
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2024

Enhancing source code representations for deep learning with Enhancing source code representations for deep learning with

static analysis static analysis

Xueting GUAN

Christoph TREUDE
Singapore Management University, ctreude@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
GUAN, Xueting and TREUDE, Christoph. Enhancing source code representations for deep learning with
static analysis. (2024). ICPC '24: Proceedings of the 32nd IEEE/ACM International Conference on
Program Comprehension, Lisbon Portugal, April 15-16. 64-68.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8960

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8960&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8960&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Enhancing Source Code Representations for Deep Learning with

Static Analysis

ABSTRACT
Deep learning techniques applied to program analysis tasks such as

code classification, summarization, and bug detection have seen

widespread interest. Traditional approaches, however, treat

programming source code as natural language text, which may

neglect significant structural or semantic details. Additionally,

most current methods of representing source code focus solely on

the code, without considering beneficial additional context. This

paper explores the integration of static analysis and additional

context such as bug reports and design patterns into source code

representations for deep learning models. We use the Abstract

Syntax Tree-based Neural Network (ASTNN) method and augment

it with additional context information obtained from bug reports

and design patterns, creating an enriched source code

representation that significantly enhances the performance of

common software engineering tasks such as code classification and

code clone detection. Utilizing existing open-source code data, our

approach improves the representation and processing of source

code, thereby improving task performance.

KEYWORDS
Source code representation, Deep learning, Static analysis, Bug

reports, Design patterns

1 Introduction
The increase in software applications has made understanding

code more challenging, requiring tools to aid in this process.

Contextual factors like control flow, version updates, and bug

reports have been shown to enhance code understanding [1]. For

example, a developer perception model showed the importance of

these contextual elements in understanding tasks [6].

Simultaneously, open-source software communities have provided

extensive code datasets, while advancements in artificial

intelligence drive intelligent software evolution [12].

In natural language processing, models such as BERT have

shown strong results [5]. Following their success, similar models

have been adapted to represent programming source code, aiding

tasks like code summarization. However, these models often

overlook the inherent structural and semantic nuances of source

code [2]. Recent studies have attempted to enhance code

representation models by using advances from deep learning [13].

Yet, these methods frequently disregard crucial information

contained in documentation and bug reports, which could elucidate

potential errors [8]. Investigating source code structures, like

design patterns, might offer a solution [28].

Our research assesses the effectiveness of enriching the ASTNN

method [2]—a method that capitalizes on AST-based neural

networks to capture sentence-level lexical and syntactic

knowledge—with additional context about bugs and design

patterns. Since the ASTNN implementation is publicly accessible,

we can replicate the approach and compare our method effectively.

This enrichment is evaluated within the scope of prevalent software

engineering tasks [10]. Our goal is to use models that can process

both additional information and code representation at the same

time to improve efficiency in subsequent tasks include clone

detection and code classification. Although the integration of bug

report data did not notably augment the performance, we

discovered that the inclusion of design pattern information was

instrumental in enhancing the precision of subsequent tasks.

While integrating contextual information into source code

representations has proven beneficial, the type of context and its

integration method can greatly influence the performance of

downstream tasks [3]. This paper provides an overview of relevant

work, presents a preliminary study, and discusses research findings,

its limitations, and potential areas for future research.

2 Related Work
Our work contributes to ongoing research at the nexus of source

code representation and static analysis in the realm of software

engineering.

2.1 Source Code Representation
Recent strides in machine learning have revolutionized source

code representation, spawning methods classified into four tiers:

text-based, lexical, syntactic, and semantic [9]. Each level carries

distinct characteristics, along with associated advantages and

drawbacks. For instance, text-based representations such as n-gram

models, trained on expansive corpora, prove effective in predicting

tokens across various domains [16]. Lexical-based representations

offer abstraction capabilities, while syntactic and semantic-based

representations afford higher abstraction levels but demand

preprocessing, such as converting source code into tree or graph

structures [17]. Syntactic and semantic-based methods frequently

harness Abstract Syntax Trees (AST), like ASTNN, which learns

syntactic knowledge from smaller subtrees. Semantic-based

methods often weave in code dependency information relating to

data and control flow. The integration of low-level syntactic and

high-level semantic information serves to enhance source code

representation for program comprehension tasks.

