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Enhancing Source Code Representations for Deep Learning with 

Static Analysis 

ABSTRACT 
Deep learning techniques applied to program analysis tasks such as 

code classification, summarization, and bug detection have seen 

widespread interest. Traditional approaches, however, treat 

programming source code as natural language text, which may 

neglect significant structural or semantic details. Additionally, 

most current methods of representing source code focus solely on 

the code, without considering beneficial additional context. This 

paper explores the integration of static analysis and additional 

context such as bug reports and design patterns into source code 

representations for deep learning models. We use the Abstract 

Syntax Tree-based Neural Network (ASTNN) method and augment 

it with additional context information obtained from bug reports 

and design patterns, creating an enriched source code 

representation that significantly enhances the performance of 

common software engineering tasks such as code classification and 

code clone detection. Utilizing existing open-source code data, our 

approach improves the representation and processing of source 

code, thereby improving task performance. 

KEYWORDS 
Source code representation, Deep learning, Static analysis, Bug 

reports, Design patterns 

1  Introduction 
The increase in software applications has made understanding 

code more challenging, requiring tools to aid in this process. 

Contextual factors like control flow, version updates, and bug 

reports have been shown to enhance code understanding [1]. For 

example, a developer perception model showed the importance of 

these contextual elements in understanding tasks [6]. 

Simultaneously, open-source software communities have provided 

extensive code datasets, while advancements in artificial 

intelligence drive intelligent software evolution [12]. 

In natural language processing, models such as BERT have 

shown strong results [5]. Following their success, similar models 

have been adapted to represent programming source code, aiding 

tasks like code summarization. However, these models often 

overlook the inherent structural and semantic nuances of source 

code [2]. Recent studies have attempted to enhance code 

representation models by using advances from deep learning [13]. 

Yet, these methods frequently disregard crucial information 

contained in documentation and bug reports, which could elucidate 

potential errors [8]. Investigating source code structures, like 

design patterns, might offer a solution [28].  

Our research assesses the effectiveness of enriching the ASTNN 

method [2]—a method that capitalizes on AST-based neural 

networks to capture sentence-level lexical and syntactic 

knowledge—with additional context about bugs and design 

patterns. Since the ASTNN implementation is publicly accessible, 

we can replicate the approach and compare our method effectively. 

This enrichment is evaluated within the scope of prevalent software 

engineering tasks [10]. Our goal is to use models that can process 

both additional information and code representation at the same 

time to improve efficiency in subsequent tasks include clone 

detection and code classification. Although the integration of bug 

report data did not notably augment the performance, we 

discovered that the inclusion of design pattern information was 

instrumental in enhancing the precision of subsequent tasks. 

While integrating contextual information into source code 

representations has proven beneficial, the type of context and its 

integration method can greatly influence the performance of 

downstream tasks [3]. This paper provides an overview of relevant 

work, presents a preliminary study, and discusses research findings, 

its limitations, and potential areas for future research. 

2  Related Work 
Our work contributes to ongoing research at the nexus of source 

code representation and static analysis in the realm of software 

engineering. 

2.1 Source Code Representation 
Recent strides in machine learning have revolutionized source 

code representation, spawning methods classified into four tiers: 

text-based, lexical, syntactic, and semantic [9]. Each level carries 

distinct characteristics, along with associated advantages and 

drawbacks. For instance, text-based representations such as n-gram 

models, trained on expansive corpora, prove effective in predicting 

tokens across various domains [16]. Lexical-based representations 

offer abstraction capabilities, while syntactic and semantic-based 

representations afford higher abstraction levels but demand 

preprocessing, such as converting source code into tree or graph 

structures [17]. Syntactic and semantic-based methods frequently 

harness Abstract Syntax Trees (AST), like ASTNN, which learns 

syntactic knowledge from smaller subtrees. Semantic-based 

methods often weave in code dependency information relating to 

data and control flow. The integration of low-level syntactic and 

high-level semantic information serves to enhance source code 

representation for program comprehension tasks. 

