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A Hybrid Stochastic-Deterministic Minibatch
Proximal Gradient Method for Efficient

Optimization and Generalization
Pan Zhou, Xiao-Tong Yuan, Member, IEEE, Zhouchen Lin, Fellow, IEEE, Steven C.H. Hoi, Fellow, IEEE

Abstract—Despite the success of stochastic variance-reduced gradient (SVRG) algorithms in solving large-scale problems, their
stochastic gradient complexity often scales linearly with data size and is expensive for huge data. Accordingly, we propose a hybrid
stochastic-deterministic minibatch proximal gradient (HSDMPG) algorithm for strongly convex problems with linear prediction structure,
e.g. least squares and logistic/softmax regression. HSDMPG enjoys improved computational complexity that is data-size-independent for
large-scale problems. It iteratively samples an evolving minibatch of individual losses to estimate the original problem, and can efficiently
minimize the sampled subproblems. For strongly convex loss of n components, HSDMPG attains an ε-optimization-error within
O
(
κ logζ+1

(
1
ε

)
1
ε

∧
n logζ

(
1
ε

))
stochastic gradient evaluations, where κ is condition number, ζ = 1 for quadratic loss and ζ = 2 for

generic loss. For large-scale problems, our complexity outperforms those of SVRG-type algorithms with/without dependence on data size.
Particularly, when ε = O(1/

√
n) which matches the intrinsic excess error of a learning model and is sufficient for generalization, our

complexity for quadratic and generic losses is respectively O(n0.5 log2(n)) and O(n0.5 log3(n)), which for the first time achieves optimal
generalization in less than a single pass over data. Besides, we extend HSDMPG to online strongly convex problems and prove its higher
efficiency over the prior algorithms. Numerical results demonstrate the computational advantages of HSDMPG.

Index Terms—Convex Optimization, Precondition, Online Convex Optimization, Stochastic Variance-Reduced Algorithm

F

1 INTRODUCTION

CONVEX optimization problem has received broad interests,
because it has applications in a wide range of disciplines,

such as computer vision [1]–[5], signal processing [6]–[8], statis-
tical learning [9]–[11], finance [12], [13]. In this work, we are
particularly interested in the following finite-sum or online strongly
convex optimization problems with linear prediction structure:

min
θ∈Rd

F (θ)=:

{
1
n

∑n
i=1 `(θ

>xi,yi) + τµ
2 ‖θ‖

2
2 (finite-sum)

E[`(θ>x,y;π)] + τµ
2 ‖θ‖

2
2 (online)

,

(1)
where the convex loss function `(θ>x,y) measures the discrep-
ancy between the linear prediction θ>x and the ground truth
y, τ ∈ {0, 1} indicates whether there is a regularization term
µ
2 ‖θ‖

2
2 which aims to enhance generalization ability of the linear

model, d denotes the parameter dimension. For the finite-sum
problem, each individual loss `(θ>xi,yi) is associated with the
i-th sample, while in online setting, the stochastic component
`(θ>x,y;π) is indexed by a random variable π. In this work,
we assume F (θ) is µ-strongly-convex even in the absence of
the regularization µ

2 ‖θ‖
2
2. The formulation (1) encapsulates a

vast body of important problems, e.g. least squares regression,
logistic regression and softmax regression, to name a few. In this

• P. Zhou is with the Sea AI Lab of Sea group, Singapore (email:
panzhou3@gmail.com). Part work of this manuscript is done in Salesforce
and remaining work is done in Sea.

• S. C.H. Hoi is with the Salesforce Research, Singapore (email:
shoi@salesforce.com).

• X.-T. Yuan (�) is with the School of Computer & Software at Nanjing
University of Information Science and Technology, China (corresponding
author, email: xtyuan@nuist.edu.cn).

• Z. Lin is with the School of EECS, Peking University, China, and also with
the Cooperative Medianet Innovation Center, Shanghai Jiaotong University,
China (email: zlin@pku.edu.cn).

work, we focus on developing scalable and autonomous first-order
optimization methods to solve this fundamental problem which
has been extensively studied with a bunch of efficient algorithms,
such as gradient descent (GD) [14], stochastic GD (SGD) [15],
SDCA [16], SAGA [17], SVRG [18], Catalyst [19], SCSG [20],
Catalyst [19], Katyusha [21], and Varag [22].

1.1 Motivation

Despite the remarkable success of the stochastic gradient methods
and their variance-reduced extensions for solving problem (1), the
stochastic gradient evaluation complexity (which usually dominates
the computational cost) of these algorithms on the finite-sum
problems tends to scale linearly with data size n. Such a linear
dependence is not only expensive when data scale is huge but also
problematic in online and life-long learning regimes where samples
are coming infinitely. As pointed out in [20], there are situations in
which accurate solutions can be obtained with less than a single
pass through the data, e.g. for a large-scale dataset with similar and
redundant samples. Therefore, developing data-size-independent
learning algorithms is of special importance in this big data era.

Particularly, we are interested in efficiently optimizing the
finite-sum problem in (1) to its intrinsic excess error bound which
typically scales as O(1/

√
n). As shown in [23], the excess error

which measures the expected prediction discrepancy between the
optimum model and the learnt model over all possible samples
and thus reflects the generalization performance of the model, can
be decomposed into model approximation error, estimation error
and optimization error. Among them, the model approximation
error measures how closely the selected prediction model can
approximate the optimal model; the estimation error measures
the prediction effects of minimizing the empirical risk instead
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TABLE 1: Comparison of IFO complexity for first-order stochastic algorithms on the µ-strongly-convex finite-sum problem (1) with
linear prediction structure. The solution θ with ε-optimization-error is measured by sub-optimality E [F (θ)−F (θ∗)]≤ε with optimum
F (θ∗). κ denotes the conventional condition number, and κ̃ = L/σ where L and σ are respectively the smoothness and strongly-convex
parameters of `(θ>x,y) w.r.t. θ>x. Here we define a set of constants for quadratic (generic) loss: ζ= 1 (2), and α= 0 (1). These
different constants only affect the logarithmic factor ξ = log

(
1
ε

)
. For brevity, we define ρ= κ̃ακ log1+ζ

(
1
ε

)
+ κ̃α

ε . The third column
(Better Zoom of HSDMPG) summarizes the conditions under which HSDMPG has lower IFO complexity than the compared algorithms.
For notations, we define x ∧ y = min(x, y), x ∨ y = max(x, y). For HSDMPG, it ignores a logarithmic factor log d in its IFO
complexity for brevity, as log d is often much smaller than d, κ, n and 1

ε .

ε-Optimization Error for ERM (1) 1√
n

-Optimization
IFO Complexity Better Zoom of HSDMPG Error for ERM (1)

SGD O
(

1
µε

)
¬ µ≤ κ̃α, µκ̃ακεξζ+1≤O(1) O (n)

or  O(n)≤ 1
µεκ̃αξζ

, µκ̃ακεξζ+1≤O(1)
SVRG, SAGA, APSDCA O

(
(n+ κ) log

(
1
ε

))
¬ ρξ−1 ≤ O (n) O (n log(n))

APCG O
(
n√
µ
log
(
1
ε

)) ¬ µ0.5ρξ−1 ≤ O (n) O
(
n1.25 log(n)

)
or  µ ≤ κ̃αξ1−ζ , µ0.5κ̃ακξ−ζ ≤ O(n)

SPDC, Catalyst, Katyusha O
(
(n+

√
nκ) log

(
1
ε

))
¬ ρξ−1∧ρ2ξ−2κ−1≤O (n) O (n log(n))

AMSVRG O
((
n+ nκ

n+
√
κ

)
log
(
1
ε

))
¬ ρξ−1 ≤ O (n) O (n log(n))

Varag O
(
n log

(
n∧ 1

ε

)
+
√
n
(

1
ε0.5
∧κ0.5log

(
1
εκ

))) ¬ ρ log−1(n ∧ 1
ε
) ≤ O (n) O (n log(n))

or  ρ2(ε∨ 1
κlog2( 1

εκ
)
)≤O (n)

SCSG O
(
(n ∧ κ

ε
+ κ) log

(
1
ε

))
¬ κ̃αξα ≤ O (κ) O (n log(n))

averaged accelerated SGD (quadratic) O
(
Ld
ε

)
¬ εξ2

µ
≤ O (d) O

(
n0.5d

)
averaged SGD quadratic O

(√
L+
√
d

ε

)
¬ κ2ε2ξ4 ≤ O(d) O

(
n0.5(d0.5 + L0.5)

)
generic O

(
κ̃3d
ε

)
¬ κεξ3

κ̃2 ≤ O(d) O
(
n0.5dκ̃3

)
HSDMPG quadratic O

(
κ log2

(
1
ε

)
+ 1

ε

∧
n log

(
1
ε

))
———————————— O

(
n0.5log2(n)

)
generic O

(
κ̃κ log3

(
1
ε

)
+ κ̃
ε

∧
κ̃n log2

(
1
ε

))
———————————— O

(
n0.5κ̃ log3(n)

)
of the population risk; and the optimization error denotes the
prediction difference between the exact and approximate solutions
of empirical risk minimization (ERM). See more details in Sec. 2.
Therefore, to achieve small excess error, one should minimize these
three kinds of errors jointly. With optimal choice µ = O(1/

√
n)

to balance empirical risk and generalization gap (namely, the
difference in performance of the model on population versus
empirical data), the estimation error is known to be of the order
O(1/

√
n), which implies the excess error is at least of the order

O(1/
√
n) [24]–[26]. Thus, it is sufficient to optimize problem (1)

to the optimization error O(1/
√
n) to match the optimal excess

error without redundant computation.