The value of adding context to deep learning models has been

underscored in recent research, especially encoding call hierarchy

context with code information [3]. Besides, earlier methods

overlook the specific context essential for effective source code

representation [21]. Our work aims to incorporate static analysis of

code, which could potentially boost the performance of various

methods employed in source code representation.

Xueting Guan
 School of Computing and Information Systems

 The University of Melbourne

 Melbourne, Australia

guaxg@student.unimelb.edu.au

Christoph Treude
School of Computing and Information Systems

 The University of Melbourne

 Melbourne, Australia

 christoph.treude@unimelb.edu.au

2.2 Bug Information
The significance of context is well-recognized in software

engineering. Bug reports, for example, are critical to bug triage and

serve as an invaluable source for code representation. The quality

of information contained in bug reports can substantially influence

process efficiency and accuracy—imprecise reporting often results

in unreliable outcomes [20]. Studies have uncovered frequent

occurrences of incorrect or incomplete information in bug reports,

as well as misclassification issues like non-bugs being erroneously

labelled as bugs [18]. The integration of accurate bug information

with code representation could affect subsequent tasks. For this

paper, we use the term 'bug' to denote bug information supplied by

automated tools, which identify existing latent bugs in source code.

2.3 Design Patterns
Design patterns hold a prominent position in software

development, offering invaluable insights into code functionality.

Existing methods for automated design pattern recognition span

across multiple approaches, including graph theory-based, formal

technique-based, software metrics-based and artificial intelligence-

based [27]. Our study explores factors that influence the

preparation and optimization of training samples in design pattern

recognition, and how integrating design pattern information can

enhance ASTNN representation performance in subsequent tasks.

 We posit that the amalgamation of bug reports and design-

pattern-based static analysis could significantly enrich the input of

source code representation methods. Much like human developers,

deep learning models may benefit from the insights gained through

static analysis. In our study, we leverage existing models, infuse

pertinent static analysis information, and examine their influence

on the performance of source code representation.

3 Preliminary Study
This section explores enhancing deep learning models for

software engineering tasks through static analysis. The inclusion of

bug and design pattern information as contextual data leads us to

hypothesize that such an approach can be generalized across

different code datasets and diversified software engineering tasks.

3.1 Research Questions
To probe the viability of our approach and determine the most

effective implementation, we formulated two research questions:

RQ1: What is the impact of integrating bug report information

on the performance of ASTNN model?

RQ2: How does the inclusion of design pattern information

influence the performance of ASTNN model?

3.2 Data Collection
Our study relies on two public datasets, mirroring the baselines

for code classification and clone detection tasks that were used in

the original ASTNN work [2]. These datasets enable subsequent

comparisons. Additionally, we used supplementary datasets for

model selection in bug report data and design pattern detection.

Dataset for Code-Related Tasks. We adopted two datasets as

benchmarks for subsequent tasks. The first dataset comprises 104

programs all implementing the same function [4]. The second

dataset, BigCloneBench (BCB) [14], specifically caters to clone

detection methods by focusing on syntactic similarity between

codes. These established datasets provide a foundational layer,

augmented with additional static analysis information such as bug

reports and design pattern data using specific tools and methods.

We adhered to the experimental settings provided by previous work

to ensure a thorough comparison [2].

Dataset for Bug Detection. We enriched the original dataset

with bug information using FindBugs, a Java bug detection plugin

for Eclipse. Its superior performance and efficiency over other bug

detection tools have been attested in previous studies [26]. The

FindBugs bug dataset acted as a baseline for exploring enhanced

defect detection classifiers to identify valuable bug information.

About 50% of the packages showed no observable bugs, while the

rest had up to 103 defect reports in this research.

Dataset for Design Pattern Detection. Our study used a labeled

Java corpus as the base corpus, expanded by incorporating other

publicly available code data like the GitHub Java corpus (GJC) [11]

and the DPDF corpus [27]. We used this extended labeled code

dataset from GJC to explore an effective design pattern recognition

approach that could be applied to the original dataset.