The value of adding context to deep learning models has been 

underscored in recent research, especially encoding call hierarchy 

context with code information [3]. Besides, earlier methods 

overlook the specific context essential for effective source code 

representation [21]. Our work aims to incorporate static analysis of 

code, which could potentially boost the performance of various 

methods employed in source code representation. 
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2.2 Bug Information 
The significance of context is well-recognized in software 

engineering. Bug reports, for example, are critical to bug triage and 

serve as an invaluable source for code representation. The quality 

of information contained in bug reports can substantially influence 

process efficiency and accuracy—imprecise reporting often results 

in unreliable outcomes [20]. Studies have uncovered frequent 

occurrences of incorrect or incomplete information in bug reports, 

as well as misclassification issues like non-bugs being erroneously 

labelled as bugs [18]. The integration of accurate bug information 

with code representation could affect subsequent tasks. For this 

paper, we use the term 'bug' to denote bug information supplied by 

automated tools, which identify existing latent bugs in source code. 

2.3 Design Patterns 
Design patterns hold a prominent position in software 

development, offering invaluable insights into code functionality. 

Existing methods for automated design pattern recognition span 

across multiple approaches, including graph theory-based, formal 

technique-based, software metrics-based and artificial intelligence-

based [27]. Our study explores factors that influence the 

preparation and optimization of training samples in design pattern 

recognition, and how integrating design pattern information can 

enhance ASTNN representation performance in subsequent tasks. 

 We posit that the amalgamation of bug reports and design-

pattern-based static analysis could significantly enrich the input of 

source code representation methods. Much like human developers, 

deep learning models may benefit from the insights gained through 

static analysis. In our study, we leverage existing models, infuse 

pertinent static analysis information, and examine their influence 

on the performance of source code representation. 

3  Preliminary Study 
This section explores enhancing deep learning models for 

software engineering tasks through static analysis. The inclusion of 

bug and design pattern information as contextual data leads us to 

hypothesize that such an approach can be generalized across 

different code datasets and diversified software engineering tasks. 

3.1 Research Questions 
To probe the viability of our approach and determine the most 

effective implementation, we formulated two research questions: 

RQ1: What is the impact of integrating bug report information 

on the performance of ASTNN model? 

RQ2: How does the inclusion of design pattern information 

influence the performance of ASTNN model? 

3.2 Data Collection 
Our study relies on two public datasets, mirroring the baselines 

for code classification and clone detection tasks that were used in 

the original ASTNN work [2]. These datasets enable subsequent 

comparisons. Additionally, we used supplementary datasets for 

model selection in bug report data and design pattern detection.  

Dataset for Code-Related Tasks. We adopted two datasets as 

benchmarks for subsequent tasks. The first dataset comprises 104 

programs all implementing the same function [4]. The second 

dataset, BigCloneBench (BCB) [14], specifically caters to clone 

detection methods by focusing on syntactic similarity between 

codes. These established datasets provide a foundational layer, 

augmented with additional static analysis information such as bug 

reports and design pattern data using specific tools and methods. 

We adhered to the experimental settings provided by previous work 

to ensure a thorough comparison [2]. 

Dataset for Bug Detection. We enriched the original dataset 

with bug information using FindBugs, a Java bug detection plugin 

for Eclipse. Its superior performance and efficiency over other bug 

detection tools have been attested in previous studies [26]. The 

FindBugs bug dataset acted as a baseline for exploring enhanced 

defect detection classifiers to identify valuable bug information. 

About 50% of the packages showed no observable bugs, while the 

rest had up to 103 defect reports in this research.  

Dataset for Design Pattern Detection. Our study used a labeled 

Java corpus as the base corpus, expanded by incorporating other 

publicly available code data like the GitHub Java corpus (GJC) [11] 

and the DPDF corpus [27]. We used this extended labeled code 

dataset from GJC to explore an effective design pattern recognition 

approach that could be applied to the original dataset. 

3.3 Bug Detection 
The FindBugs Eclipse Plugin was deployed to enhance the 

original dataset with bug information. Custom bug detectors 

embedded within the source code augmented the process's 

effectiveness. We followed validated recommendations from prior 

research [26] to configure the tool's "medium" warning settings. 

