0. Next, we compute
errAdamW, errAdamW-D, err`2-Adam and err`2-Adam-D on the test dataset
of ImageNet, as test data can better reveal the generalization ability
of an algorithm. Table 1 shows that on all test cases, errAdamW

and errAdamW-D are smaller than err`2-Adam and err`2-Adam-D by a
remarkable margin. errAdamW-D and err`2-Adam-D respectively enjoy
similar values with their corresponding errAdamW and err`2-Adam.
These results empirically support the superior generalization error
of AdamW over `2-Adam. Moreover, Table 1 also reveals that 1)
AdamW and AdamW-D have higher test accuracy than `2- Adam
and `2- Adam-D; 2) AdamW-D (`2- Adam-D) enjoys very similar
performance as AdamW (`2- Adam). All these results accord with
our theoretical results in Sec. 5.2.
Investigation on convergence. We plot the training/test curves
of AdamW, AdamW-D, `2-Adam and `2-Adam-D on ImageNet
in Fig. 2. For AdamW-D and `2-Adam-D, we fix � = 0.99999
and tune c1 to compute its weight decay �k. One can find that on
ResNet50 and ViT-small, 1) AdamW and AdamW-D show faster
convergence speed than `2-Adam (including Adam via �=0) and
`2-Adam-D when their weight decay parameter are well-tuned,
e.g., �= 5⇥10�1 for AdamW and `2-Adam, c1 = 5⇥10�2 for
AdamW-D on ViT-small; 2) AdamW and AdamW-D share similar
convergence behaviors; 3) weight decay parameter greatly affects
the convergence speed of the three optimizers. So under the same
training cost, the faster convergence of AdamW could also partially
explain its better generalization performance over `2-Adam.

7 CONCLUSION
In this work, we first prove the convergence of AdamW using both
constant and decaying learning rates on the general nonconvex

Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D
(decreasing weight decay), ℓ2-Adam (constant weight decay) and ℓ2-Adam-D (decreasing weight decay). See more visualization
results, e.g., ResNet18, in Fig. 3 of Appendix A.
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D (decreasing
weight decay), and `2-Adam. See more visualization results, e.g. ResNet18, in Fig. 3 of Appendix A.

TABLE 1: Generalization of AdamW (constant weight decay), AdamW-D (decaying weight decay), and `2-Adam on ImageNet.

model ResNet18 ResNet50 ViT-small
train epoch 90 100 100 200 300
optimizer AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2

err in bound 3.43 3.40 3.85 3.42 3.41 3.78 3.62 3.63 3.75 3.58 3.57 3.72 3.47 3.45 3.70

test acc. (%) 67.9 70.1 67.2 77.0 77.1 76.5 76.1 75.9 75.3 79.2 79.3 77.6 79.8 80.0 78.5

(a) ResNet18 (b) ViT-small
Fig. 2: Training and test curves comparison of `2-Adam, AdamW and AdamW-D on ImageNet. See more results in Appendix A.

x
(i)
adam+`2 >x

(i)
adamw >1 for most i 2 [d] due to the following reasons.

1) Most of the singular values {�i}d
i=1 of Hessian matrix in deep

networks are much smaller than one which is well observed in
many works, e.g. fully connected networks, AlexNet, VGG and
ResNet [51], [61]–[63] and our experimental results on ResNet50
and ViT-small in Fig. 1. 2) The learning rate when reaching the
minimum is often set to be very small in practice. 3) The minibatch
size b is of order of thousand to train a modern network, and
the variance ⇢ for the Gaussian initialization distribution Ppre ⇠
N (0, ⇢I) is often at the order of O(1/

p
di) [64], where di denotes

the input dimension. So these factors indicate x
(i)
adam+`2 >x

(i)
adamw >1.

So the generalization error term erradamw of AdamW is smaller
than erradam+`2 of `2-Adam, testified by our experimental results on
ResNet18, ResNet50 and ViT-small in Sec. 6. So AdamW enjoys
better generalization performance than `2-Adam, also validated in
Sec. 6. Appendix C intuitively discusses the generalization benefits
of coordinate-adaptive regularization in AdamW.

6 EXPERIMENTS

Investigation on singular values of Hessian. We first respec-
tively use AdamW and `2-Adam to train two popular network
architectures on ImageNet [65], i.e. ResNet50 [11] and vision
transformer small (ViT-small) [3] for both 100 epochs. Then we
adopt the method in [66] to estimate the singular values of these two
trained networks. Here AdamW uses a constant weight decay �k,
while AdamW-D adopts an exponentially-decaying weight decay
�k = c1 ·�k with two constants c1 > 0 and � 2 (0, 1). Fig. 1 plots

the spectral density of these singular values on both training and test
data of ImageNet, and shows that there are more than 99% singular
values that are in the range [0, 1] and are much smaller than one.
This also accords with the observations on AlexNet [67], VGG [52]
and ResNet [11] in [51], [61]–[63]. All these observations support
the results in Sec. 5.2.
Investigation on generalization. To compute the key general-
ization error terms erradamw =

Pd
i=1h(x

(i)
adamw) and erradam+`2

=
Pd

i=1h(x
(i)
adam+`2) in Theorems 6 and 7, one needs to explicitly

compute the full Hessian for matrix multiplication which however is
prohibitively computable. So here we compute their approximations
erradamw and erradam+`2 in Corollary 3, and thus compare the
generalization error bounds of AdamW and `2-Adam. For more
comprehension, we also test erradamw-d of AdamW-D, where
erradamw-d shares the same formulation with erradamw but performs
computation on the models trained by AdamW-D with the above
exponentially-decaying weight decay �k.

Then we receptively train three models, namely, ResNet18,
ResNet50 and ViT-small, on ImageNet by using AdamW, AdamW-
D and `2-Adam, and well tune the hyper-parameters of these three
optimizers, e.g. learning rate and weight decay (regularization)
parameter �. Note, here `2-Adam includes Adam by setting �=
0. Next, we compute erradamw, erradamw-d and erradam+`2 on the
test dataset of ImageNet, since test dataset can better reveal the
generalization ability of an algorithm. Table 1 shows that on all test
cases, erradamw and erradamw-d are often smaller than erradam+`2 by
a remarkable margin. erradamw-d has similar values with erradamw.
These results empirically support the superior generalization error
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D (decreasing
weight decay), and `2-Adam. See more visualization results, e.g. ResNet18, in Fig. 3 of Appendix A.

TABLE 1: Generalization of AdamW (constant weight decay), AdamW-D (decaying weight decay), and `2-Adam on ImageNet.

model ResNet18 ResNet50 ViT-small
train epoch 90 100 100 200 300
optimizer AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2

err in bound 3.43 3.40 3.85 3.42 3.41 3.78 3.62 3.63 3.75 3.58 3.57 3.72 3.47 3.45 3.70

test acc. (%) 67.9 70.1 67.2 77.0 77.1 76.5 76.1 75.9 75.3 79.2 79.3 77.6 79.8 80.0 78.5

(a) ResNet18 (b) ViT-small
Fig. 2: Training and test curves comparison of `2-Adam, AdamW and AdamW-D on ImageNet. See more results in Appendix A.
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adam+`2 >x

(i)
adamw >1 for most i 2 [d] due to the following reasons.