1.2 Overview of our algorithm and results
The main contribution of this paper is a novel Hybrid Stochastic-
Deterministic Minibatch Proximal Gradient (HSDMPG) algorithm
with substantially improved complexity over existing methods.
Moreover, for large-scale problems, HSDMPG enjoys data-
size-independent complexity and thus is scalable. For quadratic
problems under both the finite-sum and online settings, the core idea
of our method is to recurrently convert the original large-scale ERM
problem (1) into a series of minibatch proximal ERM subproblems
for efficient minimization and update. Specifically, as a starting
point, we uniformly randomly select a minibach S of components
of the risk function F to form a stochastic approximation FS
that will be fixed throughout the algorithm iteration. Next, at each
iteration step, we first construct a stochastic surrogate of F by
combining the Bregman divergence of FS at the current iterate and
a first-order hybrid stochastic-deterministic approximation of F ;
and then we invoke existing variance-reduced algorithms, such as
SVRG, to minimize this surrogate subproblem to desired optimiza-
tion error. For quadratic loss, we can provably establish sharper
bounds of incremental first order oracle (IFO, see Definition 2
in Sec. 3.2) for such a hybrid stochastic-deterministic minibatch

proximal update procedure in large-scale settings. To extend the
strong efficiency guarantee to generic strongly convex losses, we
propose to iteratively convert the non-quadratic problem into a
sequence of quadratic subproblems such that the aforementioned
method can be readily applied to optimization. In this way, up
to logarithmic factors, HSDMPG still enjoys an identical sharp
bound of IFO for strongly convex optimization problems.
Finite-sum Setting. For finite-sum problems, Table 1 summarizes
the computational complexity (measured by IFO) of HSDMPG and
several representative baselines, including SGD [15], [27],
SVRG [18], SAGA [17], APSDCA [28], APCG [29], SPDC [30],
Catalyst [19], Varag [22], AMSVRG [31], Katyusha [21], and
SCSG [20], averaged accelerated SGD [32], [33]. We highlight the
advantages of our method over these prior approaches below:

1) To achieve ε-optimization-error, i.e. E[F (θ)−F (θ∗)]≤ε, the
IFO complexity of HSDMPG on the finite-sum problem in (1)
is O

(
κ̃ακ logζ+1

(
1
ε

)
+ κ̃α

ε

∧
κ̃αn logζ

(
1
ε

) )
where ζ = 1,

α= 0 for quadratic loss and ζ= 2, α= 1 for generic strongly
convex loss. In comparison, the IFO complexity bounds of all
the compared algorithms except (averaged accelerated) SGD
and SCSG scale linearly w.r.t. the data size n. As specified
in the third column (Better Zoom of HSDMPG) of Table 1,
HSDMPG is superior to these algorithms in large-scale problem
settings which are of central interest in big data applications.
Compared with SGD, as in most cases the condition number κ is
of the orderO(1/µ), HSDMPG improves over SGD by a factor
at least O

(
κ
κ̃α ∧

1
κ̃αε

)
(up to logarithmic factors). For SCSG, if

we ignore the logarithmic factors, our HSDMPG improves the
factor O

(
κ
ε

)
in SCSG to O

(
κ̃α

ε

)
. So on quadratic problems,

HSDMPG strictly improves SGD and SCSG, since κ̃α = 1.
For generic problems, when κ ≥ κ̃ which often holds in
practice as the commonly used data {xi}ni=1 has bounded norm,
HSDMPG also enjoys lower computational complexity than
both SGD and SCSG. See more detailed discussion in Sec. 4.2.
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Finally, Table 1 shows that if the problems are of high-dimension
or the optimization error ε is very small, then HSDMPG has
lower complexity than averaged (accelerated) SGD.

2) For the practical setting where ε = O(1/
√
n) which

matches the optimal intrinsic excess error, HSDMPG has the
IFO complexity O

(
n0.5log2(n)

)
for the quadratic loss and

O
(
n0.5κ̃αlog3(n)

)
for the generic strongly convex loss. By

ignoring the small logarithmic term log(n), both complexities of
HSDMPG are lower than the complexity bound O

(
n
)

of SGD
by a factor O

(
n0.5/κ̃α

)
. Similarly, HSDMPG improves over

APCG and other remaining algorithms except for averaged (ac-
celerated) SGD, by factors of O

(
n0.75/κ̃α

)
and O

(
n0.5/κ̃α

)
,

respectively. Moreover, HSDMPG also outperforms averaged
(accelerated) SGD on high dimensional problems. These re-
sults demonstrate the superior computational efficiency of
HSDMPG for attaining near-optimal generalization rate of
a statistical learning model.

Online Setting. For the online version of problem (1), we establish
the IFO complexity boundO

(
κ̃ακ logζ+1

(
1
ε

)
+ κ̃α

ε

)
where ζ =

1, α = 0 for quadratic problems and ζ = 2, α = 1 for generic
problems. Under this setting, SGD and SCSG have IFO complexity
O
(

1
µε

)
and O

(
κ
ε log

(
1
ε

))
respectively, while other algorithms

in Table 1 are not applicable or are not equipped with rigorous
analysis of convergence and computational complexity. Similar to
finite-sum setting, HSDMPG is also faster than SGD by a factor
of O

(
κ
κ̃α ∧

1
κ̃αε

)
, and enjoys lower computational complexity than

SCSG when κ ≥ κ̃α.

Discussion with our conference work. This paper is an extension
of our previous work [34] which proposes HSDMPG and analyzes
its computational complexity for solving the regularized finite-
sum problem in (1). Compared with its short version, this paper
makes the following changes. 1) It slightly modifies the HS-
DMPG algorithm in [34] to use more flexible Bregman divergence,
and accordingly develops more advanced analysis technique
which improves the computational complexity in [34]. Specifi-
cally, it improves the complexity O

(
κ̃ακ

√
s log(d) logζ+1

(
1
ε

)
+(

1 + κ3 log1.5(d)
s1.5

)
κ̃α

ε

∧(
1 + κ log0.5(d)

s0.5

)
κ̃α
′
n logζ

(
1
ε

))
of HS-

DMPG in [34] to O
(
κ̃ακ logζ+1

(
1
ε

)
+ κ̃α

ε

∧
κ̃αn logζ

(
1
ε

))
where ζ=1, α=α′=0 for quadratic problems and ζ=2, α=1,
α′ = 3 for generic problems, where s > 1 is the size of the
minibatch S of a stochastic approximation FS to the risk function
F (see details in Sec. 3.1), and d denotes the problem dimension.
For the practical setting where ε = O(1/

√
n) which matches

the optimal intrinsic excess error, our current IFO complexity
is O

(
κ̃αn0.5log1+ζ

(
n
))

where ζ = 1, α = 0 for the quadratic
loss and ζ = 2, α = 1 for the generic loss, which improves
previous ones O

(
κ̃αn0.875logβ

(
n
))

where β=1.5, α=0 for the
quadratic loss and β=2.25, α=1 for the generic loss. See more
discussion of the algorithm modification and improved theoretical
technique in Sec. 3.2.1. 2) Our previous work [34] only analyzes
the regularized finite-sum problems in (1), while this work extends
HSDMPG to the regularized and non-regularized finite-sum and
online problems, which greatly improves the applicability of
HSDMPG. 3) Experimental results of our modified HSDMPG on
the regularized and non-regularized finite-sum and online problems
are provided to better demonstrate its computational efficiency.