3.3 Bug Detection
The FindBugs Eclipse Plugin was deployed to enhance the

original dataset with bug information. Custom bug detectors

embedded within the source code augmented the process's

effectiveness. We followed validated recommendations from prior

research [26] to configure the tool's "medium" warning settings.

Our bug detection aimed to improve dataset precision, considering

some bug reports might lack substantial information. The process

for the automatic bugs classification began with preprocessing and

parsing the dataset. Then, the N-gram IDF was applied to the pre-

processed corpus of bug reports, generating a list of valid N-gram

key terms. For each bug report, the raw frequency of each N-gram

item was computed and stored as membership vectors. These

vectors were then combined with an existing dataset from previous

work which contains the correct bug report type for each bug report

file [26]. The resulting combined vectors served as input to train

the classification model using logistic regression and random forest

as classification models. Once the model was effectively trained, it

could filter out misinformation as accurately as possible.

By leveraging the FindBugs tool and optimized models, our

foundational dataset was enriched with meaningful bug

information. As illustrated in Figure 1, a code fragment is presented

along with its associated bug information. The dataset, now

furnished with bug information in textual description, was

processed subsequent phases and then fed into the ASTNN model.

Figure 1: A code fragment with the bug information

3.4 Design Pattern Detection
Design pattern detection relies on feature extraction to navigate

the complexity of programming languages and draw out

semantically significant concepts [7]. These features capture the

intercommunication pathways and organizational structures within

the code. Based on previous research, we segmented the selection

of features into two categories: class-level features and method-

level features [27]. To address the classification challenge, we

constructed multi-class classifiers using the Scikit-learn library in

Python. For setting the learning parameters of the classifier, the

number of estimates was set to 100, the learning rate to 1, and the

AdaBoost algorithm was applied. To ensure unbiased predictions,

Layered K-Fold Cross-Validation was employed to evaluate the

performance of the machine learning models on code data samples.

Various machine learning techniques can be applied to integrate

and process data of different types. In our work, as illustrated in the

Figure 2, max-pooling is employed to combine source code with

supplementary bug information and design pattern information.

Then, encoding is performed using a GNN-based encoder.

Consequently, the resultant statement vector can be input into the

ASTNN model to generate a representation of the source code,

which proves instrumental for subsequent tasks [3].

The experimental results are shown in Table I and Table II.

3.5 Results
For the code classification task, we evaluated the classifier's

effectiveness using the accuracy rate on the test set. Given that code

clone detection can be viewed as a binary classification problem,

determining the presence or absence of cloning, we deemed

evaluation indicators from previous studies, such as the F1 score

and accuracy, suitable for comparing the classifier's performance.

The results of the code classification task, based on the OJ

dataset and additional datasets, are depicted in Table I. The results

suggest that without any incorporation of static analysis

information, the ASTNN model achieved an accuracy score of

96.6%. The introduction of Eclipse bug information slightly

degraded the performance, resulting in an accuracy score of 95.6%.

However, when integrating additional information from filtered

bug reports, the performance improved, yielding an accuracy score

of 97.8% (a 2% improvement). These outcomes suggest that

superfluous information could adversely affect performance,

reinforcing the necessity for efficient filtering to optimize results.

The results of the code clone detection task on the BCB dataset

are displayed in Table II. The dataset was partitioned into five

segments, each corresponding to a different sample type, and each

type was subjected to detection. The results revealed that without

the inclusion of static analysis, the ASTNN model yielded an F1

score of 84.9% on the BCB-ALL data. However, the inclusion of

static analysis substantially improved the performance, with F1

scores of 90.8% and 93.2% achieved for the addition of bug reports

and design patterns, respectively. The best performance was

obtained when both bug reports and design patterns were added,

resulting in an F1 score of 94.6%, a 9.7% improvement. These

findings indicate that the combined use of static analysis

information is more effective than its individual use. And our

research questions yielded the following answers.

RQ1: The goal of this research question was to determine the

influence of integrating bug report information on the performance

of ASTNN-based models. Our results indicate an improvement in

accuracy when filtered bug report data was incorporated into the

model. Intriguingly, when the bug information provided by the

FindBugs tool was used, the accuracy rate was slightly lower than

the original performance. This outcome suggests that added

information may interfere if it is redundant. To address this issue, a

machine learning-based bug detection method was employed to

filter the generated bug information. This process eliminated about

30% of the bug information, yielding a more meaningful bug

information and a slight improvement in performance. The results

suggest that while bug information impacts the code classification

task, the effect is not profound. This could be due to the ASTNN

model's robust performance on the original dataset.