1) Most of the singular values {�i}d
i=1 of Hessian matrix in deep

networks are much smaller than one which is well observed in
many works, e.g. fully connected networks, AlexNet, VGG and
ResNet [51], [61]–[63] and our experimental results on ResNet50
and ViT-small in Fig. 1. 2) The learning rate when reaching the
minimum is often set to be very small in practice. 3) The minibatch
size b is of order of thousand to train a modern network, and
the variance ⇢ for the Gaussian initialization distribution Ppre ⇠
N (0, ⇢I) is often at the order of O(1/

p
di) [64], where di denotes

the input dimension. So these factors indicate x
(i)
adam+`2 >x

(i)
adamw >1.

So the generalization error term erradamw of AdamW is smaller
than erradam+`2 of `2-Adam, testified by our experimental results on
ResNet18, ResNet50 and ViT-small in Sec. 6. So AdamW enjoys
better generalization performance than `2-Adam, also validated in
Sec. 6. Appendix C intuitively discusses the generalization benefits
of coordinate-adaptive regularization in AdamW.

6 EXPERIMENTS

Investigation on singular values of Hessian. We first respec-
tively use AdamW and `2-Adam to train two popular network
architectures on ImageNet [65], i.e. ResNet50 [11] and vision
transformer small (ViT-small) [3] for both 100 epochs. Then we
adopt the method in [66] to estimate the singular values of these two
trained networks. Here AdamW uses a constant weight decay �k,
while AdamW-D adopts an exponentially-decaying weight decay
�k = c1 ·�k with two constants c1 > 0 and � 2 (0, 1). Fig. 1 plots

the spectral density of these singular values on both training and test
data of ImageNet, and shows that there are more than 99% singular
values that are in the range [0, 1] and are much smaller than one.
This also accords with the observations on AlexNet [67], VGG [52]
and ResNet [11] in [51], [61]–[63]. All these observations support
the results in Sec. 5.2.
Investigation on generalization. To compute the key general-
ization error terms erradamw =

Pd
i=1h(x

(i)
adamw) and erradam+`2

=
Pd

i=1h(x
(i)
adam+`2) in Theorems 6 and 7, one needs to explicitly

compute the full Hessian for matrix multiplication which however is
prohibitively computable. So here we compute their approximations
erradamw and erradam+`2 in Corollary 3, and thus compare the
generalization error bounds of AdamW and `2-Adam. For more
comprehension, we also test erradamw-d of AdamW-D, where
erradamw-d shares the same formulation with erradamw but performs
computation on the models trained by AdamW-D with the above
exponentially-decaying weight decay �k.

Then we receptively train three models, namely, ResNet18,
ResNet50 and ViT-small, on ImageNet by using AdamW, AdamW-
D and `2-Adam, and well tune the hyper-parameters of these three
optimizers, e.g. learning rate and weight decay (regularization)
parameter �. Note, here `2-Adam includes Adam by setting �=
0. Next, we compute erradamw, erradamw-d and erradam+`2 on the
test dataset of ImageNet, since test dataset can better reveal the
generalization ability of an algorithm. Table 1 shows that on all test
cases, erradamw and erradamw-d are often smaller than erradam+`2 by
a remarkable margin. erradamw-d has similar values with erradamw.
These results empirically support the superior generalization error
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D (decreasing
weight decay), and `2-Adam. See more visualization results, e.g. ResNet18, in Fig. 3 of Appendix A.

TABLE 1: Generalization of AdamW (constant weight decay), AdamW-D (decaying weight decay), and `2-Adam on ImageNet.
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err in bound 3.43 3.40 3.85 3.42 3.41 3.78 3.62 3.63 3.75 3.58 3.57 3.72 3.47 3.45 3.70

test acc. (%) 67.9 70.1 67.2 77.0 77.1 76.5 76.1 75.9 75.3 79.2 79.3 77.6 79.8 80.0 78.5

(a) ResNet18 (b) ViT-small
Fig. 2: Training and test curves comparison of `2-Adam, AdamW and AdamW-D on ImageNet. See more results in Appendix A.
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adamw >1 for most i 2 [d] due to the following reasons.

1) Most of the singular values {�i}d
i=1 of Hessian matrix in deep

networks are much smaller than one which is well observed in
many works, e.g. fully connected networks, AlexNet, VGG and
ResNet [51], [61]–[63] and our experimental results on ResNet50
and ViT-small in Fig. 1. 2) The learning rate when reaching the
minimum is often set to be very small in practice. 3) The minibatch
size b is of order of thousand to train a modern network, and
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N (0, ⇢I) is often at the order of O(1/
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So the generalization error term erradamw of AdamW is smaller
than erradam+`2 of `2-Adam, testified by our experimental results on
ResNet18, ResNet50 and ViT-small in Sec. 6. So AdamW enjoys
better generalization performance than `2-Adam, also validated in
Sec. 6. Appendix C intuitively discusses the generalization benefits
of coordinate-adaptive regularization in AdamW.

6 EXPERIMENTS

Investigation on singular values of Hessian. We first respec-
tively use AdamW and `2-Adam to train two popular network
architectures on ImageNet [65], i.e. ResNet50 [11] and vision
transformer small (ViT-small) [3] for both 100 epochs. Then we
adopt the method in [66] to estimate the singular values of these two
trained networks. Here AdamW uses a constant weight decay �k,
while AdamW-D adopts an exponentially-decaying weight decay
�k = c1 ·�k with two constants c1 > 0 and � 2 (0, 1). Fig. 1 plots

the spectral density of these singular values on both training and test
data of ImageNet, and shows that there are more than 99% singular
values that are in the range [0, 1] and are much smaller than one.
This also accords with the observations on AlexNet [67], VGG [52]
and ResNet [11] in [51], [61]–[63]. All these observations support
the results in Sec. 5.2.
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compute the full Hessian for matrix multiplication which however is
prohibitively computable. So here we compute their approximations
erradamw and erradam+`2 in Corollary 3, and thus compare the
generalization error bounds of AdamW and `2-Adam. For more
comprehension, we also test erradamw-d of AdamW-D, where
erradamw-d shares the same formulation with erradamw but performs
computation on the models trained by AdamW-D with the above
exponentially-decaying weight decay �k.

Then we receptively train three models, namely, ResNet18,
ResNet50 and ViT-small, on ImageNet by using AdamW, AdamW-
D and `2-Adam, and well tune the hyper-parameters of these three
optimizers, e.g. learning rate and weight decay (regularization)
parameter �. Note, here `2-Adam includes Adam by setting �=
0. Next, we compute erradamw, erradamw-d and erradam+`2 on the
test dataset of ImageNet, since test dataset can better reveal the
generalization ability of an algorithm. Table 1 shows that on all test
cases, erradamw and erradamw-d are often smaller than erradam+`2 by
a remarkable margin. erradamw-d has similar values with erradamw.
These results empirically support the superior generalization error
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D (decreasing
weight decay), and `2-Adam. See more visualization results, e.g. ResNet18, in Fig. 3 of Appendix A.
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err in bound 3.43 3.40 3.85 3.42 3.41 3.78 3.62 3.63 3.75 3.58 3.57 3.72 3.47 3.45 3.70

test acc. (%) 67.9 70.1 67.2 77.0 77.1 76.5 76.1 75.9 75.3 79.2 79.3 77.6 79.8 80.0 78.5

(a) ResNet18 (b) ViT-small
Fig. 2: Training and test curves comparison of `2-Adam, AdamW and AdamW-D on ImageNet. See more results in Appendix A.

x
(i)
adam+`2 >x

(i)
adamw >1 for most i 2 [d] due to the following reasons.