2 RELATED WORK

Stochastic gradient algorithms. Gradient descent (GD) [14]
method has long been applied to solve ERM and enjoys linear
convergence rate on strongly convex problems. But it needs to
compute full gradient per iteration, leading to huge computation
cost on large-scale problems. To improve efficiency, incremental
gradient algorithms have been developed via leveraging the finite-
sum structure and have witnessed tremendous progress recently.
For instance, SGD [15], [35] only evaluates gradient of one (or
a minibatch) randomly selected sample at each iteration, which
greatly reduces the cost of each iteration and shows more appealing
efficiency than GD on large-scale problems [27], [31], [36], [37].
Along this line of research, a variety of variance-reduced variants,
such as SVRG [18], SAGA [17], APSDCA [27], AMSVRG [31],
SCSG [20], Catalyst [19], Katyusha [21], and Varag [22], are
developed and have delivered exciting progress such as linear
convergence rates on strongly convex problems as opposed to sub-
linear rates of vanilla SGD [27]. The hybrid stochastic-deterministic
gradient descent method [38]–[42] iteratively samples an evolving
minibatch of samples for gradient estimation or subproblem
construction and works favorably in reducing the computational
complexity. Our HSDMPG method differs significantly from
these prior algorithms. Based on the Bregman-divergence of the
minibatch function and a hybrid stochastic-deterministic first-order
approximation of the original function, HSDMPG constructs a
variance-reduced minibatch proximal function which is provably
more efficient. Moreover, HSDMPG can employ any off-the-
shelf algorithm to solve the constructed sub-problems in the inner
loop and thus is flexible for implementation. HSDMPG shares
a similar spirit with the DANE method [43] which also uses
a local Bregman-divergence-based function approximation for
communication-efficient distributed quadratic loss optimization.
One main difference lies in the way of constructing first-order
approximation of the risk function: HSDMPG employs a novel
hybrid stochastic-deterministic approximation strategy which is
substantially more efficient than the deterministic strategy as used
by DANE. Moreover, DANE focuses on distributed quadratic
problems, while HSDMPG is applicable not only to quadratic
problems but also to generic strongly convex problems.
Generalization and optimization. In the seminal work of [23],
it has been demonstrated that the excess error that measures the
generalization performance of an ERM model over a function
class can be decomposed into three terms in expectation: an
approximation error that measures how accurate the function class
can approximate the underlying optimum model; an estimation
error that measures the effects of minimizing ERM instead of
population risk; and an optimization error that represents the
difference between the exact solution and the approximate solution
of ERM. Particularly, for the `2-regularized convex ERM with
linear models as in (1), its estimation error (or excess risk) has
long been studied with a vast body of deep theoretical results
established [26], [32], [33], [44]–[46]. A simple yet powerful
tool for analyzing estimation error is the stability of an estimator
to the changes of training dataset [47]. Among others, uniform
stability is one of the most popular and useful notion of stability,
which measures the prediction discrepancy of an algorithm/model
respectively trained on a vanilla dataset D and the dataset that
includes all samples in D but randomly removes an arbitrary
sample in D. Under this notion, Bousquet et al. [47] showed that
the `2-regularized convex ERM has uniform stability of the order
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β = O(1/(µn)). On the other hand, the estimation error has
been shown to be of the order O(β + 1/

√
n), and the optimal

uniform stability β should be of the order O(1/
√
n) [25], [48].

This gives rise to the optimal choice µ = O(1/
√
n) for balancing

empirical loss and generalization gap to achieve estimation error
O(1/

√
n). It implies that the overall excess error is dominated

by O(1/
√
n). In this sense, it suffices to solve the `2-regularized

ERM to optimization error O(1/
√
n) to match the intrinsic excess

error.

3 HSDMPG ALGORITHM FOR QUADRATIC LOSS

In this section, we first introduce the hybrid stochastic-deterministic
minibatch proximal gradient (HSDMPG) algorithm for quadratic
loss function which actually serves as a basis for optimizing
generic strongly convex losses. Then we theoretically analyze
its convergence rate and computational complexity for finite-sum
and online problems. We extend HSDMPG and its theoretical
analysis to generic strongly convex loss functions in Sec. 4.

3.1 Algorithm
The HSDMPG method is outlined in Algorithm 1. The initial step
is to randomly sample a minibatch S of data points of size s to
construct a stochastic approximation

FS(θ) =
1

s

∑
i∈S

`(θ>xi,yi) +
τµ

2
‖θ‖22 (2)

to the original risk function F (θ) in problem (1). FS(θ) will be
fixed throughout the computational procedure to follow. Then in
the iteration loop the algorithm iterates between two steps of S1
and S2. In step S1, we uniformly randomly sample a size increasing
minibatch St of samples to estimate an inexact function

FSt(θ) =
1

|St|
∑

i∈St
`(θ>xi,yi) +

τµ

2
‖θ‖22. (3)

LetDg(θ1,θ2) = g(θ1)−g(θ2)−〈∇g(θ2),θ1−θ2〉 denote the
Bregman divergence of a function g. Based on FS(θ) and FSt(θ),
we construct a variance-reduced minibatch proximal objective
P̃t−1(θ) to approximate the objective F (θ) in (1), where

P̃t−1(θ),FSt(θt−1)+〈∇FSt(θt−1),θ−θt−1〉+ηDF̃S(θ,θt−1).
(4)

HereDF̃S (θ,θt−1) is the Bregman divergence of a regularized loss
F̃S(θ) = FS(θ)+ γ

2 ‖θ‖
2
2 which essentially measures the distance

between θ and θt−1 on the current geometry curve estimated on
F̃S(θ). There are three reasons that we choose F̃S(θ) = FS(θ) +
γ
2 ‖θ‖

2
2 to construct the Bregman divergenceDF̃S (θ,θt−1). Firstly,

FS(θ) in F̃S(θ) is an unbiased estimation of the vanilla function
F (θ), and can well estimate the local geometry of F (θ). In
contrast, other commonly used functions F̃S in DF̃S (θ,θt−1),
e.g. F̃S = 1

2‖θ‖
2
2, usually cannot well estimate the geometry

curve of vanilla function F (θ). Secondly, as shown below, F̃S(θ)
has finite-sum structure and allows us to use efficient stochastic
algorithm to optimize P̃t−1(θ), while the commonly used F̃S =
1
2‖θ‖

2
2 has not the finite-sum structure and only uses gradient

descent to optimize. Thirdly, the regularization γ
2 ‖θ‖

2
2 in F̃S(θ)

enhances the strongly-convex parameter of P̃t−1(θ) and P̃t−1(θ)
from ηµ to η(µ+ γ), which benefits the optimization of P̃t−1(θ).
We define the next iterate as

θt = arg minθ P̃t−1(θ) = arg minθ Pt−1(θ), (5)

Algorithm 1 Hybrid Stochastic-Deterministic Minibatch Proximal
Gradient (HSDMPG) for quadratic loss.

Input: initialization θ0, regularization constant γ in (5), opti-
mization error εt.
Initialization: Uniformly randomly sample a data batch S of
size s to form FS(θ) in (2).
for t = 1, 2, . . . , T do

(S1) Uniformly randomly sample a minibatch St to form
FSt(θ) = 1

|St|
∑
i∈St`(θ

>xi,yi) + τµ
2 ‖θ‖

2
2 and compute

∇FSt(θt−1) to construct loss Pt−1(θ) in (5).
(S2) Optimize the subproblem (5), e.g. via SVRG, to obtain
θt that satisfies E[‖∇Pt−1(θt)‖2] ≤ εt.

end for
Output: θT .

where Pt−1(θ) ,

〈∇FSt(θt−1),θ〉+η
[
FS(θ)−〈∇FS(θt−1),θ〉+ γ

2
‖θ−θt−1‖22

]
.

In Pt−1, its finite-sum structure comes from the initial stochastic
approximation FS(θ) and its gradient at θt−1. Since along with
more iterations, the size of St increases which indicates that the loss
Pt−1 is a variance-reduced loss and will converge to the original
loss F (θ) in problem (1). Then in step S2, we approximately
solve problem (5) via a stochastic gradient optimization method
such as SVRG. The principle behind this strategy is that for the
initial optimization progress, inexact gradient already can well
decrease the loss since the current solution is far from the optimum,
while along more iterations, the current solution becomes closer to
optimum, requiring more accurate gradient for further reducing the
loss function. In this way, our proposed method can well balance the
convergence speed and the computational cost at each iteration and
thus has the potential to achieve improved overall computational
efficiency. Shamir et al. [43] proposed the DANE method which
uses a similar local Bregman divergence based regularization for
distributed quadratic optimization problems. Our method improves
upon DANE in two aspects: 1) we use the variance-reduction
techniques to reduce the overall computational complexity, and
2) HSDMPG is applicable not only to quadratic problems but
also to generic strongly convex problems with about the same
computational complexity which will be discussed in Sec. 4.

3.2 Convergence and complexity analysis

For analysis, we first introduce two necessary definitions, i.e. strong
convexity and Lipschitz smoothness, which are conventionally used
in the analysis of convex optimization methods [18], [27].