Considering the code classification task results, we conducted

an analysis to ascertain why the bug information had the observed

effect on performance. We observed that the primary purpose of the

code classification task is to classify the functions of code

fragments. However, bug information primarily pertains to

grammatical or structural errors in the code, which do not directly

reflect the function of the code fragment. This realization prompted

TABLE I. PERFORMANCE IN THE CODE CLASSIFICATION

Metric (%) Original dataset FindBugs tool Bug filter Design pattern Bugs filter + Design pattern

Accuracy 96.6 95.6 97.8 98.2 98.5

TABLE II. PERFORMANCE IN THE CODE CLONE DETECTION

 Original dataset FindBugs tool Bug filter Design pattern Bugs filter + Design pattern

Metric (%) A P R F1 A P R F1 A P R F1 A P R F1 A P R F1

BCB-T1 100

BCB-T2 100

BCB-ST3 98.7 96.3 95.2 95.7 94.2 93.6 92.1 92.8 9.7 98.7 96.7 97.7 99.2 99.1 98.6 98.8 99.9 99.3 98.7 99.0

BCB-MT3 93.8 93.4 92.1 92.7 87.6 85.9 84.7 85.3 95.8 93.8 92.6 93.1 96.2 93.8 94.7 94.2 98.5 97.8 97.1 97.4

BCB-T4 90.1 83.2 81.7 82.4 85.9 81.3 77.8 79.5 93.8 90.6 86.4 88.5 92.7 91.4 92.6 91.9 94.8 91.7 92.8 92.2

BCB-ALL 92.6 87.7 82.4 84.9 88.6 82.7 80.9 81.8 94.2 91.8 89.9 90.8 93.8 92.7 93.8 93.2 95.7 95.6 93.7 94.6

Figure 2: The structure of statement encoder

ConvGNN

Statement ector

Pooling

 ethod

Class

 a a Corpus

 S

 m edding

 ode

 m edding

 0 1 n

Fully

Connected

 ayer

ma ()
 1

 2

 n

 1

 2

 n

 1

 2

 n

 1

 2

 n

 EOS w x

 EOS w x

 raph

 m edding

 0 z1 z2 zn

 ode

 ttention

 ethod

Bug

Information

Design

Pattern

us to consider incorporating other types of information to enhance

performance. Design patterns, as discussed in the next question,

emerged as a source of functional information.

RQ2: The second research question investigated the effect of

integrating design pattern information on the performance of state-

of-the-art deep learning models. Analyzing the results of the code

classification task reveals that the incorporation of design pattern

information led to a more significant performance improvement

than the addition of bug information alone. The results suggest that

the incorporation of more static analysis information, specifically

design pattern information, is beneficial for the tasks. This is

particularly relevant for the code clone detection task, which relies

on the BCB dataset. This dataset places a greater emphasis on the

code structure and the functional role of code snippets. After adding

the design pattern information, the effect improved, and the best

results were obtained when combining the bug information and the

design pattern information simultaneously. Our findings suggest

that integrating a diverse range of analytical information can

significantly enhance model performance.

4 imitations and Future Work
In this study, we demonstrate the benefits of incorporating static

analysis information, such as bug information and design patterns,

into raw datasets to augment the performance of code-related tasks.

Using the ASTNN model as a base, our results reveal that

incorporating static analysis significantly enhances performance,

particularly when utilizing design patterns, which provide insight

into the functional attributes of source code.

4.1 imitations
Despite the promising results, there exist several limitations in

this study. First, the sheer volume of code snippets in the dataset

restricted the use of all data when incorporating bug reports, with

defects found in only 50% of the snippets. Second, while the BCB

dataset, comprising real code snippets extracted from the

SourceForge Java repository [19], offers a realistic perspective that

aligns with actual software development practices, the OJ dataset

employed in this study was not derived from a production

environment. Third, the code snippets in these datasets are

relatively brief, potentially failing to capture the complexity and

scale of actual code sets found in software engineering projects.