1) Most of the singular values {�i}d
i=1 of Hessian matrix in deep

networks are much smaller than one which is well observed in
many works, e.g. fully connected networks, AlexNet, VGG and
ResNet [51], [61]–[63] and our experimental results on ResNet50
and ViT-small in Fig. 1. 2) The learning rate when reaching the
minimum is often set to be very small in practice. 3) The minibatch
size b is of order of thousand to train a modern network, and
the variance ⇢ for the Gaussian initialization distribution Ppre ⇠
N (0, ⇢I) is often at the order of O(1/

p
di) [64], where di denotes

the input dimension. So these factors indicate x
(i)
adam+`2 >x

(i)
adamw >1.

So the generalization error term erradamw of AdamW is smaller
than erradam+`2 of `2-Adam, testified by our experimental results on
ResNet18, ResNet50 and ViT-small in Sec. 6. So AdamW enjoys
better generalization performance than `2-Adam, also validated in
Sec. 6. Appendix C intuitively discusses the generalization benefits
of coordinate-adaptive regularization in AdamW.

6 EXPERIMENTS

Investigation on singular values of Hessian. We first respec-
tively use AdamW and `2-Adam to train two popular network
architectures on ImageNet [65], i.e. ResNet50 [11] and vision
transformer small (ViT-small) [3] for both 100 epochs. Then we
adopt the method in [66] to estimate the singular values of these two
trained networks. Here AdamW uses a constant weight decay �k,
while AdamW-D adopts an exponentially-decaying weight decay
�k = c1 ·�k with two constants c1 > 0 and � 2 (0, 1). Fig. 1 plots

the spectral density of these singular values on both training and test
data of ImageNet, and shows that there are more than 99% singular
values that are in the range [0, 1] and are much smaller than one.
This also accords with the observations on AlexNet [67], VGG [52]
and ResNet [11] in [51], [61]–[63]. All these observations support
the results in Sec. 5.2.
Investigation on generalization. To compute the key general-
ization error terms erradamw =

Pd
i=1h(x

(i)
adamw) and erradam+`2

=
Pd

i=1h(x
(i)
adam+`2) in Theorems 6 and 7, one needs to explicitly

compute the full Hessian for matrix multiplication which however is
prohibitively computable. So here we compute their approximations
erradamw and erradam+`2 in Corollary 3, and thus compare the
generalization error bounds of AdamW and `2-Adam. For more
comprehension, we also test erradamw-d of AdamW-D, where
erradamw-d shares the same formulation with erradamw but performs
computation on the models trained by AdamW-D with the above
exponentially-decaying weight decay �k.

Then we receptively train three models, namely, ResNet18,
ResNet50 and ViT-small, on ImageNet by using AdamW, AdamW-
D and `2-Adam, and well tune the hyper-parameters of these three
optimizers, e.g. learning rate and weight decay (regularization)
parameter �. Note, here `2-Adam includes Adam by setting �=
0. Next, we compute erradamw, erradamw-d and erradam+`2 on the
test dataset of ImageNet, since test dataset can better reveal the
generalization ability of an algorithm. Table 1 shows that on all test
cases, erradamw and erradamw-d are often smaller than erradam+`2 by
a remarkable margin. erradamw-d has similar values with erradamw.
These results empirically support the superior generalization error
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D
(decreasing weight decay), `2-Adam (constant weight decay) and `2-Adam-D (decreasing weight decay). See more visualization
results, e.g., ResNet18, in Fig. 7 of Appendix A.
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TABLE 1: Generalization of AdamW (constant weight decay), AdamW-D (decaying weight decay), and `2-Adam on ImageNet.
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err in bound 3.43 3.40 3.85 3.42 3.41 3.78 3.62 3.63 3.75 3.58 3.57 3.72 3.47 3.45 3.70
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(a) ResNet18 (b) ViT-small
Fig. 2: Training and test curves comparison of `2-Adam, AdamW and AdamW-D on ImageNet. See more results in Appendix A.
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networks are much smaller than one which is well observed in
many works, e.g. fully connected networks, AlexNet, VGG and
ResNet [51], [61]–[63] and our experimental results on ResNet50
and ViT-small in Fig. 1. 2) The learning rate when reaching the
minimum is often set to be very small in practice. 3) The minibatch
size b is of order of thousand to train a modern network, and
the variance ⇢ for the Gaussian initialization distribution Ppre ⇠
N (0, ⇢I) is often at the order of O(1/
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the input dimension. So these factors indicate x
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So the generalization error term erradamw of AdamW is smaller
than erradam+`2 of `2-Adam, testified by our experimental results on
ResNet18, ResNet50 and ViT-small in Sec. 6. So AdamW enjoys
better generalization performance than `2-Adam, also validated in
Sec. 6. Appendix C intuitively discusses the generalization benefits
of coordinate-adaptive regularization in AdamW.

6 EXPERIMENTS

Investigation on singular values of Hessian. We first respec-
tively use AdamW and `2-Adam to train two popular network
architectures on ImageNet [65], i.e. ResNet50 [11] and vision
transformer small (ViT-small) [3] for both 100 epochs. Then we
adopt the method in [66] to estimate the singular values of these two
trained networks. Here AdamW uses a constant weight decay �k,
while AdamW-D adopts an exponentially-decaying weight decay
�k = c1 ·�k with two constants c1 > 0 and � 2 (0, 1). Fig. 1 plots

the spectral density of these singular values on both training and test
data of ImageNet, and shows that there are more than 99% singular
values that are in the range [0, 1] and are much smaller than one.
This also accords with the observations on AlexNet [67], VGG [52]
and ResNet [11] in [51], [61]–[63]. All these observations support
the results in Sec. 5.2.
Investigation on generalization. To compute the key general-
ization error terms erradamw =
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i=1h(x

(i)
adamw) and erradam+`2

=
Pd

i=1h(x
(i)
adam+`2) in Theorems 6 and 7, one needs to explicitly

compute the full Hessian for matrix multiplication which however is
prohibitively computable. So here we compute their approximations
erradamw and erradam+`2 in Corollary 3, and thus compare the
generalization error bounds of AdamW and `2-Adam. For more
comprehension, we also test erradamw-d of AdamW-D, where
erradamw-d shares the same formulation with erradamw but performs
computation on the models trained by AdamW-D with the above
exponentially-decaying weight decay �k.

Then we receptively train three models, namely, ResNet18,
ResNet50 and ViT-small, on ImageNet by using AdamW, AdamW-
D and `2-Adam, and well tune the hyper-parameters of these three
optimizers, e.g. learning rate and weight decay (regularization)
parameter �. Note, here `2-Adam includes Adam by setting �=
0. Next, we compute erradamw, erradamw-d and erradam+`2 on the
test dataset of ImageNet, since test dataset can better reveal the
generalization ability of an algorithm. Table 1 shows that on all test
cases, erradamw and erradamw-d are often smaller than erradam+`2 by
a remarkable margin. erradamw-d has similar values with erradamw.
These results empirically support the superior generalization error
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D (decreasing
weight decay), and `2-Adam. See more visualization results, e.g. ResNet18, in Fig. 3 of Appendix A.