Definition 1 (Strong Convexity and Smoothness). A differentiable
function g(θ) is said to be µ-strongly-convex and L-smooth if
∀θ1,θ2, it satisfies

µ

2
‖θ1 − θ2‖22 ≤ Dg(θ1,θ2) ≤ L

2
‖θ1 − θ2‖22.

where Dg(θ1,θ2) = g(θ1)− g(θ2)− 〈∇g(θ2),θ1 − θ2〉.

For brevity, let `i(θ) = `(θ>xi,yi) + τµ
2 ‖θ‖

2
2. Follow-

ing [18], [30], we employ the incremental first order oracle (IFO)
complexity as the computation complexity metric for solving
problem (1).

Definition 2. An IFO takes an index i ∈ [n] and a point (xi,yi),
and returns the pair (`i(θ),∇`i(θ)).
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Fig. 1: Investigation of ν and h: stochastic gradient algorithms process data multiple pass on quadratic problems (letter and
protein) and logistic regression problems (ijcnn and w8a) where their regularization constant µ is µ = 10−4. We define
Λ1 = 1

n

∑n
i=1‖H−1/2(∇F (θ) − ∇`i(θ) − τµθ)‖22, Λ2 = 1

n

∑n
i=1‖∇F (θ) − ∇`i(θ) − τµθ‖22, the smallest eigenvalue λmin

and average eigenvalue λavg of the Hessian H at each iteration. One can observe that ν2(= max{Λ1}) is often of the order O(1/λavg)
and is much smaller than O(1/λmin) and h2 is often at the same order as ν2. Best viewed in ×2 sized color pdf file.

The IFO complexity can accurately reflect the overall computa-
tional performance of a first-order algorithm, as objective value and
gradient evaluation usually dominate the per-iteration complexity.
Next, we provide convergence analysis of HSDMPG on finite-sum
and online quadratic problems in Sec. 3.2.1 and Sec. 3.2.2, respec-
tively. In the following analysis, for brevity, let H be the Hessian
matrix of the quadratic function F (θ) and ‖θ‖H =

√
θ>Hθ.

We always suppose that ‖xi‖ ≤ r,∀i, which generally holds for
natural data analysis, e.g., in computer vision and signal processing.

3.2.1 Finite-sum setting
Now we analyze HSDMPG under finite-sum setting. We sum-
marize our main result in Theorem 1 which shows the linear
convergence rate of HSDMPG for quadratic problems.

Theorem 1. Assume each loss `(θ>xi,yi) is quadratic, and
supθ∈Θ

1
n

∑n
i=1 ‖H−1/2(∇F (θ) − ∇`i(θ) − τµθ)‖22 ≤ ν2,

where the set Θ contains the sequence {θt}Tt=0 produced by
Algorithm 1. Consider the following two cases:
(1) when the empirical risk 1

n

∑n
i=1 `(θ

>xi,yi) is µ-strongly
convex, we do not impose any regularization, namely τ = 0, in (1);
(2) when the empirical risk 1

n

∑n
i=1 `(θ

>xi,yi) is only convex,
we impose the regularization µ

2 ‖θ‖
2
2 where τ = 1 in (1).

For both cases, we set η = 2, εt = µ1.5

4(3µ+4γ)
exp
(
− µ(t−1)

2(3µ+4γ)

)
, γ =

1
2

(
28r2

3s log
(

2d(T+1)
δ

)
−µ
)+

, |St| = 16ν2(3µ+4γ)2

µ2
exp
(

µt
3µ+4γ

)∧
n,

where d is the problem dimension, x+ denotes max(x, 0). Then if
s≥ 28

3 log
(

2d(T+1)
δ

)
∧n, with probability at least 1−δ the sequence

{θt} produced by Algorithm 1 for cases (1) and (2) obeys

E[F (θt)−F (θ∗)] = 1
2E[‖θt − θ∗‖2H ] ≤ ζ exp

(
− µt

3µ+ 4γ

)
,

where ζ= 1
2

(
‖θ0−θ∗‖H+ 1

9

)2
+ 3

8 , and the expectation is taken
on the randomness of sampling minibatch St to construct the
inner subproblem (5) and the randomness of SVRG to solve the
subproblem (5).

See its proof in Appendix B.1. The randomness in Theorem 1
comes from two aspects: 1) the initial step which randomly samples
a minibatch S to construct a stochastic approximation FS(θ) in (2)
to the original function F (θ) and leads to the probability 1− δ in
Theorem 1; 2) the subsequent random sampling in the algorithm,
such as sampling minibatch St for constructing FSt(θ) in (3) and
sampling minibatch in SVRG to minimize FSt(θ), which gives the
expectation in Theorem 1. These two sources of randomness are ac-
tually independent of each other. More specifically, the randomness
on the probability 1− δ comes from Lemma 3 in Appendix, where
we bound 2µ

3µ+4γ ≤ ‖H
1/2 (HS + γI)

−1
H1/2‖ ≤ 2 and

Algorithm 2 SVRG for solving the inner problem Pt−1(θ).

Input: initialization θ̃0 = θt−1 where θt−1 is the previous
approximation solution for minθ Pt−2(θ), minibatch size s′ at
each iteration, epoch length m, step size η′, epoch number Q,
the gradient ∇FSt(θt−1).
for q = 1, . . . , Q do

(S1) θ̃ = θ̃q−1

(S2) g̃ = ∇Pt−1(θ) = ∇FSt(θt−1) + η
[
∇FS(θ̃) −

∇FS(θt−1)+γ(θ̃−θt−1)
]
.

(S3) θ0 = θ̃
for k = 1, . . . ,m do

(S4) uniformly randomly sample a minibatch S ′k from S
(S5) vk=∇PS

′
k

t−1(θ
k−1)−∇PS

′
k

t−1(θ̃)+g̃=η
[
∇FS

′
k

S (θk−1)

−∇FS
′
k

S (θ̃) + γ(θk−1 − θ̃)
]

+ g̃, where FS
′
k

S (θk−1) =
1
|S′k|
∑
i∈S′k

`((θk−1)>xi,yi)+ τµ
2 ‖θ‖

2
2

(S6) θk = θk−1 − η′vk
end for
θ̃q = θm

end for
Output: θt = θ̃Q.

‖I−λH1/2 (HS + γI)
−1
H1/2‖ ≤ max

(
1−2λ, 1− 2µ

3µ+4γ

)
,

in which H and HS respectively denote the Hessian matrix of
F (θ) and FS(θ) in problem (1).

The main message conveyed by Theorem 1 is that HS-
DMPG enjoys linear convergence rate on the quadratic loss
when we use evolving size of the minibatch St. The assumption
that supθ

1
n

∑n
i=1 ‖H−1/2(∇F (θ) − ∇`i(θ) − τµθ)‖22 ≤ ν2

in HSDMPG is mild, which requires the variance of stochastic
gradient under the Hessian matrix to be bounded. Such an
assumption is analogous to the one used in analysis of SGD that
imposes the bounded-variance assumption on stochastic gradient,
namely, 1

n

∑n
i=1 ‖∇F (θ)−∇`i(θ)− τµθ‖22.

In the statement of SVRG Algorithm 2 in the initialization step
gradient for FS(θt−1) should also be included. Also, check if the
output of Algorithm should be θt.

Based on this result, we further analyze the computational
complexity of HSDMPG to better understand its overall efficiency
in computation. At each iteration, we use the SVRG method solve
the inner-loop subproblem (5) because it only accesses the first-
order information of the objective function and is efficient. The
optimization details of SVRG is summarized in Algorithm 2. Then
we summarize our main result on the computation complexity of
HSDMPG in Corollary 1 with proof provided in Appendix B.2.
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Corollary 1. Suppose that the assumptions in Theorem 1 hold, the

inner-loop subproblems are solved via SVRG, and s≥ r2 log( dδ )
µ ∧n.

For both cases (1) and (2) in Theorem 1, to achieve E[F (θt) −
F (θ∗)] ≤ ε on the quadratic loss, with probability 1− δ the IFO
complexity of HSDMPG is of the order

O
((
κ+ log(d)

)
log2

(1

ε

)
+
ν2

ε

∧
n log

(1

ε

))
,

where κ = L/µ denotes the conditional number.

Since for most problems, the logarithmic factor log(d) is
usually much smaller than other factors, such as κ, n and 1

ε , we
will ignore it in the comparison of results unless otherwise stated.
Compared with those algorithms in Table 1 whose IFO complexity
scales linearly with the data size n, e.g. SVRG, APCG, Katyusha
and AMSVRG, the proposed HSDMPG has data-size-independent
IFO complexity and can outperform them for large-scale learning
problems where the data size n could be huge. To be more precise,
the third column of Table 1 summarizes the conditions under
which HSDMPG outperforms these algorithms in terms of the
computational complexity.