Fourth, this study predominantly revolves around the ASTNN

model, which may limit the generalizability of the results. The

improvements observed might be specific to the ASTNN and may

not necessarily extend to other source code representation models.

Future work should aim to investigate the applicability of the

proposed approach with a variety of other baseline models to

confirm its broader effectiveness. Overall, while this study focuses

on integrating static analysis within raw datasets to enhance the

performance of source code-related tasks, the limitations inherent

to the dataset itself pose the primary constraint [15].

4.2 Future Work
In the scope of this research, we have observed that

incorporating additional contextual information, such as bugs and

design patterns, benefits deep learning models in comprehending

source code, much like humans. Our preliminary findings provide

promising evidence to support this claim. However, we believe that

the type of context beneficial for enhancing a model's performance

may vary depending on the task at hand, such as code

summarization or clone detection. Therefore, we advocate for

future research to delve into this uncharted territory and explore the

impact of diverse types of contextual information on different tasks.

Further, how we encode and represent contextual information

merits attention. For example, determining the most effective way

to encapsulate the fact that a piece of code adheres to a particular

design pattern presents an interesting research question. Hence, not

only should we explore what context to include, but also how best

to represent it for consumption by the model. In line with these

objectives, we propose a few strategic directions for future research:

Construct Diverse and Comprehensive Datasets: Many existing

datasets containing code-related information and labels are either

inadequate in size or inaccessible. Therefore, it is crucial to collect

and create more extensive, research-appropriate datasets [20].

Strategies might involve using models or techniques to rectify bugs

in source code, rather than just identifying them, as inaccurate bug

information could obstruct source code representation.

Additionally, automated tools for code annotation could be

employed to enrich the overall dataset. Leveraging a more efficient

design pattern detection model could enable the construction of a

larger labelled dataset for training purposes.

Develop a Unified Experimental Platform: To accommodate a

variety of corpora, evaluation metrics, and benchmark methods, it

is essential to establish a unified experimental platform [22]. This

platform would facilitate the use of a consistent deep learning

framework, allowing both traditional methods and current

evaluation metrics to be implemented and minimizing the impact

of different deep learning frameworks on method effectiveness. It

would also enable a more comprehensive and equitable evaluation

of newly proposed methods against classic baselines.

Enhance Supplementary Information Quality: The quality of

additional information could be improved through several

approaches, such as mining knowledge from crowdsourced

platforms, analyzing related software products, and studying

effective review styles [25]. It is possible to construct a code

knowledge graph and integrate information into the training model.

Assist with Other Software Engineering Tasks: Automatic

generation of annotation information can aid in various software

engineering tasks [24]. For instance, analyzing code can generate

corresponding annotations. Existing research results can help with

other tasks, such as generating code through the analysis of method

or class names [23]. Generating high-quality code annotations for

each module may enhances the efficiency of defect localization

methods based on code search and information retrieval.

In conclusion, we advocate for future research to delve deeper

into the area of integrating additional context into source code

representation for deep learning models. The type of context and its

representation method could significantly influence the

performance of different tasks, and we believe that exploring these

variables presents a wealth of opportunities for future studies.

Finally, in consideration of these objectives, we propose several

strategic directions for future research, including the construction

of more comprehensive datasets, the development of a unified

experimental platform, and the focus on enhancing the quality of

supplementary information. By pursuing these avenues, we can

continue to advance understanding and improve the effectiveness

of deep learning models in the field of software engineering. Our

code and experimental data are available at

https://github.com/Snowy0647/CR-with-static-analysis.

https://github.com/Snowy0647/CR-with-static-analysis

R F R C S
[1] J.I. Maletic and A. Marcus. 2001. Supporting program comprehension using

semantic and structural information. In Proceedings of the 23rd International

Conference on Software Engineering. ICSE 2001, 2001, Toronto, Ont.,

Canada. IEEE Comput. Soc, Toronto, Ont., Canada, 103–112. .