TABLE 1: Generalization of AdamW (constant weight decay), AdamW-D (decaying weight decay), and `2-Adam on ImageNet.

model ResNet18 ResNet50 ViT-small
train epoch 90 100 100 200 300
optimizer AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2

err in bound 3.43 3.40 3.85 3.42 3.41 3.78 3.62 3.63 3.75 3.58 3.57 3.72 3.47 3.45 3.70

test acc. (%) 67.9 70.1 67.2 77.0 77.1 76.5 76.1 75.9 75.3 79.2 79.3 77.6 79.8 80.0 78.5

(a) ResNet18 (b) ViT-small
Fig. 2: Training and test curves comparison of `2-Adam, AdamW and AdamW-D on ImageNet. See more results in Appendix A.
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adamw >1 for most i 2 [d] due to the following reasons.

1) Most of the singular values {�i}d
i=1 of Hessian matrix in deep

networks are much smaller than one which is well observed in
many works, e.g. fully connected networks, AlexNet, VGG and
ResNet [51], [61]–[63] and our experimental results on ResNet50
and ViT-small in Fig. 1. 2) The learning rate when reaching the
minimum is often set to be very small in practice. 3) The minibatch
size b is of order of thousand to train a modern network, and
the variance ⇢ for the Gaussian initialization distribution Ppre ⇠
N (0, ⇢I) is often at the order of O(1/

p
di) [64], where di denotes

the input dimension. So these factors indicate x
(i)
adam+`2 >x

(i)
adamw >1.

So the generalization error term erradamw of AdamW is smaller
than erradam+`2 of `2-Adam, testified by our experimental results on
ResNet18, ResNet50 and ViT-small in Sec. 6. So AdamW enjoys
better generalization performance than `2-Adam, also validated in
Sec. 6. Appendix C intuitively discusses the generalization benefits
of coordinate-adaptive regularization in AdamW.

6 EXPERIMENTS

Investigation on singular values of Hessian. We first respec-
tively use AdamW and `2-Adam to train two popular network
architectures on ImageNet [65], i.e. ResNet50 [11] and vision
transformer small (ViT-small) [3] for both 100 epochs. Then we
adopt the method in [66] to estimate the singular values of these two
trained networks. Here AdamW uses a constant weight decay �k,
while AdamW-D adopts an exponentially-decaying weight decay
�k = c1 ·�k with two constants c1 > 0 and � 2 (0, 1). Fig. 1 plots

the spectral density of these singular values on both training and test
data of ImageNet, and shows that there are more than 99% singular
values that are in the range [0, 1] and are much smaller than one.
This also accords with the observations on AlexNet [67], VGG [52]
and ResNet [11] in [51], [61]–[63]. All these observations support
the results in Sec. 5.2.
Investigation on generalization. To compute the key general-
ization error terms erradamw =

Pd
i=1h(x

(i)
adamw) and erradam+`2

=
Pd

i=1h(x
(i)
adam+`2) in Theorems 6 and 7, one needs to explicitly

compute the full Hessian for matrix multiplication which however is
prohibitively computable. So here we compute their approximations
erradamw and erradam+`2 in Corollary 3, and thus compare the
generalization error bounds of AdamW and `2-Adam. For more
comprehension, we also test erradamw-d of AdamW-D, where
erradamw-d shares the same formulation with erradamw but performs
computation on the models trained by AdamW-D with the above
exponentially-decaying weight decay �k.

Then we receptively train three models, namely, ResNet18,
ResNet50 and ViT-small, on ImageNet by using AdamW, AdamW-
D and `2-Adam, and well tune the hyper-parameters of these three
optimizers, e.g. learning rate and weight decay (regularization)
parameter �. Note, here `2-Adam includes Adam by setting �=
0. Next, we compute erradamw, erradamw-d and erradam+`2 on the
test dataset of ImageNet, since test dataset can better reveal the
generalization ability of an algorithm. Table 1 shows that on all test
cases, erradamw and erradamw-d are often smaller than erradam+`2 by
a remarkable margin. erradamw-d has similar values with erradamw.
These results empirically support the superior generalization error
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D (decreasing
weight decay), and `2-Adam. See more visualization results, e.g. ResNet18, in Fig. 3 of Appendix A.

TABLE 1: Generalization of AdamW (constant weight decay), AdamW-D (decaying weight decay), and `2-Adam on ImageNet.

model ResNet18 ResNet50 ViT-small
train epoch 90 100 100 200 300
optimizer AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2

err in bound 3.43 3.40 3.85 3.42 3.41 3.78 3.62 3.63 3.75 3.58 3.57 3.72 3.47 3.45 3.70

test acc. (%) 67.9 70.1 67.2 77.0 77.1 76.5 76.1 75.9 75.3 79.2 79.3 77.6 79.8 80.0 78.5

(a) ResNet18 (b) ViT-small
Fig. 2: Training and test curves comparison of `2-Adam, AdamW and AdamW-D on ImageNet. See more results in Appendix A.
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adamw >1 for most i 2 [d] due to the following reasons.

1) Most of the singular values {�i}d
i=1 of Hessian matrix in deep

networks are much smaller than one which is well observed in
many works, e.g. fully connected networks, AlexNet, VGG and
ResNet [51], [61]–[63] and our experimental results on ResNet50
and ViT-small in Fig. 1. 2) The learning rate when reaching the
minimum is often set to be very small in practice. 3) The minibatch
size b is of order of thousand to train a modern network, and
the variance ⇢ for the Gaussian initialization distribution Ppre ⇠
N (0, ⇢I) is often at the order of O(1/

p
di) [64], where di denotes

the input dimension. So these factors indicate x
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adam+`2 >x

(i)
adamw >1.

So the generalization error term erradamw of AdamW is smaller
than erradam+`2 of `2-Adam, testified by our experimental results on
ResNet18, ResNet50 and ViT-small in Sec. 6. So AdamW enjoys
better generalization performance than `2-Adam, also validated in
Sec. 6. Appendix C intuitively discusses the generalization benefits
of coordinate-adaptive regularization in AdamW.

6 EXPERIMENTS

Investigation on singular values of Hessian. We first respec-
tively use AdamW and `2-Adam to train two popular network
architectures on ImageNet [65], i.e. ResNet50 [11] and vision
transformer small (ViT-small) [3] for both 100 epochs. Then we
adopt the method in [66] to estimate the singular values of these two
trained networks. Here AdamW uses a constant weight decay �k,
while AdamW-D adopts an exponentially-decaying weight decay
�k = c1 ·�k with two constants c1 > 0 and � 2 (0, 1). Fig. 1 plots

the spectral density of these singular values on both training and test
data of ImageNet, and shows that there are more than 99% singular
values that are in the range [0, 1] and are much smaller than one.
This also accords with the observations on AlexNet [67], VGG [52]
and ResNet [11] in [51], [61]–[63]. All these observations support
the results in Sec. 5.2.
Investigation on generalization. To compute the key general-
ization error terms erradamw =

Pd
i=1h(x

(i)
adamw) and erradam+`2

=
Pd

i=1h(x
(i)
adam+`2) in Theorems 6 and 7, one needs to explicitly

compute the full Hessian for matrix multiplication which however is
prohibitively computable. So here we compute their approximations
erradamw and erradam+`2 in Corollary 3, and thus compare the
generalization error bounds of AdamW and `2-Adam. For more
comprehension, we also test erradamw-d of AdamW-D, where
erradamw-d shares the same formulation with erradamw but performs
computation on the models trained by AdamW-D with the above
exponentially-decaying weight decay �k.