Next, we compare HSDMPG with the algorithms in Table 1
whose IFO complexity does not linearly scale with n. For SGD
whose IFO complexity is O

(
1
µε

)
, HSDMPG also enjoys substan-

tially lower complexity in most cases. Concretely, since ν satisfies
supθ∈Θ

1
n

∑n
i=1 ‖H−1/2(∇F (θ)−∇`i(θ)−τµθ)‖22 ≤ ν2, we

know ν ≤ O
(

1
µ0.5

)
where µ denotes the strongly convex parameter

of the optimization problem. Moreover, the condition number κ is
typically of the order O

(
1/µ

)
. Thus, HSDMPG is always at least

as good as SGD, and is of higher efficiency than SGD when the
optimization error ε is very small to satisfy ε ≤ O

(
1
µn

)
. Moreover,

if the quadratic problems are of high-dimension or the optimization
error ε is very small, then HSDMPG has lower complexity than
averaged (accelerated) SGD.

For SCSG, its IFO complexity is O
(

(n ∧ h2κ
ε + κ) log

(
1
ε

))
,

where h2 = 1
n

∑n
i=1 ‖∇`i(θ∗)+τµθ∗‖22 and θ∗ is the minimizer

of F (θ). By ignoring the logarithmic factors log
(

1
ε

)
and log d

which are usually much smaller than n, κ and 1
ε , we only

need to compare h2κ in SCSG and ν2 in our HSDMPG. Let
us study these factors in the real problems. Specifically, we
consider regularized least square and logistic regression prob-
lems and set their regularization constant µ = 10−4 in (1).
Figure 1 investigates six parameters at each iteration, includ-
ing 1) Λ1 = 1

n

∑n
i=1 ‖H−1/2(∇F (θ) − ∇`i(θ) − τµθ)‖22,

2) Λ2 = 1
n

∑n
i=1 ‖∇F (θ) − ∇`i(θ) − τµθ‖22, 3) ν2 which

equals to the largest Λ1, 4) the smallest eigenvalue λmin of the
Hessian H , 5) the average eigenvalue λavg of H ; 6) h2 =
1
n

∑n
i=1 ‖∇`i(θ∗)+τµθ∗‖22. To estimate the optimum θ∗, we run

full gradient descent sufficiently long until ‖∇F (θ̃)‖2 ≤ 10−10

and approximate θ∗ as θ̃. We first analyze ν2. By comparison,
one can observe that 1) Λ1 is much smaller than 1/λmin; 2) Λ1 is
usually of the order Λ2/λavg and is much smaller than Λ2/λmin.
This means that (∇F (θ) − ∇`i(θ)) does not well align with
the eigenvector direction of the smallest eigenvalue λmin, but is
relatively independent of the eigenvector directions of Hessian H .
Since typically, the average eigenvalue λavg is much larger than the
smallest eigenvalue λavg, then ν2 ≈ O(1/λavg) is much smaller
than the condition number κ = O(1/λmin). Therefore, we can
view ν2 as a constant in this work. Then we look at h2. One can
observe that ν2 is at most eleven times larger than h2. This means
that ν2 and h2 are at the same order, and thus can be viewed

as constants. In this way, one can conclude that HSDMPG often
enjoys lower computational complexity than SCSG on (moderately)
ill-conditioned problems in which the condition number κ usually
satisfies κ ≥ O

(
ν2

h2 log2
(

1
ε

))
, namely the conditions in Table 1.

The complexity in Corollary 1 is superior to our previ-
ous one O

(
κ
√
s log(d) log2

(
1
ε

)
+
(
1 + κ3 log1.5(d)

s1.5

)
1
ε

∧(
1 +

κ log0.5(d)
s0.5

)
n log

(
1
ε

))
of HSDMPG in [34]. There are two reasons

that leads to this improvement. 1) We add one regularization
constant η to weight the Bregman divergence DF̃S (θ,θt−1)
in (4) more flexibly, which is contrast to the fixed η = 1
in [34]. It allows us to derive better choice of η and thus lower
complexity. 2) We advance our analysis technique by improving
the lower bound of R = ‖H1/2(HS + γI)−1H1/2‖ from
R ≥ µ

µ+2γ with γ = (log0.5(d)+
√

2)Lr2

s0.5
in [34] to R ≥ 3µ

3µ+4γ

with γ= 1
2

(
28r2

3s log
(

2d(T+1)
δ

)
−µ
)+

, where x+ denotes max(x, 0).
By comparison, one can observe that we improve γ from O( 1

s0.5 )
to O( 1

s ) which can better lower bound R. It should be mentioned
that R measures the difference between the Hessian (HS +γI) of
our stochastic approximation FS(θ) and the HessianH of original
function FS(θ), and plays key role in our complexity analysis. See
details in Lemma 3 and the proof of Corollary 1 in Appendix.

From a perspective of generalization, we are particularly
interested in the computational complexity of HSDMPG for
optimizing the ERM model (1) to its intrinsic excess error bound
which characterizes the generalization performance of the model.
As reviewed in Sec. 2, the excess error of the considered `2-ERM
model is typically of order O(1/

√
n). Accordingly, one only

needs to solve the optimization problem to the optimization error
ε = O(1/

√
n) [23], [25]. Moreover, to accord with this intrinsic

excess error bound, the regularization constant µ should also be of
the order O( 1√

n
). In this way, the condition number κ could scale

as large as O(
√
n). Based on these results and Corollary 1, we

can derive the IFO complexity bound of HSDMPG for this case
in Corollary 2. See its proof in Appendix B.3.

Corollary 2. Suppose that the assumptions in Corollary 1 hold. For
both cases (1) and (2) in Theorem 1, with probability at least 1− δ,
the IFO complexity of HSDMPG on the quadratic loss to achieve
E[F (θt)−F (θ∗)]≤ 1√

n
is of order O

(
(n0.5 + log(d)) log2(n) +

ν2n0.5
)
.

From Corollary 2, one can observe that the IFO com-
plexity of HSDMPG for quadratic problems is of the order
O
(
n0.5 log2 (n)

)
, where we ignore the constant ν2 and the

logarithmic factor log(d) since as aforementioned, ν2 is much
smaller than 1/µ = O

(
n0.5

)
, and log(d) is often much smaller

than n. It means that HSDMPG can reach the intrinsic excess
error O

(
1/
√
n
)

with strictly less than a single pass over the entire
training dataset. In comparison, we can observe from Table 1
that in the same practical setting, SGD and APCG have IFO
complexityO (n) andO

(
n1.25 log(n)

)
, respectively. By ignoring

the logarithmic factor log(n) which is much smaller than n for
large-scale learning problems, HSDMPG improves over these two
methods by factorsO

(
n0.5

)
andO

(
n0.725

)
, respectively. The IFO

complexity of all other algorithms in Table 1, including SVRG,
SCSG, SPDC, APSDCA, AMSVRG, Catalyst, Katyusha and Varag,
are all of the order O (n log (n)). Similarly, by ignoring the loga-
rithmic factors, HSDMPG has lower IFO complexity than these
algorithms by a factorO

(
n0.5

)
. The complexity in Corollary 2 also

improves our previous complexity O
(
n0.875 log1.5 (n)

)
in [34].
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To summarize this group of results comparison, HSDMPG would
be significantly superior to all these state-of-the-arts when solving
quadratic optimization problems up to the intrinsic excess error.

3.2.2 Online setting
Now we provide the analysis results of HSDMPG for the online
setting. Our main results are stated in Theorem 2.

Theorem 2. Assume that each loss `(θ>xi,yi) is quadratic and L-
smooth w.r.t. θ>xi, and supθ∈ΘEi[‖H−1/2(∇F (θ)−∇`i(θ)−
τµθ)‖22] ≤ ν2, where the set Θ contains the sequence {θt}Tt=0

produced by Algorithm 1. Consider the following two cases:
(1) when the population risk E[`(θ>x,y;π)] is µ-strongly convex,
we do not impose any regularization, namely τ = 0 in (1);
(2) when the population risk E[`(θ>x,y;π)] is only convex, we
impose the regularization µ

2 ‖θ‖
2
2, where we set τ = 1 in (1).

For both cases, we use the same parameter setting in Theorem 1
except |St| = 16ν2(µ+2γ)2

µ2
exp
(

µt
2(µ+2γ)

)
. Then for both cases (1) and

(2), with probability at least 1− δ, the sequence {θt} produced by
Algorithm 1 satisfies

E[F (θt)− F (θ∗)] = 1
2E[‖θt − θ∗‖2H ] ≤ ζ exp

(
− µt

µ+2γ

)
,

where ζ= 1
2

(
‖θ0−θ∗‖H+ 1

2

)2
+ 5

8 , and the expectation is taken
on the randomness of sampling minibatch St to construct the
inner subproblem (5) and the randomness of SVRG to solve the
subproblem (5). Moreover, to achieve E[F (θt)−F (θ∗)] ≤ ε, with
probability at least 1− δ the IFO complexity is of the order

O
((
κ+ log(d)

)
log2

(1

ε

)
+
ν2

ε

)
,

where κ = L/µ denotes the conditional number.