Our bug detection aimed to improve dataset precision, considering 

some bug reports might lack substantial information. The process 

for the automatic bugs classification began with preprocessing and 

parsing the dataset. Then, the N-gram IDF was applied to the pre-

processed corpus of bug reports, generating a list of valid N-gram 

key terms. For each bug report, the raw frequency of each N-gram 

item was computed and stored as membership vectors. These 

vectors were then combined with an existing dataset from previous 

work which contains the correct bug report type for each bug report 

file [26]. The resulting combined vectors served as input to train 

the classification model using logistic regression and random forest 

as classification models. Once the model was effectively trained, it 

could filter out misinformation as accurately as possible. 

By leveraging the FindBugs tool and optimized models, our 

foundational dataset was enriched with meaningful bug 

information. As illustrated in Figure 1, a code fragment is presented 

along with its associated bug information. The dataset, now 

furnished with bug information in textual description, was 

processed subsequent phases and then fed into the ASTNN model.  

 

Figure 1: A code fragment with the bug information 

3.4  Design Pattern Detection 
Design pattern detection relies on feature extraction to navigate 

the complexity of programming languages and draw out 

semantically significant concepts [7]. These features capture the 

intercommunication pathways and organizational structures within 

the code. Based on previous research, we segmented the selection 

of features into two categories: class-level features and method-

level features [27]. To address the classification challenge, we 



  

 

 

constructed multi-class classifiers using the Scikit-learn library in 

Python. For setting the learning parameters of the classifier, the 

number of estimates was set to 100, the learning rate to 1, and the 

AdaBoost algorithm was applied. To ensure unbiased predictions, 

Layered K-Fold Cross-Validation was employed to evaluate the 

performance of the machine learning models on code data samples. 

Various machine learning techniques can be applied to integrate 

and process data of different types. In our work, as illustrated in the 

Figure 2, max-pooling is employed to combine source code with 

supplementary bug information and design pattern information. 

Then, encoding is performed using a GNN-based encoder. 

Consequently, the resultant statement vector can be input into the 

ASTNN model to generate a representation of the source code, 

which proves instrumental for subsequent tasks [3]. 

The experimental results are shown in Table I and Table II. 

3.5 Results 
For the code classification task, we evaluated the classifier's 

effectiveness using the accuracy rate on the test set. Given that code 

clone detection can be viewed as a binary classification problem, 

determining the presence or absence of cloning, we deemed 

evaluation indicators from previous studies, such as the F1 score 

and accuracy, suitable for comparing the classifier's performance. 

The results of the code classification task, based on the OJ 

dataset and additional datasets, are depicted in Table I. The results 

suggest that without any incorporation of static analysis 

information, the ASTNN model achieved an accuracy score of 

96.6%. The introduction of Eclipse bug information slightly 

degraded the performance, resulting in an accuracy score of 95.6%. 

However, when integrating additional information from filtered 

bug reports, the performance improved, yielding an accuracy score 

of 97.8% (a 2% improvement). These outcomes suggest that 

superfluous information could adversely affect performance, 

reinforcing the necessity for efficient filtering to optimize results. 

The results of the code clone detection task on the BCB dataset 

are displayed in Table II. The dataset was partitioned into five 

segments, each corresponding to a different sample type, and each 

type was subjected to detection. The results revealed that without 

the inclusion of static analysis, the ASTNN model yielded an F1 

score of 84.9% on the BCB-ALL data. However, the inclusion of 

static analysis substantially improved the performance, with F1 

scores of 90.8% and 93.2% achieved for the addition of bug reports 

and design patterns, respectively. The best performance was 

obtained when both bug reports and design patterns were added, 

resulting in an F1 score of 94.6%, a 9.7% improvement. These 

findings indicate that the combined use of static analysis 

information is more effective than its individual use. And our 

research questions yielded the following answers. 

RQ1: The goal of this research question was to determine the 

influence of integrating bug report information on the performance 

of ASTNN-based models. Our results indicate an improvement in 

accuracy when filtered bug report data was incorporated into the 

model. Intriguingly, when the bug information provided by the 

FindBugs tool was used, the accuracy rate was slightly lower than 

the original performance. This outcome suggests that added 

information may interfere if it is redundant. To address this issue, a 

machine learning-based bug detection method was employed to 

filter the generated bug information. This process eliminated about 

30% of the bug information, yielding a more meaningful bug 

information and a slight improvement in performance. The results 

suggest that while bug information impacts the code classification 

task, the effect is not profound. This could be due to the ASTNN 

model's robust performance on the original dataset. 