Then we receptively train three models, namely, ResNet18,
ResNet50 and ViT-small, on ImageNet by using AdamW, AdamW-
D and `2-Adam, and well tune the hyper-parameters of these three
optimizers, e.g. learning rate and weight decay (regularization)
parameter �. Note, here `2-Adam includes Adam by setting �=
0. Next, we compute erradamw, erradamw-d and erradam+`2 on the
test dataset of ImageNet, since test dataset can better reveal the
generalization ability of an algorithm. Table 1 shows that on all test
cases, erradamw and erradamw-d are often smaller than erradam+`2 by
a remarkable margin. erradamw-d has similar values with erradamw.
These results empirically support the superior generalization error
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D (decreasing
weight decay), and `2-Adam. See more visualization results, e.g. ResNet18, in Fig. 3 of Appendix A.

TABLE 1: Generalization of AdamW (constant weight decay), AdamW-D (decaying weight decay), and `2-Adam on ImageNet.

model ResNet18 ResNet50 ViT-small
train epoch 90 100 100 200 300
optimizer AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2

err in bound 3.43 3.40 3.85 3.42 3.41 3.78 3.62 3.63 3.75 3.58 3.57 3.72 3.47 3.45 3.70

test acc. (%) 67.9 70.1 67.2 77.0 77.1 76.5 76.1 75.9 75.3 79.2 79.3 77.6 79.8 80.0 78.5

(a) ResNet18 (b) ViT-small
Fig. 2: Training and test curves comparison of `2-Adam, AdamW and AdamW-D on ImageNet. See more results in Appendix A.
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adamw >1 for most i 2 [d] due to the following reasons.

1) Most of the singular values {�i}d
i=1 of Hessian matrix in deep

networks are much smaller than one which is well observed in
many works, e.g. fully connected networks, AlexNet, VGG and
ResNet [51], [61]–[63] and our experimental results on ResNet50
and ViT-small in Fig. 1. 2) The learning rate when reaching the
minimum is often set to be very small in practice. 3) The minibatch
size b is of order of thousand to train a modern network, and
the variance ⇢ for the Gaussian initialization distribution Ppre ⇠
N (0, ⇢I) is often at the order of O(1/
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di) [64], where di denotes

the input dimension. So these factors indicate x
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adamw >1.

So the generalization error term erradamw of AdamW is smaller
than erradam+`2 of `2-Adam, testified by our experimental results on
ResNet18, ResNet50 and ViT-small in Sec. 6. So AdamW enjoys
better generalization performance than `2-Adam, also validated in
Sec. 6. Appendix C intuitively discusses the generalization benefits
of coordinate-adaptive regularization in AdamW.

6 EXPERIMENTS

Investigation on singular values of Hessian. We first respec-
tively use AdamW and `2-Adam to train two popular network
architectures on ImageNet [65], i.e. ResNet50 [11] and vision
transformer small (ViT-small) [3] for both 100 epochs. Then we
adopt the method in [66] to estimate the singular values of these two
trained networks. Here AdamW uses a constant weight decay �k,
while AdamW-D adopts an exponentially-decaying weight decay
�k = c1 ·�k with two constants c1 > 0 and � 2 (0, 1). Fig. 1 plots

the spectral density of these singular values on both training and test
data of ImageNet, and shows that there are more than 99% singular
values that are in the range [0, 1] and are much smaller than one.
This also accords with the observations on AlexNet [67], VGG [52]
and ResNet [11] in [51], [61]–[63]. All these observations support
the results in Sec. 5.2.
Investigation on generalization. To compute the key general-
ization error terms erradamw =
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i=1h(x

(i)
adamw) and erradam+`2

=
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i=1h(x
(i)
adam+`2) in Theorems 6 and 7, one needs to explicitly

compute the full Hessian for matrix multiplication which however is
prohibitively computable. So here we compute their approximations
erradamw and erradam+`2 in Corollary 3, and thus compare the
generalization error bounds of AdamW and `2-Adam. For more
comprehension, we also test erradamw-d of AdamW-D, where
erradamw-d shares the same formulation with erradamw but performs
computation on the models trained by AdamW-D with the above
exponentially-decaying weight decay �k.

Then we receptively train three models, namely, ResNet18,
ResNet50 and ViT-small, on ImageNet by using AdamW, AdamW-
D and `2-Adam, and well tune the hyper-parameters of these three
optimizers, e.g. learning rate and weight decay (regularization)
parameter �. Note, here `2-Adam includes Adam by setting �=
0. Next, we compute erradamw, erradamw-d and erradam+`2 on the
test dataset of ImageNet, since test dataset can better reveal the
generalization ability of an algorithm. Table 1 shows that on all test
cases, erradamw and erradamw-d are often smaller than erradam+`2 by
a remarkable margin. erradamw-d has similar values with erradamw.
These results empirically support the superior generalization error
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D
(decreasing weight decay), `2-Adam (constant weight decay) and `2-Adam-D (decreasing weight decay). See more visualization
results, e.g., ResNet18, in Fig. 7 of Appendix A.

Fig. 2: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D
(decreasing weight decay), `2-Adam (constant weight decay) and `2-Adam-D (decreasing weight decay). See more visualization
results, e.g., ResNet18, in Fig. 7 of Appendix A.
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D (decreasing
weight decay), and `2-Adam. See more visualization results, e.g. ResNet18, in Fig. 3 of Appendix A.

TABLE 1: Generalization of AdamW (constant weight decay), AdamW-D (decaying weight decay), and `2-Adam on ImageNet.

model ResNet18 ResNet50 ViT-small
train epoch 90 100 100 200 300
optimizer AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2

err in bound 3.43 3.40 3.85 3.42 3.41 3.78 3.62 3.63 3.75 3.58 3.57 3.72 3.47 3.45 3.70

test acc. (%) 67.9 70.1 67.2 77.0 77.1 76.5 76.1 75.9 75.3 79.2 79.3 77.6 79.8 80.0 78.5

(a) ResNet18 (b) ViT-small
Fig. 2: Training and test curves comparison of `2-Adam, AdamW and AdamW-D on ImageNet. See more results in Appendix A.
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(i)
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(i)
adamw >1 for most i 2 [d] due to the following reasons.

1) Most of the singular values {�i}d
i=1 of Hessian matrix in deep

networks are much smaller than one which is well observed in
many works, e.g. fully connected networks, AlexNet, VGG and
ResNet [51], [61]–[63] and our experimental results on ResNet50
and ViT-small in Fig. 1. 2) The learning rate when reaching the
minimum is often set to be very small in practice. 3) The minibatch
size b is of order of thousand to train a modern network, and
the variance ⇢ for the Gaussian initialization distribution Ppre ⇠
N (0, ⇢I) is often at the order of O(1/

p
di) [64], where di denotes

the input dimension. So these factors indicate x
(i)
adam+`2 >x

(i)
adamw >1.

So the generalization error term erradamw of AdamW is smaller
than erradam+`2 of `2-Adam, testified by our experimental results on
ResNet18, ResNet50 and ViT-small in Sec. 6. So AdamW enjoys
better generalization performance than `2-Adam, also validated in
Sec. 6. Appendix C intuitively discusses the generalization benefits
of coordinate-adaptive regularization in AdamW.