See its proof in Appendix B.4. Similar to Theorem 1, the
randomness in Theorem 2 comes from two aspects, including
(i) the randomness in randomly sampling a minibatch S to
construct a stochastic approximation FS(θ), and (ii) the subsequent
random sampling in the algorithm, e.g. sampling minibatch St for
constructing FSt(θ) in (3) and sampling minibatch in SVRG to
minimize FSt(θ). Please refer to the discussion below Theorem 1.
Theorem 2 shows that with almost the same assumptions and
parameter settings as finite-sum problems, for online-setting
HSDMPG also enjoys the same linear convergence rate in finite-
sum setting. For the computational complexity, it is the same as the
one for finite-sum problems. These results demonstrate the superior
transferability of HSDMPG.

Under online setting, our proposed HSDMPG is consistently
more efficient than SGD. Specifically, by ignoring the logarithmic
factor, HSDMPG is at least O

(
κ ∧ 1

ε

)
times faster than SGD

in terms of IFO complexity. The complexity of SCSG becomes
O
(
κ
ε log

(
1
ε

))
which is higher than ours, since we always have

κ ≥ O(ν2). Actually, as shown in Figure 1, ν2 is much smaller
than κ in practice, indicating much higher computational efficiency
of HSDMPG over SCSG. For the remaining algorithms in Table 1,
they are not applicable or are not equipped with rigorous analysis
of convergence and computational complexity for online convex
problems. These results also show the advantages of HSDMPG.

4 HSDMPG FOR GENERIC CONVEX LOSS

4.1 Algorithm
The computational complexity guarantees established in the previ-
ous section are only applicable to quadratic loss function. In order
to extend these results to non-quadratic convex loss function, we

Algorithm 3 Hybrid Stochastic-Deterministic Minibatch Proximal
Gradient (HSDMPG) on the generic loss.

Input: Regularization constant γ and initialization θ0.
for t = 1, 2, . . . , T do

(S1) Construct a finite-sum quadratic function Qt−1(θ) in
Eqn. (6) to approximate F (θ) at θt−1.
(S2) Run Algorithm 1 with regularization constant γ and ini-
tialization θt−1 to minimize the finite-sum function Qt−1(θ)
such that Qt−1(θt)≤minθQt−1(θ)+ε′t.

end for
Output: θT .

apply a quadratic approximation strategy to convert the original
non-quadratic problem into a sequence of quadratic optimization
sub-problems such that each of the subproblem can be optimized
by HSDMPG. More specifically, suppose that the loss function
`(θ>x,y) is twice differentiable w.r.t. θ>x and is L-smooth w.r.t.
θ>x. Then we can verify that for all θ,

∇2F (θ) =
1

n

∑n

i=1
`′′(θ>xi,yi)xix

>
i + µI � H̄,

where H̄ , L
n

∑n
i=1 xix

>
i +µI. Therefore, at each iteration, we

construct an upper bound of the second-order Taylor expansion of
F at θt−1 as expressed by

Qt−1(θ) , F (θt−1)+〈∇F (θt−1),θ−θt−1〉+∆t−1(θ), (6)

where ∆t−1(θ) = 1
2 (θ − θt−1)>H̄(θ − θt−1). The finite-sum

structure inQt−1(θ) is from∇F (θt−1)= 1
n

∑n
i=1∇`(θ>xi,yi)

+µθ and H̄ . Thus, we first adopt θt−1 as a warm-start initialization
of HSDMPG, and then apply HSDMPG to the quadratic function
Qt−1(θ) for estimating θt such that

Qt−1(θt) ≤ minθQt−1(θ) + ε′t. (7)

The above nested-loop computation procedure is summarized in
Algorithm 3. We remark that when computing the gradient of
Qt−1(θ), we can compute the gradient associated with H̄ at
the point θ as H̄(θ − θt−1) = L

n

∑n
i=1(x>i (θ − θt−1))xi +

µ(θ−θt−1) which only computes the inner-product x>i (θ−θt−1)
without explicitly computing H̄ . So the computational cost of each
stochastic gradient associated with H̄ is actually much cheaper
than that of computing stochastic gradient of ∇F (θt−1), as the
former only involves vector products and the later one is usually
complicated, e.g. the exponential computation in logistic regression.

4.2 Convergence and Complexity Analysis

Here we also analyze HSDMPG for generic optimization problems
under finite-sum and online settings in turn.

4.2.1 Finite-sum setting

We establish Theorem 3 to guarantee the convergence of Al-
gorithm 3 and analyze its computational complexity. See Ap-
pendix C.1 for a proof of this main result.

Theorem 3. Suppose that each loss function `(θ>x,y) is L-
smooth and σ-strongly convex w.r.t. θ>x. Consider the following
two cases:
(1) when the empirical risk 1

n

∑n
i=1 `(θ

>xi,yi) is µ-strongly
convex, we do not impose any regularization, namely τ = 0;
(2) when the empirical risk 1

n

∑n
i=1 `(θ

>xi,yi) is only convex,
we impose the regularization µ

2 ‖θ‖
2
2, namely τ = 1.
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For both cases, by setting ε′t = σ
2L exp

(
− σ

2L t
)
, with probability

at least 1− δ the sequence {θt} produced by Algorithm 3 satisfies

E [F (θt)− F (θ∗)] ≤ exp
(
− σt

2L

)(
1 + F (θ0)− F (θ∗)

)
,

where the expectation is taken on the randomness of sampling
minibatch St to construct the inner subproblem (5) and the
randomness of SVRG to solve the subproblem (5) in Algorithm 1.
Suppose that the assumptions in Corollary 1 hold. Then with
probability at least 1 − δ, the IFO complexity of Algorithm 3 to
achieve E [F (θt)− F (θ∗)] ≤ ε is of the order

O
(
κ̃(κ+ log(d)) log3

(1

ε

)
+
κ̃ν2

ε

∧
κ̃n log2

(1

ε

))
.

where κ = L
µ and κ̃ = L

σ .

Theorem 3 suggests that the objective F (θt) converges linearly
to the optimum F (θ∗) with rate exp(− σ

2L ). Note that σ is the
strong convexity parameter of the loss function `(θ>x,y) w.r.t.
θ>x instead of θ which is usually independent of data scale for
widely used loss functions such as the least squared loss and logistic
loss [49], and thus leads to fast outer-loop convergence rate.

Now, we compare our IFO complexity with other algorithms.
By ignoring the logarithmic factor log(d) and the small constant
ν, our IFO complexity becomes

O
(
κ̃κ log3

(1

ε

)
+
κ̃

ε

∧
κ̃n log2

(1

ε

))
.

Compared with the methods listed in Table 1, one can observe that
for generic strongly convex problems, HSDMPG enjoys lower
computational complexity than all the compared algorithms except
(averaged accelerated) SGD and SCSG for large-scale learning
problems where the sample number n is sufficiently large to satisfy
the conditions in the third column of Table 1. To compare with
SGD and SCSG whose IFO complexity are respectively O

(
1
µε

)
and O

(
(n ∧ κ

ε + κ) log
(

1
ε

))
, we need to discuss the condition

numbers κ = L
µ and κ̃ = L

σ . When each individual sample
xi has bounded norm, then σ is usually much larger than µ in
the classical and important problems, e.g. logistic and softmax
regression. Specifically, the strong convexity parameter µ of the
risk function F is typically set of the order O

(
1/
√
n
)

so as
to match the intrinsic excess error. Taking logistic regression as
an example, we have σ = infθ∈Θ,i mini∇2

θ>xi
`(θ>xi,yi)) =

infθ∈Θ,i
1

1+exp(−xTi θ)
≥ infθ∈Θ

1
1+exp(r‖θ‖2) , where the last

inequity uses our assumption ‖xi‖2 ≤ r. Since in most problem,
the diameter of the convex set Θ is not related with the data
scale n, and thus 1

1+exp(r‖θ‖2) is often larger than O
(
1/
√
n
)

for (moderately) large-scale problems. So we have κ > κ̃.
This also holds for softmax regression. Under this case, HS-
DMPG improves over SGD by a factor at least O

(
κ
κ̃ ∧

1
κ̃ε

)
,

and improves the factor O
(
κ
ε

)
in SCSG to O

(
κ̃
ε

)
. When the

values of samples obey i.i.d. sub-exponential random variables,
then σ = infθ∈Θ,i

1
1+exp(−xTi θ)

≈ 1
1+exp(C‖θ‖2 log d) can be

very small for large d, where C is a constant. In this case, κ
could satisfy κ < κ̃, and HSDMPG may not beat SGD and
SCSG. It should be mentioned that though this work and averaged
SGD [33] need to assume ‖xi‖2 ≤ r (∀i), this assumption
holds for most commonly used data, e.g. images, speech signals,
and medical data. This means that our method is superior over
SGD and SCSG on the real-world data. From Table 1, one can
observe that if the problem dimension d obeys κεξ3

κ̃2 ≤ O(d),
then HSDMPG is also more efficient than averaged SGD. These

results show the advantages HSDMPG in solving large-scale
strongly-convex learning problems. Theorem 3 also shows that
HSDMPG improves the complexity O

(
κ̃κ
√
s log(d) log3

(
1
ε

)
+(

1 + κ3 log1.5(d)
s1.5

)
κ̃ν2

ε

∧(
1 + κ log0.5(d)

s0.5

)
κ̃3n log2

(
1
ε

))
in our

previous work [34] which has been discussed in Sec. 3.2.
Finally we consider a realistic case where the optimization error

of problem (1) matches the intrinsic excess error bound O(1/
√
n).