Considering the code classification task results, we conducted 

an analysis to ascertain why the bug information had the observed 

effect on performance. We observed that the primary purpose of the 

code classification task is to classify the functions of code 

fragments. However, bug information primarily pertains to 

grammatical or structural errors in the code, which do not directly 

reflect the function of the code fragment. This realization prompted 

TABLE I.  PERFORMANCE IN THE CODE CLASSIFICATION 

Metric (%) Original dataset FindBugs tool Bug filter Design pattern Bugs filter + Design pattern 

Accuracy 96.6 95.6 97.8 98.2 98.5 

TABLE II.  PERFORMANCE IN THE CODE CLONE DETECTION 

 Original dataset FindBugs tool Bug filter Design pattern Bugs filter + Design pattern 

Metric (%) A P R F1 A P R F1 A P R F1 A P R F1 A P R F1 

BCB-T1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

BCB-T2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

BCB-ST3 98.7 96.3 95.2 95.7 94.2 93.6 92.1 92.8 9.7 98.7 96.7 97.7 99.2 99.1 98.6 98.8 99.9 99.3 98.7 99.0 

BCB-MT3 93.8 93.4 92.1 92.7 87.6 85.9 84.7 85.3 95.8 93.8 92.6 93.1 96.2 93.8 94.7 94.2 98.5 97.8 97.1 97.4 

BCB-T4 90.1 83.2 81.7 82.4 85.9 81.3 77.8 79.5 93.8 90.6 86.4 88.5 92.7 91.4 92.6 91.9 94.8 91.7 92.8 92.2 

BCB-ALL 92.6 87.7 82.4 84.9 88.6 82.7 80.9 81.8 94.2 91.8 89.9 90.8 93.8 92.7 93.8 93.2 95.7 95.6 93.7 94.6 

 

 
Figure 2: The structure of statement encoder 

ConvGNN

Statement  ector

Pooling

 ethod

Class

 a a Corpus

   

   

 S 

 m edding

 ode

 m edding

 0  1  n

Fully

Connected

 ayer

ma ( )
 1

 2

 n

 1

 2

 n

 1

 2

 n

 1

 2

 n

 EOS w x

 EOS w x

 raph

 m edding

   

 0 z1 z2 zn   

 ode

 ttention

 ethod

Bug

Information

Design

Pattern



  

 

 

 

us to consider incorporating other types of information to enhance 

performance. Design patterns, as discussed in the next question, 

emerged as a source of functional information. 

RQ2: The second research question investigated the effect of 

integrating design pattern information on the performance of state-

of-the-art deep learning models. Analyzing the results of the code 

classification task reveals that the incorporation of design pattern 

information led to a more significant performance improvement 

than the addition of bug information alone. The results suggest that 

the incorporation of more static analysis information, specifically 

design pattern information, is beneficial for the tasks. This is 

particularly relevant for the code clone detection task, which relies 

on the BCB dataset. This dataset places a greater emphasis on the 

code structure and the functional role of code snippets. After adding 

the design pattern information, the effect improved, and the best 

results were obtained when combining the bug information and the 

design pattern information simultaneously. Our findings suggest 

that integrating a diverse range of analytical information can 

significantly enhance model performance. 

4   imitations and Future Work 
In this study, we demonstrate the benefits of incorporating static 

analysis information, such as bug information and design patterns, 

into raw datasets to augment the performance of code-related tasks. 

Using the ASTNN model as a base, our results reveal that 

incorporating static analysis significantly enhances performance, 

particularly when utilizing design patterns, which provide insight 

into the functional attributes of source code. 