https://doi.org/10.1109/ICSE.2001.919085

[2] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and

Xudong Liu. 2019. A Novel Neural Source Code Representation Based on

Abstract Syntax Tree. In 2019 IEEE/ACM 41st International Conference on

Software Engineering (ICSE), May 2019, Montreal, QC, Canada. IEEE,

Montreal, QC, Canada, 783–794. . https://doi.org/10.1109/ICSE.2019.00086

[3] Fuwei Tian and Christoph Treude. 2022. Adding Context to Source Code

Representations for Deep Learning. In 2022 IEEE International Conference on

Software Maintenance and Evolution (ICSME), October 2022, Limassol,

Cyprus. IEEE, Limassol, Cyprus, 374–378. .

https://doi.org/10.1109/ICSME55016.2022.00042

[4] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional

Neural Networks over Tree Structures for Programming Language Processing.

AAAI 30, 1 (February 2016). https://doi.org/10.1609/aaai.v30i1.10139

[5] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and

Cristina V. Lopes. 2016. SourcererCC: scaling code clone detection to big-

code. In Proceedings of the 38th International Conference on Software

Engineering, May 14, 2016, Austin Texas. ACM, Austin Texas, 1157–1168. .

https://doi.org/10.1145/2884781.2884877

[6] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.

2016. Deep learning code fragments for code clone detection. In Proceedings

of the 31st IEEE/ACM International Conference on Automated Software

Engineering, August 25, 2016, Singapore Singapore. ACM, Singapore

Singapore, 87–98. . https://doi.org/10.1145/2970276.2970326

[7] Shahid Hussain, Jacky Keung, Arif Ali Khan, Awais Ahmad, Salvatore

Cuomo, Francesco Piccialli, Gwanggil Jeon, and Adnan Akhunzada. 2018.

Implications of deep learning for the automation of design patterns

organization. Journal of Parallel and Distributed Computing 117, (July 2018),

256–266. https://doi.org/10.1016/j.jpdc.2017.06.022

[8] Zeqi Lin, Junfeng Zhao, Yanzhen Zou, and Bing Xie. 2017. Document

Distance Estimation via Code Graph Embedding. In Proceedings of the 9th

Asia-Pacific Symposium on Internetware, September 23, 2017, Shanghai

China. ACM, Shanghai China, 1–10. .

https://doi.org/10.1145/3131704.3131713

[9] Kechi Zhang, Wenhan Wang, Huangzhao Zhang, Ge Li, and Zhi Jin. 2022.

Learning to represent programs with heterogeneous graphs. In Proceedings of

the 30th IEEE/ACM International Conference on Program Comprehension,

May 16, 2022, Virtual Event. ACM, Virtual Event, 378–389. .

https://doi.org/10.1145/3524610.3527905

[10] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar

Devanbu. 2012. On the naturalness of software. In 2012 34th International

Conference on Software Engineering (ICSE), June 2012, Zurich. IEEE, Zurich,

837–847. . https://doi.org/10.1109/ICSE.2012.6227135

[11] Miltiadis Allamanis and Charles Sutton. 2013. Mining source code repositories

at massive scale using language modeling. In Proceedings of the 10th Working

Conference on Mining Software Repositories (MSR '13). IEEE Press, 207–

216.

[12] Lin Jiang, Hui Liu, and He Jiang. 2019. Machine Learning Based

Recommendation of Method Names: How Far are We. In 2019 34th

IEEE/ACM International Conference on Automated Software Engineering

(ASE), November 2019, San Diego, CA, USA. IEEE, San Diego, CA, USA,

602–614. . https://doi.org/10.1109/ASE.2019.00062

[13] Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti,

Tomoki Toda, and Satoshi Nakamura. 2015. Learning to Generate Pseudo-

Code from Source Code Using Statistical Machine Translation. In 2015 30th

IEEE/ACM International Conference on Automated Software Engineering

(ASE), November 2015, Lincoln, NE. IEEE, Lincoln, NE, 574–584. .

https://doi.org/10.1109/ASE.2015.36

[14] Jeffrey Svajlenko and Chanchal K. Roy. 2015. Evaluating clone detection tools

with BigCloneBench. In 2015 IEEE International Conference on Software

Maintenance and Evolution (ICSME), September 2015, Bremen, Germany.