For this case, as discussed at the end of Sec. 3.2, the regularization
parameter µ should be set of the order µ = O(1/

√
n) to balance

the estimation error. As a result, the condition number κ could
scale as large as O(

√
n). The following corollary substantializes

the IFO complexity bound in Theorem 3 to such a setting. See
Appendix C.2 for the proof of this result.

Corollary 3. Suppose that the assumptions in Theorem 3 hold. For
both cases (1) and (2) in Theorem 1, with probability at least 1− δ,
the IFO complexity of HSDMPG on the generic loss to achieve
E[F (θt)−F (θ∗)]≤ 1√

n
is of order O

(
n0.5 log3(n) + ν2n0.5

)
.

Corollary 3 shows that for generic convex loss, the IFO
complexity of HSDMPG to attain the O

(
1/
√
n
)

intrinsic excess
error is of the order O

(
n0.5 log3 (n)

)
, where we ignore the

constant ν2 since as aforementioned in Sec. 3.2.1, ν2 is much
smaller than 1/µ = O

(
n0.5

)
. This shows that HSDMPG is able

to achieve nearly optimal generalization with less than a single pass
over data. Compared with the complexity bound for the quadratic
loss, such a more general IFO complexity bound of HSDMPG only
comes at the cost of a slightly increased overhead on the logarithmic
factor, i.e., from log1.5(n) for the quadratic case to the log2.25(n)
for generic convex loss. Similar to the observations in the quadratic
case, from results in Table 1 one can observe that all the considered
state-of-the-art methods need to process the entire data at least
one pass to achieve the desired optimization error for generic
convex loss. All in all, the established theoretical results for both
quadratic and non-quadratic loss functions showcase the benefit
of HSDMPG for efficient optimization of large-scale learning
problems with near-optimal generalization.

4.2.2 Online setting
Now we provide the analysis results of HSDMPG for the generic
online problems. Our main results are stated in Theorem 4 with
proof in Appendix C.3.

Theorem 4. Assume that each loss `(θ>xi,yi) is L-smooth and
σ-strongly convex w.r.t. θ>xi, and supθ∈ΘEi[‖H−1/2(∇F (θ)−
∇`i(θ))‖22] ≤ ν2, where the set Θ contains the sequence {θt}Tt=0

produced by Algorithm 1. Consider the following two cases:
(1) when the population risk E[`(θ>x,y;π)] is µ-strongly convex,
we do not impose any regularization, where τ = 0;
(2) when the population risk E[`(θ>x,y;π)] is only convex, we
impose the regularization µ

2 ‖θ‖
2
2, where τ = 1.

For both cases, with probability at least 1− δ the sequence {θt}
produced by Algorithm 3 satisfies

E [F (θt)− F (θ∗)] ≤ exp
(
− σt

2L

)(
1 + F (θ0)− F (θ∗)

)
,

where the expectation is taken on the randomness of sampling
minibatch St to construct the inner subproblem (5) and the
randomness of SVRG to solve the subproblem (5) in Algorithm 1.
Suppose that the assumptions in Corollary 1 hold. Then by setting
κ = L

µ with probability at least 1 − δ the IFO complexity of
Algorithm 3 to achieve E [F (θt)− F (θ∗)] ≤ ε is of the order
O
(
Lκ
σ log3

(
1
ε

)
+ Lν2

σε

)
.
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Fig. 2: Single-epoch processing: stochastic gradient algorithms process data a single pass on quadratic problems.
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Fig. 3: Multi-epoch processing: stochastic gradient algorithms process data multiple pass on quadratic problems.

Theorem 4 shows that with almost the same assumptions and
parameter settings as finite-sum setting, HSDMPG also enjoys
linear convergence rate for online-setting which is the same as
finite-sum setting. This demonstrates the superior transferability of
HSDMPG. For the computational complexity, similar to Sec. 4.2.1,
by ignoring the constant Lσ , the IFO complexity of HSDMPG is

O
(
κ log3

(1

ε

)
+
ν2

ε

)
.

In this way, HSDMPG improves the IFO complexity O
(

1
µε

)
of

SGD by a factor of O
(
κ ∧ 1

ε

)
, and is also more efficient than

SCSG which has IFO complexity O
(
κ
ε log

(
1
ε

))
since ν2 satisfies

κ ≥ O(ν2) theoretically and is empirically shown to be much
smaller than κ in Figure 1.

5 EXPERIMENTS

In this section, we carry out experiments to compare the numerical
performance of HSDMPG with several representative stochastic

gradient optimization algorithms, including SGD [15], SVRG [18],
APCG [29], Katyusha [21] and SCSG [20].
Test Problems. We evaluate all the considered algorithms on two
sets of strongly-convex learning tasks. The first set is for ridge
regression with a least squared loss

`(θ>xi,yi) =
1

2
‖θ>xi − yi‖22,

where yi is the target output of sample xi. In the second setting
we consider two classification models: logistic regression with loss

`(θ>xi,yi) = log
(
1 + exp(−yiθ>xi)

)
and multi-class softmax regression with k-classification loss

`(θ>xi,yi) = −
k∑
j=1

1{yi = j} log

(
exp(θ>j xi)∑k
s=1 exp(θ>s xi)

)
.

Test Datasets. We run simulations on twelve datasets, including
ijcnn, a9a, w8a, covtype, protein, codrna, satimage, sensor-
less, letter, rcv1, SUSY and HIGGS. All these datasets are
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provided on the LibSVM website1. Their detailed information is
summarized in Table 2. From it we can observe that these datasets
are different from each other due to their feature dimension, training
samples, and class numbers, etc. Thus, these testing datasets can
well investigate the performance of the proposed algorithm.

TABLE 2: Descriptions of the twelve testing datasets.

#class #sample #feature #class #sample #feature

ijcnn1 2 49,990 22 codrna 2 59,535 8
a9a 2 32,561 123 satimage 6 4,435 36
w8a 2 49,749 300 sensorless 11 58,509 48
covtype 2 581,012 54 rcv1 2 20,242 47,236
protein 3 14,895 357 letter 26 10,500 16
SUSY 2 5,000,000 18 HIGGS 2 11,000,000 28

Experimental Settings. For HSDMPG, we set the regularization
constant η in Bregman divergence (4) as η = 2 suggested by our
theory. Then we set the size s of the initial batch S around n0.75

which is theoretically suggested by our previous work [34]. For
the minibatch for inner problems, we set initial minibatch size
|S1| = 50 and then follow our theory to exponentially expand size
of St with proper exponential rate. The regularization constant in
the subproblem (5) is set to be γ=log(100d)/s as suggested by
our theory. The optimization error εt in (5) is controlled by allowing
SVRG to run 3 epochs and 10 epochs on the two sets of tasks,
respectively. Similarly, we control the optimization error ε′t in (7)
by running SVRG with 3 epochs. Since there is no ground truth on
real data, we run FGD sufficiently long until ‖∇F (θ̃)‖2≤10−10

and take F (θ̃) as an approximate optimal value F (θ∗) for sub-
optimality estimation. In the following subsections, log(f − f∗)
in the label of y-axis representss log(F (θ) − F (θ∗)) on the
training data; log(prediction error) in Figures 3 and 6 is defined as
log
(

1
n

∑n
i=1 `(θ

>xi,yi)
)

that measures the validation error over
test data {(xi,yi)}ni=1. Note, the protein, codrna, satimage,
and sensorless datasets in Figures 3, have already split their
data into training and test data, and their test sample number are
respectively 2,871, 271,617, 2,000, and 10,000. Please see Table 2
for a description of the datasets in use. Since SUSY and HIGGS
do not have training-test split, we randomly select 90% of the
samples as training data and the rest as test data.