6 EXPERIMENTS

Investigation on singular values of Hessian. We first respec-
tively use AdamW and `2-Adam to train two popular network
architectures on ImageNet [65], i.e. ResNet50 [11] and vision
transformer small (ViT-small) [3] for both 100 epochs. Then we
adopt the method in [66] to estimate the singular values of these two
trained networks. Here AdamW uses a constant weight decay �k,
while AdamW-D adopts an exponentially-decaying weight decay
�k = c1 ·�k with two constants c1 > 0 and � 2 (0, 1). Fig. 1 plots

the spectral density of these singular values on both training and test
data of ImageNet, and shows that there are more than 99% singular
values that are in the range [0, 1] and are much smaller than one.
This also accords with the observations on AlexNet [67], VGG [52]
and ResNet [11] in [51], [61]–[63]. All these observations support
the results in Sec. 5.2.
Investigation on generalization. To compute the key general-
ization error terms erradamw =

Pd
i=1h(x

(i)
adamw) and erradam+`2

=
Pd

i=1h(x
(i)
adam+`2) in Theorems 6 and 7, one needs to explicitly

compute the full Hessian for matrix multiplication which however is
prohibitively computable. So here we compute their approximations
erradamw and erradam+`2 in Corollary 3, and thus compare the
generalization error bounds of AdamW and `2-Adam. For more
comprehension, we also test erradamw-d of AdamW-D, where
erradamw-d shares the same formulation with erradamw but performs
computation on the models trained by AdamW-D with the above
exponentially-decaying weight decay �k.

Then we receptively train three models, namely, ResNet18,
ResNet50 and ViT-small, on ImageNet by using AdamW, AdamW-
D and `2-Adam, and well tune the hyper-parameters of these three
optimizers, e.g. learning rate and weight decay (regularization)
parameter �. Note, here `2-Adam includes Adam by setting �=
0. Next, we compute erradamw, erradamw-d and erradam+`2 on the
test dataset of ImageNet, since test dataset can better reveal the
generalization ability of an algorithm. Table 1 shows that on all test
cases, erradamw and erradamw-d are often smaller than erradam+`2 by
a remarkable margin. erradamw-d has similar values with erradamw.
These results empirically support the superior generalization error
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D (decreasing
weight decay), and `2-Adam. See more visualization results, e.g. ResNet18, in Fig. 3 of Appendix A.

TABLE 1: Generalization of AdamW (constant weight decay), AdamW-D (decaying weight decay), and `2-Adam on ImageNet.

model ResNet18 ResNet50 ViT-small
train epoch 90 100 100 200 300
optimizer AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2

err in bound 3.43 3.40 3.85 3.42 3.41 3.78 3.62 3.63 3.75 3.58 3.57 3.72 3.47 3.45 3.70

test acc. (%) 67.9 70.1 67.2 77.0 77.1 76.5 76.1 75.9 75.3 79.2 79.3 77.6 79.8 80.0 78.5

(a) ResNet18 (b) ViT-small
Fig. 2: Training and test curves comparison of `2-Adam, AdamW and AdamW-D on ImageNet. See more results in Appendix A.

x
(i)
adam+`2 >x

(i)
adamw >1 for most i 2 [d] due to the following reasons.

1) Most of the singular values {�i}d
i=1 of Hessian matrix in deep

networks are much smaller than one which is well observed in
many works, e.g. fully connected networks, AlexNet, VGG and
ResNet [51], [61]–[63] and our experimental results on ResNet50
and ViT-small in Fig. 1. 2) The learning rate when reaching the
minimum is often set to be very small in practice. 3) The minibatch
size b is of order of thousand to train a modern network, and
the variance ⇢ for the Gaussian initialization distribution Ppre ⇠
N (0, ⇢I) is often at the order of O(1/

p
di) [64], where di denotes

the input dimension. So these factors indicate x
(i)
adam+`2 >x

(i)
adamw >1.

So the generalization error term erradamw of AdamW is smaller
than erradam+`2 of `2-Adam, testified by our experimental results on
ResNet18, ResNet50 and ViT-small in Sec. 6. So AdamW enjoys
better generalization performance than `2-Adam, also validated in
Sec. 6. Appendix C intuitively discusses the generalization benefits
of coordinate-adaptive regularization in AdamW.

6 EXPERIMENTS

Investigation on singular values of Hessian. We first respec-
tively use AdamW and `2-Adam to train two popular network
architectures on ImageNet [65], i.e. ResNet50 [11] and vision
transformer small (ViT-small) [3] for both 100 epochs. Then we
adopt the method in [66] to estimate the singular values of these two
trained networks. Here AdamW uses a constant weight decay �k,
while AdamW-D adopts an exponentially-decaying weight decay
�k = c1 ·�k with two constants c1 > 0 and � 2 (0, 1). Fig. 1 plots

the spectral density of these singular values on both training and test
data of ImageNet, and shows that there are more than 99% singular
values that are in the range [0, 1] and are much smaller than one.
This also accords with the observations on AlexNet [67], VGG [52]
and ResNet [11] in [51], [61]–[63]. All these observations support
the results in Sec. 5.2.
Investigation on generalization. To compute the key general-
ization error terms erradamw =

Pd
i=1h(x

(i)
adamw) and erradam+`2

=
Pd

i=1h(x
(i)
adam+`2) in Theorems 6 and 7, one needs to explicitly

compute the full Hessian for matrix multiplication which however is
prohibitively computable. So here we compute their approximations
erradamw and erradam+`2 in Corollary 3, and thus compare the
generalization error bounds of AdamW and `2-Adam. For more
comprehension, we also test erradamw-d of AdamW-D, where
erradamw-d shares the same formulation with erradamw but performs
computation on the models trained by AdamW-D with the above
exponentially-decaying weight decay �k.

Then we receptively train three models, namely, ResNet18,
ResNet50 and ViT-small, on ImageNet by using AdamW, AdamW-
D and `2-Adam, and well tune the hyper-parameters of these three
optimizers, e.g. learning rate and weight decay (regularization)
parameter �. Note, here `2-Adam includes Adam by setting �=
0. Next, we compute erradamw, erradamw-d and erradam+`2 on the
test dataset of ImageNet, since test dataset can better reveal the
generalization ability of an algorithm. Table 1 shows that on all test
cases, erradamw and erradamw-d are often smaller than erradam+`2 by
a remarkable margin. erradamw-d has similar values with erradamw.
These results empirically support the superior generalization error
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D (decreasing
weight decay), and `2-Adam. See more visualization results, e.g. ResNet18, in Fig. 3 of Appendix A.

TABLE 1: Generalization of AdamW (constant weight decay), AdamW-D (decaying weight decay), and `2-Adam on ImageNet.

model ResNet18 ResNet50 ViT-small
train epoch 90 100 100 200 300
optimizer AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2

err in bound 3.43 3.40 3.85 3.42 3.41 3.78 3.62 3.63 3.75 3.58 3.57 3.72 3.47 3.45 3.70

test acc. (%) 67.9 70.1 67.2 77.0 77.1 76.5 76.1 75.9 75.3 79.2 79.3 77.6 79.8 80.0 78.5

(a) ResNet18 (b) ViT-small
Fig. 2: Training and test curves comparison of `2-Adam, AdamW and AdamW-D on ImageNet. See more results in Appendix A.

x
(i)
adam+`2 >x

(i)
adamw >1 for most i 2 [d] due to the following reasons.

1) Most of the singular values {�i}d
i=1 of Hessian matrix in deep

networks are much smaller than one which is well observed in
many works, e.g. fully connected networks, AlexNet, VGG and
ResNet [51], [61]–[63] and our experimental results on ResNet50
and ViT-small in Fig. 1. 2) The learning rate when reaching the
minimum is often set to be very small in practice. 3) The minibatch
size b is of order of thousand to train a modern network, and
the variance ⇢ for the Gaussian initialization distribution Ppre ⇠
N (0, ⇢I) is often at the order of O(1/

p
di) [64], where di denotes

the input dimension. So these factors indicate x
(i)
adam+`2 >x

(i)
adamw >1.