IEEE, Bremen, Germany, 131–140. .

https://doi.org/10.1109/ICSM.2015.7332459

[15] Adelina Ciurumelea, Sebastian Proksch, and Harald C. Gall. 2020. Suggesting

Comment Completions for Python using Neural Language Models. In 2020

IEEE 27th International Conference on Software Analysis, Evolution and

Reengineering (SANER), February 2020, London, ON, Canada. IEEE,

London, ON, Canada, 456–467. .

https://doi.org/10.1109/SANER48275.2020.9054866

[16] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016.

Asymmetric Transitivity Preserving Graph Embedding. In Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, August 13, 2016, San Francisco California USA. ACM, San

Francisco California USA, 1105–1114. .

https://doi.org/10.1145/2939672.2939751

[17] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2018.

Learning to Represent Programs with Graphs. In International Conference on

Learning Representations, 2018

[18] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta,

Martin White, and Denys Poshyvanyk. 2018. Deep learning similarities from

different representations of source code. In Proceedings of the 15th

International Conference on Mining Software Repositories, May 28, 2018,

Gothenburg Sweden. ACM, Gothenburg Sweden, 542–553. .

https://doi.org/10.1145/3196398.3196431

[19] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learning semantic

features for defect prediction. In Proceedings of the 38th International

Conference on Software Engineering, May 14, 2016, Austin Texas. ACM,

Austin Texas, 297–308. . https://doi.org/10.1145/2884781.2884804

[20] Michael Pradel and Koushik Sen. 2018. DeepBugs: a learning approach to

name-based bug detection. Proc. ACM Program. Lang. 2, OOPSLA (October

2018), 1–25. https://doi.org/10.1145/3276517

[21] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec:

learning distributed representations of code. Proc. ACM Program. Lang. 3,

POPL (January 2019), 1–29. https://doi.org/10.1145/3290353

[22] Rose Catherine and William Cohen. 2016. Personalized Recommendations

using Knowledge Graphs: A Probabilistic Logic Programming Approach. In

Proceedings of the 10th ACM Conference on Recommender Systems,

September 07, 2016, Boston Massachusetts USA. ACM, Boston

Massachusetts USA, 325–332. . https://doi.org/10.1145/2959100.2959131

[23] Laura Dietz, Alexander Kotov, and Edgar Meij. 2018. Utilizing Knowledge

Graphs for Text-Centric Information Retrieval. In The 41st International ACM

SIGIR Conference on Research & Development in Information Retrieval, June

27, 2018, Ann Arbor MI USA. ACM, Ann Arbor MI USA, 1387–1390. .

https://doi.org/10.1145/3209978.3210187

[24] Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn Mazaitis, Ruslan

Salakhutdinov, and William Cohen. 2018. Open Domain Question Answering

Using Early Fusion of Knowledge Bases and Text. In Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing, 2018,

Brussels, Belgium. Association for Computational Linguistics, Brussels,

Belgium, 4231–4242. . https://doi.org/10.18653/v1/D18-1455

[25] Kenneth Marino, Ruslan Salakhutdinov, and Abhinav Gupta. 2017. The More

You Know: Using Knowledge Graphs for Image Classification. In 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), July 2017,

Honolulu, HI. IEEE, Honolulu, HI, 20–28. .

https://doi.org/10.1109/CVPR.2017.10

[26] Pannavat Terdchanakul, Hideaki Hata, Passakorn Phannachitta, and Kenichi

Matsumoto. 2017. Bug or Not? Bug Report Classification Using N-Gram IDF.

In 2017 IEEE International Conference on Software Maintenance and

Evolution (ICSME), September 2017, Shanghai. IEEE, Shanghai, 534–538. .

https://doi.org/10.1109/ICSME.2017.14

[27] Najam Nazar, Aldeida Aleti, and Yaokun Zheng. 2022. Feature-based software

design pattern detection. Journal of Systems and Software 185, (March 2022),

111179. https://doi.org/10.1016/j.jss.2021.111179

[28] Erich Gamma (Ed.). 1995. Design patterns: elements of reusable object-

oriented software. Addison-Wesley, Reading, Mass.

	Enhancing source code representations for deep learning with static analysis
	Citation

	Enhancing Source Code Representations for Deep Learning with