5.1 Results on Finite-sum Problems

5.1.1 Results for the quadratic loss

Single-epoch evaluation results. Here we first evaluate well-
conditioned quadratic problems such that moderately accurate
solution can be obtained after only one epoch of data pass. Such
a one epoch setting usually occurs in online learning. Towards
this goal, we set the regularization parameter µ = 0.01 to make
the quadratic problems well-conditioned. From Figure 2, one can
observe that HSDMPG exhibits much better convergence behavior
than the considered baselines, though most algorithms can achieve
small optimization error after one epoch processing of data. This
confirms the theoretical predictions in Corollaries 1 and 2 that
HSDMPG is cheaper in IFO complexity than SGD and variance-
reduced algorithms, e.g. SVRG and SCSG, when the data scale is
large.
Multi-epoch evaluation results. For more challenging problems,
an algorithm usually requires multiple cycles of data processing to
achieve accurate optimization. Here we reset the regularization

1. https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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Fig. 4: Investigation of the effects of the regularization constant
η in the Bregman divergence in Eqn. (4) to the performance of
HSDMPG. The test problems are quadratic problems with with
regularization constant µ = 10−4 on letter and satimage.

strength parameter in quadratic problems as µ = 10−4 for
generating more challenging optimization tasks. As shown in
Figure 3, one can again observe that HSDMPG converges faster
than all the compared algorithms in terms of IFO complexity.
Particularly, we compare both IFO complexity and wall-clock
running time on the letter and rcv11 datasets. The convergence
curves under these two metrics consistently show the superior
computational efficiency of HSDMPG to the considered state-
of-the-arts on large-scale learning tasks, which well support the
theoretical predictions in Corollaries 1 and 2.
Robustness evaluation results. We also investigate the effects
of the regularization constant η in the Bregman divergence (see
Eqn. (4)) to the performance of HSDMPG. Towards this end,
we respectively set η as 0.5, 1, 2, · · · , 5 and run HSDMPG on
quadratic problems with regularization constant µ = 10−4. From
Figure 4, one can observe that when η = 1, 2 and 3, HSDMPG is
relatively stable, which demonstrates the robustness of HSDMPG.
This is because large η will hinder the optimization progress, since
it encourages the current solution and the previous one to be close;
while small η allows too aggressive update and could also leads to
unsatisfactory performance. Besides, by comparison, one can also
observe that HSDMPG with η = 2 achieves faster convergence
speed than HSDMPG with η = 1. This result is consistent with our
Corollary 1 in which we show that HSDMPG with η = 2 in this
work has lower computational complexity than HSDMPG with
η = 1 in our previous work.

5.1.2 Results for the non-quadratic loss
Here we investigate the convergence performance of the proposed
HSDMPG on non-quadratic convex loss functions. Specifically,
we evaluate all the compared algorithms on logistic regression
and its multi-classes version, i.e. softmax regression, in which
their regularization modulus parameters are set as µ = 0.01.
Figure 5 reports the running time evolving curves which can
accurately reflects the efficiency of an algorithm. These results show
that HSDMPG converges significantly faster than the baseline
algorithms for the considered non-quadratic loss functions, which
well support the predictions in Theorem 3 and Corollary 3 that
HSDMPG has lower IFO complexity than the state-of-the-arts
in the regimes where data scale is large. This set of results
also demonstrates the effectiveness of our sequential quadratic-
approximation approach for extending the attractive computational
complexity guarantees on quadratic loss to generic convex loss.

5.2 Results on Online Problems
Finally, we evaluate our algorithm on the online strongly convex
problems. We use two large-scale datasets, namely, SUSY and
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Fig. 5: Multi-epoch processing (about 8 epochs): stochastic gradient algorithms process data multiple pass on logistic regression problems
(ijcnn and w08) and softmax regression problems (protein and letter).
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Fig. 6: Evaluation under online setting: stochastic gradient algo-
rithms process data a single pass on quadratic problems (SUSY)
and logistic regression problems (HIGGS).

HIGGS in Table 2 in which samples are of the order millions, to
simulate online setting. Specifically, as aforementioned, we first
randomly permute the samples in the dataset, and then randomly
select 90% and 10% for training and test data, respectively. For
the algorithm, at each iteration it samples a minibatch of training
data under without replacement sampling, and only processes the
data with one single pass. Meanwhile, the algorithm evaluates
the solution at each iteration on the test data which is randomly
selected and can well approximate the population risk. In this way,
this process can well mimic the online setting. We compare our
algorithm with SGD and SCSG which have online versions, and do
not compare other algorithms as they have no online versions. For
evaluation, we use SUSY and HIGGS to respectively construct a
quadratic and logistic regression problem where their regularization
modulus parameters are µ = 0.01.

Figure 6 reports the convergence results of the compared algo-
rithms. From the results, one can observe that HSDMPG converges
significantly faster than the baseline algorithms, including SGD and
SCSG, on both quadratic and logistic regression problems. These
results well support the predictions in our theory for online settings
that HSDMPG is of higher efficiency than the state-of-the-arts.
Moreover, these results under online setting and the results under
finite-sum setting are consistent and demonstrate the advantages
and robustness of our HSDMPG.

6 CONCLUSIONS

We proposed HSDMPG as a hybrid stochastic-deterministic
minibach proximal gradient method for strongly convex finite-
sum and online problems. Under finite-sum setting, for quadratic
loss, we have shown that HSDMPG enjoys provably lower com-
putational complexity than prior state-of-the-art SVRG algorithms
in large-scale settings. Particularly, to attain the optimization
error ε=O

(
1/
√
n
)

at the order of intrinsic excess error bound
of ERM which is sufficient for generalization, the stochastic
gradient complexity of HSDMPG is dominated by O(n0.5) (up

to logarithmic factors). To our best knowledge, HSDMPG for
the first time achieves nearly optimal generalization in less than a
single pass over data. Almost identical computational complexity
guarantees hold for an extension of HSDMPG to generic strongly
convex loss functions via sequential quadratic approximation.
Besides, we extend HSDMPG from finite-sum setting to online
setting and show its higher efficiency than prior state-of-the-arts.
Extensive numerical results demonstrate the substantially improved
computational efficiency of HSDMPG over the prior methods.

ACKNOWLEDGEMENTS

The authors sincerely thank the anonymous reviewers for their
constructive comments on this work. Xiao-Tong Yuan would
like to acknowledge the partial support from National Key
Research and Development Program of China under Grant No.
2018AAA0100400 and Natural Science Foundation of China
(NSFC) under Grant No.61876090 and No.61936005. Zhouchen
Lin is supported by Key-Area Research and Development Program
of Guangdong Province (No. 2019B121204008), NSF China (grant
no.s 61625301 and 61731018), Major Scientific Research Project
of Zhejiang Lab (grant no.s 2019KB0AC01 and 2019KB0AB02),
and Beijing Academy of Artificial Intelligence.

REFERENCES

[1] V. Monga, Handbook of Convex Optimization Methods in Imaging Science,
vol. 1, Springer, 2017.

[2] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 31, no. 2, pp. 210–227, 2008.

[3] E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm,
theory, and applications,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 35, no. 11, pp. 2765–2781, 2013.

[4] P. Zhou, C. Lu, J. Feng, Z. Lin, and S. Yan, “Tensor low-rank
representation for data recovery and clustering,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, 2019.

[5] P. Zhou and J. Feng, “Outlier-robust tensor pca,” 2017.
[6] D. Palomar and Y. Eldar, Convex optimization in signal processing and

communications, Cambridge university press, 2010.
[7] J. Mattingley and S. Boyd, “Real-time convex optimization in signal

processing,” IEEE Signal processing magazine, vol. 27, no. 3, pp. 50–61,
2010.

[8] C. Chi, W. Li, and C. Lin, Convex optimization for signal processing and
communications: from fundamentals to applications, CRC press, 2017.

[9] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal
of the Royal Statistical Society: Series B (Methodological), vol. 58, no. 1,
pp. 267–288, 1996.

[10] Y. Nesterov, Introductory lectures on convex optimization: A basic course,
vol. 87, Springer Science & Business Media, 2013.

[11] T. Hastie, R. Tibshirani, and M. Wainwright, Statistical learning with
sparsity: the lasso and generalizations, CRC press, 2015.

[12] V. Boyarshinov, Machine learning in computational finance, Rensselaer
Polytechnic Institute, 2005.

[13] T. Pennanen, “Introduction to convex optimization in financial markets,”
Mathematical programming, vol. 134, no. 1, pp. 157–186, 2012.



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, MARCH 2019 12
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