So the generalization error term erradamw of AdamW is smaller
than erradam+`2 of `2-Adam, testified by our experimental results on
ResNet18, ResNet50 and ViT-small in Sec. 6. So AdamW enjoys
better generalization performance than `2-Adam, also validated in
Sec. 6. Appendix C intuitively discusses the generalization benefits
of coordinate-adaptive regularization in AdamW.

6 EXPERIMENTS

Investigation on singular values of Hessian. We first respec-
tively use AdamW and `2-Adam to train two popular network
architectures on ImageNet [65], i.e. ResNet50 [11] and vision
transformer small (ViT-small) [3] for both 100 epochs. Then we
adopt the method in [66] to estimate the singular values of these two
trained networks. Here AdamW uses a constant weight decay �k,
while AdamW-D adopts an exponentially-decaying weight decay
�k = c1 ·�k with two constants c1 > 0 and � 2 (0, 1). Fig. 1 plots

the spectral density of these singular values on both training and test
data of ImageNet, and shows that there are more than 99% singular
values that are in the range [0, 1] and are much smaller than one.
This also accords with the observations on AlexNet [67], VGG [52]
and ResNet [11] in [51], [61]–[63]. All these observations support
the results in Sec. 5.2.
Investigation on generalization. To compute the key general-
ization error terms erradamw =

Pd
i=1h(x

(i)
adamw) and erradam+`2

=
Pd

i=1h(x
(i)
adam+`2) in Theorems 6 and 7, one needs to explicitly

compute the full Hessian for matrix multiplication which however is
prohibitively computable. So here we compute their approximations
erradamw and erradam+`2 in Corollary 3, and thus compare the
generalization error bounds of AdamW and `2-Adam. For more
comprehension, we also test erradamw-d of AdamW-D, where
erradamw-d shares the same formulation with erradamw but performs
computation on the models trained by AdamW-D with the above
exponentially-decaying weight decay �k.

Then we receptively train three models, namely, ResNet18,
ResNet50 and ViT-small, on ImageNet by using AdamW, AdamW-
D and `2-Adam, and well tune the hyper-parameters of these three
optimizers, e.g. learning rate and weight decay (regularization)
parameter �. Note, here `2-Adam includes Adam by setting �=
0. Next, we compute erradamw, erradamw-d and erradam+`2 on the
test dataset of ImageNet, since test dataset can better reveal the
generalization ability of an algorithm. Table 1 shows that on all test
cases, erradamw and erradamw-d are often smaller than erradam+`2 by
a remarkable margin. erradamw-d has similar values with erradamw.
These results empirically support the superior generalization error
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D (decreasing
weight decay), and `2-Adam. See more visualization results, e.g. ResNet18, in Fig. 3 of Appendix A.

TABLE 1: Generalization of AdamW (constant weight decay), AdamW-D (decaying weight decay), and `2-Adam on ImageNet.

model ResNet18 ResNet50 ViT-small
train epoch 90 100 100 200 300
optimizer AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2

err in bound 3.43 3.40 3.85 3.42 3.41 3.78 3.62 3.63 3.75 3.58 3.57 3.72 3.47 3.45 3.70

test acc. (%) 67.9 70.1 67.2 77.0 77.1 76.5 76.1 75.9 75.3 79.2 79.3 77.6 79.8 80.0 78.5

(a) ResNet18 (b) ViT-small
Fig. 2: Training and test curves comparison of `2-Adam, AdamW and AdamW-D on ImageNet. See more results in Appendix A.

x
(i)
adam+`2 >x

(i)
adamw >1 for most i 2 [d] due to the following reasons.

1) Most of the singular values {�i}d
i=1 of Hessian matrix in deep

networks are much smaller than one which is well observed in
many works, e.g. fully connected networks, AlexNet, VGG and
ResNet [51], [61]–[63] and our experimental results on ResNet50
and ViT-small in Fig. 1. 2) The learning rate when reaching the
minimum is often set to be very small in practice. 3) The minibatch
size b is of order of thousand to train a modern network, and
the variance ⇢ for the Gaussian initialization distribution Ppre ⇠
N (0, ⇢I) is often at the order of O(1/

p
di) [64], where di denotes

the input dimension. So these factors indicate x
(i)
adam+`2 >x

(i)
adamw >1.

So the generalization error term erradamw of AdamW is smaller
than erradam+`2 of `2-Adam, testified by our experimental results on
ResNet18, ResNet50 and ViT-small in Sec. 6. So AdamW enjoys
better generalization performance than `2-Adam, also validated in
Sec. 6. Appendix C intuitively discusses the generalization benefits
of coordinate-adaptive regularization in AdamW.

6 EXPERIMENTS

Investigation on singular values of Hessian. We first respec-
tively use AdamW and `2-Adam to train two popular network
architectures on ImageNet [65], i.e. ResNet50 [11] and vision
transformer small (ViT-small) [3] for both 100 epochs. Then we
adopt the method in [66] to estimate the singular values of these two
trained networks. Here AdamW uses a constant weight decay �k,
while AdamW-D adopts an exponentially-decaying weight decay
�k = c1 ·�k with two constants c1 > 0 and � 2 (0, 1). Fig. 1 plots

the spectral density of these singular values on both training and test
data of ImageNet, and shows that there are more than 99% singular
values that are in the range [0, 1] and are much smaller than one.
This also accords with the observations on AlexNet [67], VGG [52]
and ResNet [11] in [51], [61]–[63]. All these observations support
the results in Sec. 5.2.
Investigation on generalization. To compute the key general-
ization error terms erradamw =

Pd
i=1h(x

(i)
adamw) and erradam+`2

=
Pd

i=1h(x
(i)
adam+`2) in Theorems 6 and 7, one needs to explicitly

compute the full Hessian for matrix multiplication which however is
prohibitively computable. So here we compute their approximations
erradamw and erradam+`2 in Corollary 3, and thus compare the
generalization error bounds of AdamW and `2-Adam. For more
comprehension, we also test erradamw-d of AdamW-D, where
erradamw-d shares the same formulation with erradamw but performs
computation on the models trained by AdamW-D with the above
exponentially-decaying weight decay �k.

Then we receptively train three models, namely, ResNet18,
ResNet50 and ViT-small, on ImageNet by using AdamW, AdamW-
D and `2-Adam, and well tune the hyper-parameters of these three
optimizers, e.g. learning rate and weight decay (regularization)
parameter �. Note, here `2-Adam includes Adam by setting �=
0. Next, we compute erradamw, erradamw-d and erradam+`2 on the
test dataset of ImageNet, since test dataset can better reveal the
generalization ability of an algorithm. Table 1 shows that on all test
cases, erradamw and erradamw-d are often smaller than erradam+`2 by
a remarkable margin. erradamw-d has similar values with erradamw.
These results empirically support the superior generalization error
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D
(decreasing weight decay), `2-Adam (constant weight decay) and `2-Adam-D (decreasing weight decay). See more visualization
results, e.g., ResNet18, in Fig. 7 of Appendix A.

Fig. 2: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D
(decreasing weight decay), `2-Adam (constant weight decay) and `2-Adam-D (decreasing weight decay). See more visualization
results, e.g., ResNet18, in Fig. 7 of Appendix A.
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Fig. 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D (decreasing
weight decay), and `2-Adam. See more visualization results, e.g. ResNet18, in Fig. 3 of Appendix A.