4.1   imitations 
Despite the promising results, there exist several limitations in 

this study. First, the sheer volume of code snippets in the dataset 

restricted the use of all data when incorporating bug reports, with 

defects found in only 50% of the snippets. Second, while the BCB 

dataset, comprising real code snippets extracted from the 

SourceForge Java repository [19], offers a realistic perspective that 

aligns with actual software development practices, the OJ dataset 

employed in this study was not derived from a production 

environment. Third, the code snippets in these datasets are 

relatively brief, potentially failing to capture the complexity and 

scale of actual code sets found in software engineering projects. 

Fourth, this study predominantly revolves around the ASTNN 

model, which may limit the generalizability of the results. The 

improvements observed might be specific to the ASTNN and may 

not necessarily extend to other source code representation models. 

Future work should aim to investigate the applicability of the 

proposed approach with a variety of other baseline models to 

confirm its broader effectiveness. Overall, while this study focuses 

on integrating static analysis within raw datasets to enhance the 

performance of source code-related tasks, the limitations inherent 

to the dataset itself pose the primary constraint [15]. 

4.2  Future Work 
In the scope of this research, we have observed that 

incorporating additional contextual information, such as bugs and 

design patterns, benefits deep learning models in comprehending 

source code, much like humans. Our preliminary findings provide 

promising evidence to support this claim. However, we believe that 

the type of context beneficial for enhancing a model's performance 

may vary depending on the task at hand, such as code 

summarization or clone detection. Therefore, we advocate for 

future research to delve into this uncharted territory and explore the 

impact of diverse types of contextual information on different tasks.  

Further, how we encode and represent contextual information 

merits attention. For example, determining the most effective way 

to encapsulate the fact that a piece of code adheres to a particular 

design pattern presents an interesting research question. Hence, not 

only should we explore what context to include, but also how best 

to represent it for consumption by the model. In line with these 

objectives, we propose a few strategic directions for future research: 

Construct Diverse and Comprehensive Datasets: Many existing 

datasets containing code-related information and labels are either 

inadequate in size or inaccessible. Therefore, it is crucial to collect 

and create more extensive, research-appropriate datasets [20]. 

Strategies might involve using models or techniques to rectify bugs 

in source code, rather than just identifying them, as inaccurate bug 

information could obstruct source code representation. 

Additionally, automated tools for code annotation could be 

employed to enrich the overall dataset. Leveraging a more efficient 

design pattern detection model could enable the construction of a 

larger labelled dataset for training purposes. 

Develop a Unified Experimental Platform: To accommodate a 

variety of corpora, evaluation metrics, and benchmark methods, it 

is essential to establish a unified experimental platform [22]. This 

platform would facilitate the use of a consistent deep learning 

framework, allowing both traditional methods and current 

evaluation metrics to be implemented and minimizing the impact 

of different deep learning frameworks on method effectiveness. It 

would also enable a more comprehensive and equitable evaluation 

of newly proposed methods against classic baselines. 

Enhance Supplementary Information Quality: The quality of 

additional information could be improved through several 

approaches, such as mining knowledge from crowdsourced 

platforms, analyzing related software products, and studying 

effective review styles [25]. It is possible to construct a code 

knowledge graph and integrate information into the training model. 

Assist with Other Software Engineering Tasks: Automatic 

generation of annotation information can aid in various software 

engineering tasks [24]. For instance, analyzing code can generate 

corresponding annotations. Existing research results can help with 

other tasks, such as generating code through the analysis of method 

or class names [23]. Generating high-quality code annotations for 

each module may enhances the efficiency of defect localization 

methods based on code search and information retrieval. 

In conclusion, we advocate for future research to delve deeper 

into the area of integrating additional context into source code 

representation for deep learning models. The type of context and its 

representation method could significantly influence the 

performance of different tasks, and we believe that exploring these 

variables presents a wealth of opportunities for future studies. 

Finally, in consideration of these objectives, we propose several 

strategic directions for future research, including the construction 

of more comprehensive datasets, the development of a unified 

experimental platform, and the focus on enhancing the quality of 

supplementary information. By pursuing these avenues, we can 

continue to advance understanding and improve the effectiveness 

of deep learning models in the field of software engineering. Our 

code and experimental data are available at 

https://github.com/Snowy0647/CR-with-static-analysis. 

https://github.com/Snowy0647/CR-with-static-analysis
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