TABLE 1: Generalization of AdamW (constant weight decay), AdamW-D (decaying weight decay), and `2-Adam on ImageNet.

model ResNet18 ResNet50 ViT-small
train epoch 90 100 100 200 300
optimizer AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2 AdamW AdamW-D Adam+`2

err in bound 3.43 3.40 3.85 3.42 3.41 3.78 3.62 3.63 3.75 3.58 3.57 3.72 3.47 3.45 3.70

test acc. (%) 67.9 70.1 67.2 77.0 77.1 76.5 76.1 75.9 75.3 79.2 79.3 77.6 79.8 80.0 78.5

(a) ResNet18 (b) ViT-small
Fig. 2: Training and test curves comparison of `2-Adam, AdamW and AdamW-D on ImageNet. See more results in Appendix A.

x
(i)
adam+`2 >x

(i)
adamw >1 for most i 2 [d] due to the following reasons.

1) Most of the singular values {�i}d
i=1 of Hessian matrix in deep

networks are much smaller than one which is well observed in
many works, e.g. fully connected networks, AlexNet, VGG and
ResNet [51], [61]–[63] and our experimental results on ResNet50
and ViT-small in Fig. 1. 2) The learning rate when reaching the
minimum is often set to be very small in practice. 3) The minibatch
size b is of order of thousand to train a modern network, and
the variance ⇢ for the Gaussian initialization distribution Ppre ⇠
N (0, ⇢I) is often at the order of O(1/

p
di) [64], where di denotes

the input dimension. So these factors indicate x
(i)
adam+`2 >x

(i)
adamw >1.

So the generalization error term erradamw of AdamW is smaller
than erradam+`2 of `2-Adam, testified by our experimental results on
ResNet18, ResNet50 and ViT-small in Sec. 6. So AdamW enjoys
better generalization performance than `2-Adam, also validated in
Sec. 6. Appendix C intuitively discusses the generalization benefits
of coordinate-adaptive regularization in AdamW.

6 EXPERIMENTS

Investigation on singular values of Hessian. We first respec-
tively use AdamW and `2-Adam to train two popular network
architectures on ImageNet [65], i.e. ResNet50 [11] and vision
transformer small (ViT-small) [3] for both 100 epochs. Then we
adopt the method in [66] to estimate the singular values of these two
trained networks. Here AdamW uses a constant weight decay �k,
while AdamW-D adopts an exponentially-decaying weight decay
�k = c1 ·�k with two constants c1 > 0 and � 2 (0, 1). Fig. 1 plots

the spectral density of these singular values on both training and test
data of ImageNet, and shows that there are more than 99% singular
values that are in the range [0, 1] and are much smaller than one.
This also accords with the observations on AlexNet [67], VGG [52]
and ResNet [11] in [51], [61]–[63]. All these observations support
the results in Sec. 5.2.
Investigation on generalization. To compute the key general-
ization error terms erradamw =

Pd
i=1h(x

(i)
adamw) and erradam+`2

=
Pd

i=1h(x
(i)
adam+`2) in Theorems 6 and 7, one needs to explicitly

compute the full Hessian for matrix multiplication which however is
prohibitively computable. So here we compute their approximations
erradamw and erradam+`2 in Corollary 3, and thus compare the
generalization error bounds of AdamW and `2-Adam. For more
comprehension, we also test erradamw-d of AdamW-D, where
erradamw-d shares the same formulation with erradamw but performs
computation on the models trained by AdamW-D with the above
exponentially-decaying weight decay �k.

Then we receptively train three models, namely, ResNet18,
ResNet50 and ViT-small, on ImageNet by using AdamW, AdamW-
D and `2-Adam, and well tune the hyper-parameters of these three
optimizers, e.g. learning rate and weight decay (regularization)
parameter �. Note, here `2-Adam includes Adam by setting �=
0. Next, we compute erradamw, erradamw-d and erradam+`2 on the
test dataset of ImageNet, since test dataset can better reveal the
generalization ability of an algorithm. Table 1 shows that on all test
cases, erradamw and erradamw-d are often smaller than erradam+`2 by
a remarkable margin. erradamw-d has similar values with erradamw.
These results empirically support the superior generalization error

Page 25 of 55 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Fig. 3: Training and test curves comparison of `2-Adam, AdamW and AdamW-D on ImageNet. See more results in Appendix A.

model ResNet18 ResNet50 ViT-small
train epoch 90 100 100 200 300
optimizer AdamW/-D Adam+`2/-D AdamW/-D Adam+`2/-D AdamW/-D Adam+`2/-D AdamW/-D Adam+`2/-D AdamW/-D Adam+`2/-D

err in bound 3.43 / 3.40 3.85 / 3.82 3.42 / 3.41 3.78 / 3.77 3.62 / 3.63 3.75 / 3.76 3.58 / 3.57 3.72 / 3.71 3.47 / 3.45 3.70 / 3.69

test acc. (%) 67.9 / 70.1 67.2 / 67.4 77.0 / 77.1 76.5 / 76.4 76.1 / 75.9 75.3 / 75.4 79.2 / 79.3 77.6 / 77.7 79.8 / 80.0 78.5 / 78.6

TABLE 1: Generalization of AdamW (constant weight decay), AdamW-D (decaying weight decay), `2-Adam (constant weight decay)
and `2-Adam-D (decreasing weight decay) on ImageNet. AdamW/-D denotes AdamW/AdamW-D; Adam+`2/-D has the same meaning.

6 EXPERIMENTS

Investigation on singular values of Hessian. We first respectively
use AdamW and `2-Adam to train two popular network architec-
tures on ImageNet [63], i.e. ResNet50 [13] and vision transformer
small (ViT-small) [3] for both 100 epochs. Then we adopt the
method in [64] to estimate the singular values of these two trained
networks. AdamW uses constant weight decay �k, while AdamW-
D adopts exponentially-decaying weight decay �k =c1 · �k with
two constants c1 > 0 and � 2 (0, 1). Fig. 2 plots the spectral
density of these singular values on training/test data of ImageNet,
and shows that there more than 99% singular values are in the
range [0, 1] and are much smaller than one. This accords with the
observations on AlexNet, VGG and ResNet in [49], [59]–[61]. All
these observations support the results in Sec. 5.2.
Investigation on generalization. To compute the key general-
ization error terms i.e., ērradamw and ērradam+`2 in Theorems 6

and 7, one needs to explicitly compute the full Hessian for
matrix multiplication which however is prohibitively computable.
So we compute their approximations erradamw and erradam+`2 in
Corollary 3 to compare the generalization error bounds of AdamW
and `2-Adam. For more comprehension, we also test erradamw-d of
AdamW-D which shares the same formulation with erradamw but
performs computation on the models trained by AdamW-D with
the above exponentially-decaying weight decay �k.
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of AdamW over `2-Adam. Moreover, Table 1 also reveals that 1)
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training cost, the faster convergence of AdamW could also partially
explain its better generalization performance over `2-Adam.
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problems and PŁ-conditioned problems. Moreover, we find that
AdamW provably minimizes a dynamically regularized loss that
combines a vanilla loss and a dynamical regularization, and thus its
behaviors differ from those in Adam and ℓ2-Adam. Besides, for the
first time, we quantitatively justify the generalization superiority
of AdamW over both Adam and ℓ2-Adam. Finally, experimental
results validate the implications of our theory.
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